Fast, Accurate Power Prediction for System-on-a-Chip
(SoC) Processors

ABSTRACT

We describe a fast, accurate power prediction methodology
for follow-on designs in the same System-on-a-Chip (SoC)
architecture family. Our methodology cuts down power es-
timation times in design-cycles by enabling fast, accurate
power estimates for individual components of the architec-
ture. We demonstrate that we can achieve up to 99.97%
correlation between simulation-based power estimates and
silicon-based power measurements and simultaneously re-
duce overall design-cycle times. We use current generation
silicon power measurements to calibrate pre-silicon simu-
lation models for follow-on designs in the same fabrication
process. We predict the power consumption on the silicon of
a digital signal processor (DSP) called the Intel® Micro Sig-
nal Architecture (MSA) core on the Intel® PXA800F SoC
for increased instruction widths and multi-cycle instructions
within 3% average absolute error of silicon measurements.

1. INTRODUCTION

Embedded systems in battery-operated devices such as
cellphones are becoming pervasive, creating a highly com-
petitive and lucrative market. System-on-a-Chip (SoC) pro-
cessors are increasingly being used in embedded systems to
satisfy the growing needs of functionality and integration,
allowing devices to become smaller and more powerful. SoC
processor designs are often done in architecture families,
with each new design improving upon the previous for differ-
ent products or markets. The dual core architecture where
a reduced instruction set computing (RISC) core handles
general purpose applications and a digital signal process-
ing (DSP) core handles data processing applications is the
state-of-the-art design of modern cellular processors [8, 12].
Highly integrated SoCs that perform sophisticated functions
consume proportionately higher power. This increase in
the power consumption of the SoC reduces battery-life and
causes thermal effects that can pose a significant threat to
the life of the SoC and also the embedded product. The twin
constraints of battery-life and heat dissipation have caused
power to become an increasingly crucial design parameter
in embedded systems.

In this paper, we describe a high speed and high accuracy
methodology to predict silicon power in the follow-on designs
of the current generation architecture in the same fabrica-
tion process. Our methodology cuts down power estimation
time of design-cycles by accurately estimating component
power using fine-grained switching activity control and a
hierarchical differencing technique. Fine grained switching
activity control refers to the user control over the switching
activity of various microarchitectural components. Using
fine grained switching activity control, we vary the switch-
ing activities of particular microarchitectural components

through carefully hand-crafted programs, while avoiding the
microarchitectural effects (cache miss latencies, branching
overheads), the operating system effects (background pro-
cesses, interrupts) and system effects (other cores and pe-
ripherals, if any on the SoC) from influencing the power
estimates. Hierarchical differencing refers to a method of
taking successive differences of power estimations to ob-
tain component level power estimates at a finer granular-
ity. Fine grained switching activity control combined with
hierarchical differencing enables us to do faster component
level power estimation. The hierarchical differencing tech-
nique not only helps to isolate the power dissipated by the
components but also increases correlation accuracy of the
simulation measurements as compared to the silicon mea-
surements.

We use a single-instruction multiple-data (SIMD) stati-
cally scheduled DSP core called the Intel® Micro Signal Ar-
chitecture (Intel® MSA) [4] on the Intel® PXAS800F proces-
sor SoC [5, 8] to demonstrate and validate our methodology.

The rest of the paper is organized as follows. Section 2
introduces the related previous work. Section 3 gives the
details about the Intel® MSA core microarchitecture. Sec-
tion 4 explains the methodology. Section 5 presents the re-
sults and analysis of our methodology. Section 6 summarizes
our contribution and suggests possible future directions.

