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ABSTRACT 
Multiprocessor systems offer superior performance and 
potentially better energy-reduction than single-processor systems. 
It all depends, however, on how well the application can be 
mapped onto the architecture. Indeed, a careful tradeoff of energy 
and performance requires a thorough understanding of the energy 
consumption pattern across the architecture, both in hardware and 
software. This paper proposes MultiPo-Sim, a cycle-accurate 
simulator to estimate performance and energy consumption in 
multiprocessor systems. MultiPo-Sim can profile the energy per 
hardware module, and can also analyze the behavior of the 
application running on the multiprocessor. Several applications 
illustrate the capabilities of MultiPo-Sim, including a fingerprint 
minutiae detection program and a data-flow image encoder. The 
fingerprint detection program, which is data parallelized, 
consumes most energy on the computation of the algorithm 
(88%~99%). The data-flow image encoder, which is task 
parallelized, consumes most energy on inter-process 
communications (51%~69%). By using MultiPo-Sim, designers 
can easily evaluate the system characteristics and evaluate if the 
parallelism of the algorithm matches the parallelism of the 
architecture. 

1. Introduction  
 Multiprocessor systems-on-chip (MPSOC) have been 

proposed as a way to achieve high performance as well as low 
energy consumption [1][2]. Multiple cores on the chip offer 
higher parallelism and thus potentially higher performance. In 
addition, by lowering the supply voltage and operating frequency 
for processor cores, the energy consumption of the system can be 
reduced significantly. However, in order to design an energy 
efficient multiprocessor system while still maintaining a given 
performance, a thorough understanding of the energy 
consumption patterns is required.  

There are three design issues of concern when evaluating the 
energy-efficiency of a multiprocessor system. Each of these issues 
is specific for multiprocessor systems, and does not play a 
significant role in single-processor systems. The first one is the 
use of hardware synchronization hardware modules in the 
multiprocessor system. These synchronization modules help in the 
resource management among multiple processor units, and they 
have impact on both performance and energy consumption of 
multiprocessor systems. The second issue is the use of resource 
management software in application program running on the 
multiprocessor system, such as for example semaphores or 
mutexes in multithreaded programs. This software also causes 
extra execution cycles as well as energy consumption. The third 
issue is the partitioning of the application over the processors into 
parallel, communicating tasks. Applications can be partitioned 
according to their major data streams, or according to their 
composing subtasks. This gives rise to two different parallelizing 

strategies, called data- and task parallelizing. Each strategy has a 
different impact on the application characteristics and the 
additional overhead caused on the multiprocessor architecture. 
We will have a further discussion on these issues in section 5 and 
6.  

This paper proposes a cycle-accurate framework, MultiPo-
Sim, to analyze both the performance and energy consumption of 
a multiprocessor system. Besides cycle count, MultiPo-Sim can 
evaluate the energy consumption of each module in the 
multiprocessor system, such as cores, caches and the central bus 
interconnect. Moreover, MultiPo-Sim can also trace the program 
running on each core and profile the energy consumption of a 
specific sub-function or primitive. This feature can be used to 
extract the energy spent on the synchronization among processor 
cores. MultiPo-Sim also supports processor cores with 
voltage/frequency scaling, and returns the impact of scaling on 
performance as well as energy consumption. The modular 
configuration of MultiPo-Sim also enables to simulate different 
multiprocessor architectures easily. MultiPo-Sim can simulate 
331,500 cycles per second for a four-processor system on a 3GHz, 
512MByte Fedora-2 PC. Two multi-threaded applications, the 
fingerprint minutiae detection program and a data-flow image 
encoder, are used as the drivers to explore the multiprocessor 
system architecture. With different parallelization strategies, the 
two applications result in different energy and performance 
characteristics.  
This paper is organized as follows. Section 2 briefly discusses the 
related research efforts on the estimation of energy consumption 
of microprocessor systems. Section 3 introduces the power 
models used in the paper. Section 4 gives a more detail discussion 
on the proposed multiprocessor system and also explains how the 
MultiPo-Sim has been implemented. Two applications with 
different parallelizing schemes are introduced in section 5. The 
performance and energy results are shown in section 6. Section 7 
will draw the conclusion. 