2. PREVIOUS WORK

Power estimation can be classified as post-fabrication es-
timation and pre-fabrication estimation. Post-fabrication
power estimation methodologies require processor silicon to
estimate power. Tiwari et al. [10] assign the average mea-
sured power for each instruction to be the base power cost of
that instruction and additional power of each pair of instruc-
tions as the overhead power cost for that pair of instructions.
Sinha et al. [9] and Osqui [6] run each instruction in endless
loops and thus build instruction level power models. The
disadvantage of instruction level power analysis is that it
fails to provide microarchitectural insights. For example,
if no operands are switched, the base power cost of each
instruction might simply be the clock circuitry power con-
sumption. Chang et al. [3] build cycle-accurate energy mod-
els of various pipeline stages of a scalar RISC processor core
by executing assembly programs on the processor evaluation
board. Shafi et al. [7] use the IBM PowerPC® GP405 em-
bedded SoC processor based evaluation board called Pecan,
and run assembly experiments on the board with the in-
volvement of an operating system to isolate the power con-
sumed by various components. Post-fabrication techniques
come later in the design cycle and provide little assistance
in reducing the design times of the follow-on designs of the
current generation architectures as these techniques require
the silicon to be available.

Pre-fabrication power analysis methodologies help in get-
ting early feedback on power characteristics of the design.

JTAG interface

PXAB00F

6 Volt, 800mA
DC Power suppl

Figure 1: The Intel® PXAS800F Processor Evalua-
tion board

They are simulation-based and do not require silicon. Sev-
eral research efforts [1, 2, 11] have built detailed power mod-
els for various architectural components and integrated the
power models into cycle-accurate architectural simulators.
These power modeling techniques are tied to the particu-
lar logic structure of the microarchitectural components and
are not readily usable for the case where the logic of the mi-
croarchitectural components is varied. Dynamic (switching)
power is currently the largest component of power consump-
tion. Switching activity based power analysis increases the
accuracy of power estimations. However, switching activ-
ity based simulations are very time-consuming and resource
intensive. Since the set of all the input vectors grows expo-
nentially, simulating all possible input vector combinations
is prohibitive. Simulation-based techniques might trade-off
accuracy for speed thus resulting in conservative power esti-
mates. If the designers rely on such conservative estimates
to set the power/area budgets, they might miss the opportu-
nity to aggressively optimize the designs. We need a way to
prune the set of all possible inputs (input vector space) while
obtaining power estimates that correlate well with silicon.

Our methodology uses the correlation between simulation
power estimates and silicon power measurements to reduce
the input vector space while simultaneously providing ac-
curate power estimates. Since our methodology provides
accurate power estimates, it provides opportunities for ag-
gressive optimizations to logic and circuit designers. Our
methodology can reduce the design cycle times in the cur-
rent generation architecture through component level power
estimation. While differencing is used in previous work to es-
timate the power of architectural components, we show that
differencing also increases correlation accuracy between the
simulation-based power estimates and the measured silicon
power.

3. EXPERIMENTAL SET-UP

The experimental set-up (Figure 1) consists of the Intel®
PXAB800F processor SoC [8] based evaluation board (EVB).
The Intel® PXA800F SoC processor has integrated the In-
tel XScale® core [13], the Intel® MSA core, the clock/power
controller and peripherals in a 130 nanometer low leakage
flash + logic process technology. The EVB communicates

System Bus interface

REENE

> Instruction
L1 Data L1 instruction| —2ddress bus

memory memory

Control unit

| Address arithmetic unit

Data address
Address generator 0 Align unit
register file
Data addriss Instruction loop
= buffer

Data arithmetic unit

>
— Eata register file ’ Video alus ‘

Source: R. Kolagotla et. al. "High Performance Dual-MAC DSP Architecture," (IEEE SPM 2002)

Instruction Decode
a bus unit

Data —
address buses

Data store bus
Data load bus 0
[Dataload bus 1

Multiplier 1

Multiplier 4

Figure 2: The Intel® MSA Architecture

with a host computer through the JTAG interface shown in
Figure 1. We use the JTAG interface to transfer the exe-
cutable program from the host machine to the EVB. Note
that the EVB does not need an operating system for pro-
gram execution, thus eliminating the effect of operating sys-
tem processes on the power measurements.