2. Prior Art  
The estimation of energy-consumption and power modeling 

of processor-based systems has been widely studied. Due to the 
large size and high complexity of processor-based systems, it is 
not practical to use the low-level power estimation tools such as 
PowerMill and QuickPower. Several techniques are being used to 
abstract the power model and speed up the power estimation 
process. Instruction-based power analysis uses the instructions or 
instruction-pairs and associates them to power models [3]. Micro-
architectural power models [4][5] are proposed to provide a more 
accurate power model. Power macro models are constructed based 
on the knowledge of the internal micro-architectures. Because it 
models the micro-architecture in more detail, the simulation time 
is longer. Macro-modeling is proposed to connect the 
architectural power model to the application software. The 



program behavior, such as sub-routine calls[6] and system 
calls[7] are used to estimate the energy consumption.  

Several power estimation platforms have also been developed by 
extending cycle-accurate simulators with power models 
[8][9][10]. A cycle-accurate simulator provides detailed behavior 
of a processor-based system, including the internal pipelining, the 
cache access behavior, and the communication to the external 
system. Usually the cycle-accurate behavior will be ported into 
power models for different components, such as data-path logic, 
memory, and interconnect.    

Although a lot of research effort has been done on power 
modeling for processor-based systems, most of them are focusing 
on the single processor system. M.Loghi et. al [11] proposed a 
cycle-accurate power analysis for a multiprocessor SoC. By using 
the cycle-accurate behavior, the authors combine the power and 
performance models of different components. However, they can 
only breakdown the energy consumption for different hardware 
modules.   

In this paper, we propose the MultiPo-Sim, which is a cycle-
accurate energy/performance simulation platform for 
multiprocessor systems. In addition to profiling hardware 
modules, MultiPo-Sim can also analyze software functions, which 
gives the designers insight into the energy consumption behavior 
of the multiprocessor system. 

3. Power Model  
Fig.1 shows an instance of the multiprocessor. A shared 

memory architecture [13] is chosen to reuse as much as possible 
from existing single processor systems. There are four ARM cores 
with private instruction and data caches. Each ARM has a specific 
voltage/frequency(V/f) module which controls the operating clock 
frequency and the supply voltage to achieve energy scaling. 
Besides ARM processors, there are two other components in the 
system: a hardware test-and-set lock to support inter-process 
communication and synchronization, and a memory interface to 
access off-chip memory. The system uses a central bus as the 
medium to connect the modules. 
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Fig.1: A shared memory multiprocessor system with 

energy scaling 

Based on this multi-processor architecture, we categorize the 
power model into three different components: processor cores, 
caches, and synchronization modules. We apply different models 
for each component. Based on the cycle-accurate behavior of each 
component, the power model will estimate the energy 
consumption. The power models are developed for 0.18um 
CMOS technology. 

3.1 Processor Core (without Cache) 
The processor core used in MultiPo-Sim is a 5-stage pipelined 

StrongARM microarchitecture. While we have a cycle-accurate 
model of the ARM core [23], developing a detailed power model 
for the core itself is not trivial, especially when energy scaling 
techniques are supported. Therefore, MultiPo-Sim uses the 
average power consumption to determine the energy consumption 
of the processor core. We choose a processor core from ARM 
Corp., ARM966E-S[23], which is similar to the ISS of MultiPo-
Sim in both architecture and performance. We use the 
performance characteristics of the processor core provided by 
ARM Corp., which shows the nominal operating frequency and 
the average power consumption of ARM966E-S core without 
cache are 200MHz and 0.70 mW/MHz respectively. 

The V/f units in Fig.1 provide different voltage/frequency 
operation modes, or power modes, for each ARM processor. The 
power modes are controlled by the application. In order to model 
the energy scaling capability of the processors, we use similar 
voltage/frequency scaling characteristics as the LART 
platform[14]. The LART platform uses SA-1100 processor core, 
which is also a StrongARM-based processor. The SA-1100 runs 
at 251MHz with the supply voltage of 1.65V, and 59MHz with 
the supply voltage of 0.79V. The energy scaling ratio (V2f ratio) 
of the high frequency mode and low frequency mode is 18.5. 
These characteristics are mapped to the processor cores used in 
MultiPo-Sim. The ARM core in MultiPo-Sim supports two steps 
of energy scaling. We use the same supply voltages for high/low 
power modes as in the LART, and keep energy scaling ratio the 
same by adjusting the operating frequency. The energy scaling 
characteristics are shown in Table-1. 

Table-1: Power characteristics of the processor cores 

 

Besides dynamic energy consumption, there is also static energy 
consumed by the system. A lot of techniques have been proposed 
at circuit and architecture level to reduce the static energy 
consumption [14][15]. In this paper we are using 0.18um 
technology, thus the static energy does not occupy a significant 
portion of the total energy consumption of the system. The static 
energy of a 0.18um CMOS circuit is typically less than 1% of the 
total energy dissipation. This paper will focus on the dynamic 
energy consumption. However we do believe that the static energy 
would play an important role when more advanced semiconductor 
technology is used.  

3.2 Cache 
In both single processor and multiprocessor systems, caches 

usually consume a significant portion of the total energy [11][16]. 
Therefore we need a cache power model which is accurate enough 
to reflect the energy consumption of the caches. Thanks to the 
cycle-accurate simulation provided by MultiPo-Sim, we can trace 
the access behavior to the caches as precise as every clock cycle.  

 Pouwelse[12] 
Energy-Scaled ARM Core 

in MultiPo-Sim 

Processor StrongARM StrongARM 

V/f high power (V/MHz) 1.65 / 251 1.65 / 200 

V/f low power (V/MHz) 0.79 / 59 0.79 / 47 

Frequency(f) ratio 4.25 4.25 

V2f ratio (high/low) 18.5 18.5 



Sim-Panalyzer[9] is a energy estimation tool for the ARM 
architecture. It is an augmentation to the SimpleScalar 
performance simulator [17] attaching the power models for the 
components and using the cycle-accurate behavior provided by 
SimpleScalar as the input of the power model. The latest version 
of Sim-Panalyzer provides very detailed energy estimation models 
for the components which account for a large portion of the total 
energy of the processor core, such as L1 caches and clock trees. 
We port the cache model used in Sim-Panalyzer into our platform. 
By providing the access behavior of the cache, the power model 
of the cache can return the energy consumption.  

The Sim-Panalyzer cache model is divided into two parts, the tag 
model and the memory bank model. These two models are similar 
but with different parameters, e.g. size of the memory bank. Based 
on the data of the 0.18um technology, the Sim-Panalyzer cache 
model first calculates the effective capacitances of switching 
(Cswitch), internal (Cinternal) and leakage (Cleakage). The size of the 
effective capacitances will change based on the parameters such 
as the size of the memory, number of the bit lines, number of the 
ports and which type of the port (read, write, or read/write), etc. 
Due to the cycle-accurate simulation, the cache power model uses 
the actual access data from the processor as the inputs.  The 
number of the switchings on the cache lines is calculated by 
actually counting the value differences on the cache line. The total 
energy consumption within a certain clock cycle can be estimated 
by: 

{(# of switchings) * Cswitch  + Cinternal + Cleakage  } * SV2 (1) 

where SV2 is the square of the supply voltage.  

3.3 Central Bus and Synchronization 
Modules 

In addition to the processor cores and caches, a 
multiprocessor system also requires a medium as the interconnect 
of the system and modules to handle the synchronization among 
processors. In this paper, the interconnect is implemented with a 
central bus architecture, and multiprocessor synchronization is 
implemented with a test-and-set lock (as shown in Fig.1). 

Central Bus. An energy model for bus-based interconnect is not  
a trivial matter. Different bus architectures and techniques used on 
the bus raise the complexity to analyze the energy consumption 
on the bus, and consequently also the complexity to model it. 
Since we use relatively simple bus scheme, the energy is mainly 
consumed by the switching activity on the bus wires. We 
therefore model the bus as a long wire on the chip, and use 
Berkeley Predictive Technology Model (BPTM) [18] to model 
the wire capacitance of the bus interconnect. The length of the bus 
is estimated as the following: 

Bus Length = 2 * Sqrt( Atotal_core + Atotal_cache ) (2) 

Equation (2) reflects the length of the sum of the width and height 
of the chip die where Atotal_core and Atotal_cache are the area of the 
processor cores and the caches respectively. Using the 
accumulated area as the die size somewhat underestimates the 
impact of the inefficiency of the placement and the bus-
interconnect. However, recent semiconductor technology usually 
has multiple metal layers which can mitigate the area increased by 
global interconnect. Moreover, modern processor systems, 
including multiprocessor systems, are highly customized design in 

terms of performance and area optimization. Therefore we believe 
equation (2) can provide an appropriate first-order estimation.  