3.1 The Intele MSA Core Micro-architecture

We describe the high-level microarchitectural features of
the Intel® MSA core as shown in Figure 2. The Intel® MSA
core is a SIMD DSP core with variable instruction widths
of 16-bits, 32-bits and 64-bits. It has a modified Harvard
architecture with eight fully interlocked pipeline stages. In-
structions and data reside in separate level one (L1) memo-
ries but share a common level two (L2) memory. The core
consists of a control unit, an address arithmetic unit, and
a data arithmetic unit. The control unit consists of a de-
code unit, an align unit, and instruction loop buffer (ILB)
circuitry. The address arithmetic unit consists of an address
register file and two data address generators. The address
register file includes an 8-entry pointer register file (regis-
ters p0-p7) and a 4-entry index register file (registers i0-i3)
used for memory addressing purposes. The data address
generators generate the memory addresses needed to access
the data memory. The data arithmetic unit consists of an
8-entry 32-bit data register file, four 8-bit video ALUs, two
16x16-bit multipliers, two 40-bit accumulators, one 40-bit
barrel shifter and two 40-bit ALUs.

We use an existing architectural feature of the Intel®
MSA core called the instruction loop buffer (ILB) in our
methodology to minimize the effects of instruction mem-
ory hierarchy and branching, thus increasing the accuracy
of power estimates. The ILB is a 64-bit wide, 4-entry deep
buffer that enables the execution of instruction loops with
four or less instructions without any branching overhead.

4. METHODOLOGY

In this section, we describe the methodology shown in
Figure 3. The goal of the methodology is to devise a model
to predict the power consumption of follow-on designs of
the current architecture. We estimate the power consump-
tion using simulation for a set of tests and run the same set
of tests on the evaluation board and measure the power as

Assembly Code Creatio

Simulation Silicon Power
Power Estimation Measurement '
V V
Gate Level Simulation ivaluation Board Execution

V
| Switching Activity Collectionl

IPower Simulation

Power Estimation

|
I
! |
! |
! |
! |
|
| |
! I
: |Current and Voltage Measurement | !
! |
l
! |
! I
! |

V V
Statistical Correlation

V
Predictive model

Figure 3: Power Prediction Methodology

shown in Figure 3. We then plot the simulation and silicon
power measurements to observe statistical correlation. We
numerically fit a predictive model to predict the power con-
sumption of follow-on designs of the current architecture.

We start by estimating the power of various microarchi-
tectural components as shown in Figure 4. First, we se-
lect a microarchitectural component as the focus of the ex-
periment. Then, we create three assembly programs, one
that does not switch the microarchitectural component un-
der consideration (base experiment), another that switches
the microarchitectural component to the minimum extent
we could devise (minimal switching experiment) and another
that switches the microarchitectural component to the max-
imum extent (maximal switching experiment). We carefully
vary the switching activity of the component in relation to
the rest of the system, while ensuring that the rest of the sys-
tem does not excessively influence the activity of the compo-
nent. We use the ILB to avoid the microarchitectural effects
of instruction memory hierarchy and branching on power es-
timates. We configure the L1 instruction memory and the
L1 data memory as SRAMs and not as caches to avoid cache
miss latencies from influencing the power estimates. We do
not involve an operating system in our methodology thus
eliminating operating system effects (background processes
and interrupts) on the power estimates. We configure the
Intel XScale® core to be in an inactive state and disable all
peripherals to avoid system level effects on power estimates.

The power estimation equations for the base program,
minimal switching program and maximal switching program
are shown in equation (1), equation (2) and equation (3) re-
spectively in terms of the datapath power Pg,, clock power
Pock, leakage power Pleq, and control path power Pp,.
Note that clock circuitry (Peiock), leakage (Pieak), and con-
trol path (P.p) consume identical amounts of power in both
minimal switching and maximal switching tests and cancel
out by the differencing operation.

Poase = Pup,o, + (Petock + Pieak + Pep) (1)
Piotrin = Pappin + (Pelock + Pieak + Pep) (2)
Piotpmae = Papmas + (Petock + Preak + Pep) (3)

Prin = Piotyin — Poase = Pappin — Papnop (4)

Praz = Protyes — Poase = Papmaz — Papnop (5)
Poyiteh = Priotrmae — Piotmin = Pipmas — FPappin (6)

Equation (4) gives the power contribution of the microar-

instruction_loop_buffer_start: | instruction_loop_buffer_start:
nop; p0 = [i0++];

nop; PO = [i0- -J;

nop; p0 = [i0++];

instruction_loop-buffer_end: instruction_loop_buffer_end:

nop; p0 = [i0- -];

Table 1: Programs to Cause the Load Circuitry to
be (a) Unused (b) Used

chitectural component when the component has zero/negligible

switching activity. Equation (5) gives the power contribu-
tion of the microarchitectural component when the compo-
nent has very high switching activity. Equations (4) and (5)
give the respective minimum and maximum contributions
for component power dissipation and could be used by cir-
cuit designers to investigate and optimize circuits. By tak-
ing the differences of Equations (4) and (5), we can isolate
the power of specific microarchitectural components. Equa-
tion (6) gives the power needed to switch the microarchitec-
tural component from a state of negligible switching activity
to a state of maximal switching activity. We call this tech-
nique of series of differencing operations, which enable us to
obtain fine-grained power estimates, as hierarchical differ-
encing.

As an example, we discuss how to isolate the power con-
sumed by the data load circuitry of the Intel® MSA core.
The data load circuitry includes the address arithmetic unit,
the data address buses and the data load buses between the
L1 data memory and the address arithmetic unit (see Fig-
ure 2). Figure 5 graphically depicts the active (continuous
line) portion and inactive (dashed line) portions of the data
load circuitry for each of the three cases corresponding to
equations (1), (2) and (3).

We create an assembly program that does not use the data
load circuitry by filling the instruction loop buffer (ILB)
with “nop” instructions and executing out of the ILB. Ta-
ble 1(a) shows the example program (base program) that
does not switch the data load circuitry. We preload the L1
data memory with the required data values. In the base
case, the data load circuitry is not being used since we are
executing nops. We run the base assembly program and
measure the power Ppgse.

We then create a modified assembly program that min-
imally switches the data load circuitry. Table 1(b) shows
an example program that switches the data load circuitry.
We preload the index register i0 with the address of the
L1 data memory location being accessed. The pointer reg-
ister p0 loads values from the two adjacent memory loca-
tions pointed to by the index register i0 with post-increment
and post-decrement operations. We preload the two adjacent
data memory locations with the same value e.g., 0x00000000
so that there is no switching on the data load bus. The data
address generator of the address arithmetic unit performs
post-increment and post-decrement operations to access the
two adjacent memory locations. In the minimal switching
case, the address arithmetic unit generates address refer-
ences to the two adjacent data memory locations that have
the same preloaded data value, thus resulting in zero activ-
ity on the data bus. We run the modified assembly program
and calculate power, Piot,,;,, -

We then modify the data in the same two adjacent mem-

| Select microarchi al |

{ v 3

| Minimal switching | | No switching | |

. | Controlled

14

Hierarchical
Diferencing

1 ! 1 !

! ! ! !
- LiData <t - LiData < L1 Data

| memory | memory memory
l l
1 1

Data Bus
Address bus

‘Address arithmetic unit
.| [Data addres

(a) (b) ©

‘Address arithmetic unit ' Address arithmetic unit

[l ettt r
! 1 Data address | "Data address
| Address 'y L Address [1 L-
= regster Hid | Eenerator 0 J‘ b regiser fil{, £enerator 0 !
I | ===

Figure 5: (a) Base (b) Minimal (¢) Maximal Switch-
ing Cases of the Data Load Circuitry

ory locations to be bit-complementary (e.g., 0x00000000 and
0xFFFFFFFF) resulting in maximum switching on the data
load bus of the data load circuitry. We run the modified
assembly program, taking care to maintain the same experi-
mental conditions and calculate power, Piot,,,, - In the max-
imal switching case, the address arithmetic unit generates
address references to two adjacent data memory locations
that have preloaded bit-complementary values, thus result-
ing in maximum activity on the overall data load circuitry.
We designate the difference between the base experiment
power, Pyase, and the modified experiment power, Piot,,;,, ,
as the power, Pp,in, of the data load circuitry with minimal
switching. We designate the difference between the base ex-
periment power, Phqse, and the modified experiment power,
Piotyos > as the power, Ppq., of the data load circuitry with
maximal switching.