We assume the bus uses inverter-based drivers and receivers 
(Fig.2(b)), which will add a load of 0.05pF to 0.1pF according to 
TSMC 0.18um technology. In this paper, we use 0.1pF as the load 
for each node on the bus. Thus more processors connected to the 
bus will increase the total load on the bus, which consequently 
raises the energy consumption for each switching on the bus.  
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Fig.2 : (a) The height and width of the chip die   (b) Driver and 
receiver connected to the bus wire 

External memory interface. The external memory interface 
supports a connection to an off-chip memory system. It is 
composed of a control logic unit and data registers. Due to its low 
complexity, the energy consumption will be dominated by the 
large receiver- and driver buffers connected to the bus. Therefore 
we use the energy consumption of the buffer to represent the 
power model of the external interfaces. 

Test-and-set lock. The test-and-set module manages the access to 
the locks of the resources. It contains 16 registers to store the 
value of the lock (1 means lock and 0 means free) for a specific 
resource and control logic to handle the test-and-set protocol. 
Same as the external interface, the simple functionality of test-
and-set lock makes its bus buffer the dominant energy 
consumption component. We use the energy consumption of the 
buffer to represent the power model of the test-and-set lock.  

4. Multiprocessor Platform  
4.1 Multiprocessor Architecture 

In this paper, we use a shared memory multiprocessor 
architecture (Fig.1). Each processor core has its own data and 
instruction cache. The caches implement a write-through policy. 
Whenever the cache writes on the bus, the transaction will also be 
observed by all the other caches. Therefore, the cache coherency 
has been sustained by snooping on the write-transactions. Each 
processor has a 4K instruction cache and a 4K data cache.  

A hardware test-and-set lock is implemented to provide the 
synchronization function of the system. This is used as a 
semaphore and mutexes for the shared resources. Whenever a 
processor wants to access a shared resource, e.g. shared memory, 
it has to acquire the lock for this resource. The lock will be 
released after it has finished accessing the resource. The so-called 
spin-lock scheme[19] has been used as the protocol for the 
processor to grab the lock: when the processor wants to acquire 
the lock, it will repeatedly check the lock until the processor owns 
it. It currently supports 16 different locks to handle the resources 
synchronization in the system. 

The hardware modules are connected by a central bus. The central 
bus uses a master-slave transaction-based scheme. Each master 
can initiate read- or write transactions to the slave. Only one 
transaction can be conducted on the bus at a time, and there is no 
support for split transaction.  



The multithread programming model is based on the 
QuickThreads cooperative multithreading library [20]. The main 
thread will first create other threads and then calls start to 
initiate the execution of multithreading. After threads are created, 
thread context information is stored in a queue. When a processor 
is idle, it will check the queue and take one thread if there is any 
thread needs to be executed.  

The multiprocessor system supports two energy scaling modes, a 
high power mode and a low power mode as explained in section 
3. The switching between different power modes is controlled by 
the application. Note that this energy scaling control scheme is 
orthogonal to the other energy scaling techniques. It can work 
with other energy scaling control techniques in different levels as 
well, e.g. the energy scaling control by a embedded OS[25]. 
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Fig.3: The platform architecture of MultiPo-Sim 

4.2 Multicore-Power Simulator (MultiPo-Sim) 
We construct a cycle-accurate simulation platform, called 

MultiPo-Sim, which can analyze both the performance and energy 
consumption of a shared-memory multiprocessor architecture 
shown in Fig-1. MultiPo-Sim is developed by combining SimIt-
ARM[21] and GEZEL[22]. SimIt-ARM is an ISS (Instruction Set 
Simulator) for the ARM ELF instruction set. It models a 5-stage 
pipeline ARM micro-architecture. The parameters of the 
instruction/data caches, such as associativity, block size, cache 
line size and etc, can also be reconfigured. GEZEL is an 
environment which facilitates the exploration, simulation and 
implementation of domain-specific micro-architectures. It uses 
finite-state-machine-datapath (FSMD) semantics, which allows 
designers to capture the datapath and control operations of 
hardware models independently.  

The simulator architecture of the MultiPo-Sim is illustrated in 
Fig.3. GEZEL provides a common platform which can co-
simulate different numbers of processors, bus interconnect and 
other system modules. Each processor is modeled by one SimIt-
ARM ISS. The power models are attached to each module in the 
MultiPo-Sim. The energy consumption is estimated based on the 
cycle-accurate behavior of each module. Due to the cycle-accurate 
simulation feature, the MultiPo-Sim profiles the performance of 
the system in terms of cycle count. In addition, MultiPo-Sim can 
also trace the application to evaluate the cycle count and the 
energy consumption spent on a specific function of the program. 
Later on we will use this capability to profile the energy 
consumption spent on the test-and-set lock of the multiprocessor 
systems.  

MultiPo-Sim uses a modular configuration. Each module in the 
system can be added or modified individually. This feature makes 
the MultiPo-Sim a very flexible platform. For example, MultiPo-
Sim can easily simulate the system with different numbers of 
processor cores by only changing parameters in the configuration 
file. The multithread programming model does not assume a 

detailed  knowledge on the system architecture. Therefore, the 
same application can be run on different multiprocessor systems 
without changing the program. The multiprocessor architecture 
shown in Fig.1 is an instance which can be simulated on MultiPo-
Sim and demonstrate energy and performance characteristics of a 
multiprocessor system.  

5. Applications  
In order to take advantages of the computation power 

provided by the multiprocessor system, applications need to be 
parallelized. There are basically two schemes to parallelize the 
application, data parallelization and task parallelization.  

APPLICATION FLOW

APPLICATION FLOW

A task thread

(a)

(b)

 

Fig.4: (a) Data and (b) task parallelization 

We define the application flow as the flow of information from 
the input to the output of the system. Given an application flow 
from left to right, the process of the application can be partitioned 
in parallel with the application flow, which we call data-parallel 
processing (Fig.4(a)). Each partition is implemented as a task 
thread and can be executed by a processor core. Usually the task 
threads in a data parallelized system are independent of each other 
and do not require the synchronization very often.  The other way 
is to parallelize the process of the application according to the 
individual tasks in the application flow, which we call a task-
parallel processing (Fig.4(b)). Each task thread can be executed 
by any processor core. However, threads depend on the data 
passed by the other thread before them. These two parallel system 
architectures have different impact on the energy consumption 
and performance. We use two applications, a fingerprint minutiae 
detection and a data-flow image encoder, to demonstrate the 
characteristics of a data-parallel system and a task-parallel system 
respectively.  

Fingerprint minutiae detection (Data-Parallel). The minutiae 
detection algorithm takes a 256 by 256 gray scale fingerprint 
image as the input. Multiple phases of the image processing have 
been conducted on the fingerprint and the minutiae are generated 
as the output of the algorithm. The reference algorithm is a fixed-
point version of the NIST fingerprint software [24]. The 
multithreaded fingerprint minutiae detection program partitions 
the fingerprint image into four different sections. As shown in 
Fig.5, each image section has 144 by 144 pixels of the fingerprint 
image, and will be initiated as an individual thread.  

144

256
Minutiae Detection

Minutiae Detection

Minutiae Detection

Minutiae Detection
Minutiae point  

Fig.5: Multithreaded fingerprint minutiae detection 



Data-flow Image Encoder (Task Parallel). The second 
application is a high throughput image encoder which is 
implemented as a data-flow system. Fig.6 illustrates an instance of 
a data-flow system. It is consists of actors of different operations. 
The actors are communicating through the intermediate queues, 
and these queues are located in the external memory of the 
multiprocessor systems. Thus every access to the queues is 
translated as the traffic on the bus. In the data-flow image 
encoder, each actor is implemented as a thread and can be 
executed by any processor core in the system. There are total 32 
actors in the system.  

Actor1 Queue_1

Actor2 Queue_2

Actor3 Queue_3

Actor4

Queue_4 Actor5

Queue_5 Actor6

Queue_6 Actor7

Queue_7 Actor8
 

Fig.6: Data-flow application 

6. Energy and Performance Analysis 
The MultiPo-Sim can trace both energy consumption and 

performance of specific components of hardware as well as 
software. The two applications have been applied onto different 
processor schemes, including the system with single-processor, 
dual-processor and quad-processor. Different power modes are 
also used to evaluate the amount of energy saving and the impact 
on the performance. We use different labels to indicate the 
configurations. For example, 2HL represents the dual-processor 
architecture with one processor in high-power mode and another 
one in low-power mode, while 2HH means a dual-processor 
architecture with both processor cores running at high-power 
mode. 
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Fig.7: Energy consumption and execution cycles on different 
processor schemes 

6.1 System Performance Enhancement 
Fig.7 shows the execution cycles (lines) and energy 

consumption (bars) of the minutiae detection (mindtct) and the 
data-flow image encoder (dfimg). The basic trend shows that 
increasing the number of processor cores and using the high 
power mode will enhance the overall system performance. 
However, the speed-up does not linearly reflect the number of 
processor cores. For example, in mindtct, the 2HH scheme is 36% 
faster than 1H scheme, while 4HHHH scheme has only 40% 
speed-up compared to 1H. In dfimg, the 4HHHH scheme is even 

slower than the 2HH and the 1H scheme. The main reason is that 
the bus and the test-and-set lock can only allow the access from 
one processor at a time. If more than one processor would like to 
access them, the processors have to line up in order to access 
these resources. The sequential properties of the bus and the test-
and-set compensate the potential performance enhancement 
provided by multiple cores.  