4.1 Simulation-based Power Estimation

Simulation-based power estimation consists of three steps
(Figure 3): gate-level simulation, switching activity collec-
tion and power estimation. The simulator tool simulates
the test program on the post-layout (annotated with RC
parasitics) netlist of the Intel® MSA core and captures the
switching activity. The switching activity is collected in a
hierarchical format enabling us to isolate the switching ac-
tivities of individual microarchitectural components. The
power estimation tool uses the hardware netlist description
of the component along with the corresponding switching
activity of the component to estimate the power of the com-
ponent.

Note that the simulation is performed only once to col-
lect the switching activities of all microarchitectural com-
ponents. After collecting the switching activity, we perform
power analysis of individual components simultaneously by
using the corresponding switching activities and netlists of
the individual components, thus reducing the overall power
estimation time. Since the input vectors fed to the different
components belong to a single test program and collected in

Test name Example
Addition using data registers r3 =rl + r2
Addition using pointer registers p3 = pl + p2
Logical and r3 =rl & r2
Logical or r3 =rl|r2
Pointer register to pointer register move | p2 = pl
Data register to data register move r2 =rl
Logical xor r3 =rl " r2

Table 2: A Sub-set of Tests Used for Correlation

the same time window, the individual power estimates of the
components can be summed to obtain the total power for
that test program. In Section 5.2, we validate our method-
ology by demonstrating that simulation-based component
power estimation tracks silicon power very closely.

4.2 Silicon-based Power Measurement

Silicon-based power measurement consists of three steps
(Figure 3): running the test on the EVB, measuring the true
root mean square (RMS) current and voltage for the dura-
tion of the program execution, and calculating power as the
product of the measured current and the voltage. We run
the same set of assembly programs used in simulation-based
power estimation on the evaluation board (EVB) and mea-
sure the true RMS current I and true RMS voltage V. Since
we do not involve any operating system in our methodology,
operating system effects (background processes and inter-
rupts) do not influence the measurements. Since we con-
figure the Intel XScale® core to be inactive and disable all
peripherals, they contribute a common bias to all the ex-
periments and is removed by the differencing operation. We
repeat the experiments multiple times in the same ambient
conditions and calculate the average power to prevent vari-
ations in temperature-dependent leakage power of the SoC
processors.

The power estimation equations for the base test, minimal
switching test and the maximal switching test are identical
to that shown in equations (1) through (6), except for the
additional system power consumed by the Intel XScale®
core in an inactive state and with peripherals disabled. In
particular, the system power is the sum total of the power of
1/0 pads, leakage power on the Intel XScale® core and idle
mode power of peripherals. System power is equally present
in all the tests and cancels out by taking the differences
among the equations (1) through (3.)

5. RESULTS

We chose a set of tests to be representative of the data pro-
cessing operations most frequently performed by the DSP
core. Table 2 shows a sample list of tests. In the first set
of results, we demonstrate how fine grained switching ac-
tivity control leads to more accurate correlations between
simulation-based power estimates and silicon-based measure-
ments. We also demonstrate that the differencing operation
further increases the correlation accuracy between the two
estimates.

5.1 Accurate Power Model

Figure 6 shows the comparison of power obtained from the
silicon measurements versus pre-silicon simulation estimates
for the maximal switching tests (Prot,,..) (no differencing).

100.00

90.00

80.00

70.00 4

60.00

50.00

40.00 4

Silicon Power (milliwatts)

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

Simulation Power (milliwatts)

Figure 6: Power P,.,,,, Correlation for Data Pro-
cessing Components (no differencing)

For the case of maximal switching tests, simulation-based
power tracks the silicon-based power with a correlation ac-
curacy of 98.85%. In particular, note the system bias in-
troduced by the inactive Intel XScale® core and peripherals
in the silicon-based power measurement estimates. A simi-
lar comparison (Figure 7) of the differential power estimates
(Pswitcn) obtained from simulation versus silicon showed a
correlation of 99.06%. The common bias introduced by the
two heterogeneous power estimation setups are removed by
the differencing operation thus enabling us to accurately
track the trends. In particular, differencing has removed the
respective common bias in the simulation-based power and
the silicon-based power. Since the trends track each other
in a systematic manner, we can use this feature for design
space exploration of future architectures without actually
having the silicon as long as we use the same technology
and the same base microarchitecture.

5.2 Power Estimation Time Reduction

In this section, we describe the reduction in power estima-
tion times that can be obtained using our methodology. We
carefully create tests to vary the switching of only one mi-
croarchitectural component. The rest of the components are
either unused (clock-gated) or contribute equal switching to
all test cases (common bias). Prior to the development of
our methodology, the standard practice was to simulate the
entire design. With our methodology, it suffices to simu-
late only the component of interest thus resulting in a huge
savings of time and resources to run simulations. As an ex-
ample, we configure the experiments in such a way as to
make the data arithmetic unit the dominant power consum-
ing unit. We correlate the simulation-based power of the
data arithmetic unit with the silicon-based power measure-
ments. The simulation power (Piot,,,,) estimates versus the
silicon power estimates show a correlation of 98.56%. To en-
sure the generality of this methodology, we repeat the same
procedure for the entire datapath of the DSP core (about
60% coverage in terms of total transistor count) and ob-
served a high/similar correlation for all of our experiments.
Table 3 shows a list of components and the correlation ob-
tained. In particular, note that the register file tests involve
moving values from the general purpose registers in the data

40.00

35.00 -

30.00
P_sili = 1.07 * P_simu + 1.55

R? = 0.9906
25.00 4

20.00 1

15.00 1

Silicon Power (milliwatts)

10.00 5>

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00
Simulation Power (milliwatts)

Figure 7: Power Psyitch, Correlation for Data Pro-
cessing Components (differencing)

l Component [Percent Correlation (%) ‘
Data arithmetic unit 98.56
Address arithmetic unit 97.05
Register File 99.97

Table 3: Correlation of Components

arithmetic unit to the pointer registers in the address arith-
metic unit. Thus, the component power estimation can be
extended to cases where multiple components are switching
by summing the corresponding power contributions.

It is not as straightforward to design tests to control the
switching activities of components such as the instruction
cache or control logic, but the authors believe that it is fea-
sible, especially after accurately estimating the power con-
tribution of a majority of datapath components.

5.3 Power Prediction in Follow-On Designs

In this section, we demonstrate how we use the correlation
between the simulation-based power estimates and silicon-
based power measurements to predict the power for follow-
on designs. The instruction widths and pipeline stages are
important scaling parameters in architecture families. So,
we investigate the utility of our methodology with respect to
increasing instruction widths and multi-cycle instructions.
We build a predictive power model using the 16-bit instruc-
tions that perform data processing operations in one cycle
and use the predictive power model to predict the power
consumed by 32-bit instructions that perform data process-
ing operations and power consumed by multi-cycle instruc-
tions (that take more than one cycle for execution). For
the 16-bit instructions, the silicon power (Psi;) is related
to the simulation power (Psimu) according to Equation (7).
Equation (7) is derived by curve-fitting the values plotted in
Figure 7. The gradient of Equation (7) is 7% off from a per-
fect fit (gradient=1) owing to process parameter variations.
Also, the constant 1.55 milliwatts accounts for inaccuracies
in estimating the leakage power.

Poiti = 1.07 % Pyjnu + 1.55(mW) (7)

We obtain the simulation-based power estimates (Psimu)

Test Differential Power(mW) | Differential Power(mW) | % Error Absolute
Silicon Predictive Model Silicon Measurement
absolute 37.03 38.83 4.62
non-saturating add 34.53 34.43 0.29
saturating add 33.21 34.87 4.75
maximum 35.52 35.20 0.91
minimum 35.67 36.52 2.32
non saturating subtract 34.12 33.66 1.36
saturating subtract 34.29 36.52 6.09
multiply-accumulate 17.11 17.27 0.94
Average Absolute Error 2.66

Table 4: Prediction of Silicon Power Consumption for Wider and Multi-cycle Instructions

for the 32-bit instructions and multi-cycle instructions. Us-
ing Equation (7), we obtain the corresponding silicon-based
predictive estimates (Psi;). We run the same set of ex-
periments on the EVB and compare the predicted power
with the actual silicon power in Table 4. Note that our
model predicts the silicon power within an average absolute
error of 2.66%. In particular, note that while the multiply-
accumulate instruction is both a 32-bit instruction and also
spans over two pipeline stages (2-cycle latency), our ap-
proach still provides a power estimate that is very close to
the silicon power consumption.

6. SUMMARY

We demonstrated a methodology that obtains accurate
correlation between simulation-based power estimates and
silicon-based power measurements. We applied the method-
ology to reduce the power estimation times through com-
ponent power estimation, thus enabling faster design space
exploration. Logic design engineers and circuit design en-
gineers can use our methodology to quickly identify the
microarchitectural components consuming high amounts of
power. Software architects and compiler writers can use the
results of our methodology to improve the power-optimization
heuristics used in instruction selection, instruction schedul-
ing and register allocation. We demonstrated the utility of
our methodology to follow-on designs of the current gener-
ation architectures by predicting the power accurately for
increasing instruction widths and multi-cycle instructions.

An interesting extension to the methodology is to ex-
plore power-performance trade-offs and understand the en-
ergy characteristics of applications. Another interesting ex-
tension is to explore the applicability of the methodology in
the design of general purpose processors.

7. REFERENCES

[1] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A
Framework for Architectural-Level Power Analysis
and Optimizations,” Proceedings of the 27th
International Symposium on Computer Architecture,
pp. 83-94, Piscataway, NJ, 2000.

[2] G. Cai and C. Lim, “Architectural Level
Power /Performance Optimization and Dynamic Power
Estimation,” Cool Chips Tutorial: An Industrial
Perspective on Low-Power Processor Design, IEEE CS
Press, pp. 90-113, Los Alamitos, CA, 1999.

[3] N. Chang, K. Kim and H. Lee, “Cycle-accurate energy
consumption measurement and analysis: Case study

(11]

(12]

(13]

of ARM7TDMI,” Proceedings of the 2000
International Symposium on Low Power Electronics
and Design, pp. 185-190, 2000.

R. Kolagotla, J. Fridman, B. Aldrich, M. Hoffman, W.
Anderson, M. Allen, D. Witt, R. Dunton, L. Booth,
“High performance dual-MAC DSP architecture,” the
IEEE Signal Processing Magazine, Vol. 19(4), pp.
42-53, 2002.

D. Krishnaswamy, R. Stevens, R. Hasbun, J. Revilla
and C. Hagan, “The Intel® PXA800F Wireless
Internet-On-A-Chip Architecture and Design,”
Proceedings of the IEEE Custom Integrated Circuits
Conference, pp. 39-42, 2003.

M. Osqui, “Evaluation of Software Energy
Consumption on Microprocessors,” Masters Thesis,
Massachusetts Institute of Technology, 2001.

H. Shafi, P. Bohrer, J. Phelan, C. Rusu, and J.
Peterson, “Design and Validation of a Performance
and Power Simulator for PowerPC Systems,” The
IBM Journal of Research and Development, Vol.
47(5/6), 2003.

The Intel® PXA800F Cellular Processor,
http://www.intel.com/design/pca/prodbref/252336.htm
A. Sinha and A. Chandrakasan, “JouleTrack - A Web
Based Tool for Software Energy Profiling,”
Proceedings of the 38th Design Automation
Conference, pp. 220-225, 2001.

V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of
Embedded Software: A First Step Towards Software
Power Minimization,” Proceedings of International
Conference on Computer-Aided Design, pp. 384-390,
1994.

N. Vijaykrishnan et al., “Energy-Driven Integrated
Hardware-Software Optimizations Using
SimplePower,” Proceedings of the 27th International
Symposium on Computer Architecture, pp. 83-94,
Piscataway, NJ, 2000.

The Texas Instruments OMAP® Technology,
http://focus.ti.com/omap/docs/omapgenpage.tsp ?navigation
Id= 9508&templateld=5663Epath=
templatedata/cm/omapovw/data/gproc

The Intel® PXA250 Processor with XScale®
Technology,
http://www.intel.com/design/pca/prodbref/298620.htm