6.2 Energy Scaling  
The energy consumption of different processor schemes 

basically shows a reverse trend as the execution cycles. The 
increasing of the number of processor cores and using the high 
power mode will consume more energy. The energy scaling 
technique applied on the multiprocessor system reduces the total 
system energy consumption significantly. However, due to the 
additional parallelism and computation power provided by 
multiple cores, the overall system performance has been sustained 
(or even better) when comparing to a single processor system. For 
example, in mindtct, 2HL scheme is 15% faster than the single 
processor nominal case (1H) while consuming only 86% of the 
1H. With a slightly 2% faster than 1H scheme, the 4LLLL 
consumes even only 12% of the total energy consumption of the 
1H. This proves that the multiprocessor system can provide 
energy reduction as well as faster execution.  

Fig.8 shows the normalized energy consumption breakdown for 
different components in the system. For the processor schemes 
with high power mode, the processor cores consume the most 
energy, 67% to 82% for mindtct and 82% to 93% for dfimg. The 
caches dominate the energy consumption in the schemes with low 
power mode, 66% to 75% for mindtct and 46% to 60% for dfimg. 
Compared to the cores and the caches, the central bus and the 
synchronization modules do not consume too much energy (0.8% 
to 8%). 
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Fig.8: Normalized energy consumption of different HW 

components for two different applications 

6.3 Synchronization Overhead 
Processor cores are synchronized using a inter-process 

communication function, which is implemented as a test-and-set 
function in the multiprocessor architecture used in this paper. 
MultiPo-Sim traces the execution of the application and profiles 
the energy spent on the test-and-set operation for each module. 
Fig.9 shows normalized energy of the test-and-set operations. 
Note that in this figure the test-and-set operation represents the 
energy spent on the inter-process communication for each module 



in the system, including processor cores, caches, bus interconnect, 
memory interface as well as the hardware test-and-set module. 

As we mentioned before, the task threads of data parallelized 
applications are almost independent from other task threads. 
Therefore, there is a low amount of synchronization in the system. 
As illustrated Fig.9(a), the energy consumption for the test-and-
set function in the mindtct occupies 0.4% to 12% of the total 
energy consumption. However, in data parallelized applications, 
the actors need to pass and receive the data to(from) other actors. 
Therefore the synchronization is happening frequently. Fig.9(b) 
shows that out of 51% to 69% of the total energy in dfimg is 
consumed by the test-and-set function.  
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Fig.9: Normalized energy consumption of test-and-set 

operation for two different applications 

Given the energy characteristics of applications with different 
parallel strategies, designers can adapt the application model 
towards the underlying architecture. For instance, a data 
parallelized application can benefit more by running on a bus-
based multiprocessor system as shown in this paper. Or vice 
versa, designers can optimize the multiprocessor architecture to 
execute a given multithreaded application. For both cases, 
MultiPo-Sim can provide the necessary information to the 
designers.  

7. Conclusion 
In this paper, we propose a cycle-accurate simulator, MultiPo-

Sim, which can profile both the performance and energy 
consumption of hardware modules as well as software functions. 
MultiPo-Sim also supports energy scaling of processor cores. In 
addition to high simulation speed, the modular configuration also 
enables MultiPo-Sim to simulate different multiprocessor 
architectures easily. With these features, MultiPo-Sim returns the 
thorough understanding of the performance and energy 
characteristics of a multiprocessor system.  

Given a data parallelized application, the task threads are 
independent from each other and result in a low amount of 
synchronization in the system. Therefore the processor cores and 
caches consume the most of the total energy.  However, the 
synchronization happens frequently for a task parallelized 
application, which results in a large portion of the total energy 
consumed by test-and-set functions. By using MultiPo-Sim, 
designers can easily evaluate the system characteristics and 
choose the appropriate architecture to achieve energy efficiency 
and high performance. 

References 
[1] L.Hammond, B.A.Nayfeh, K.Olukotun, “A Single-Chip 

Multiprocessor,” Proc. of IEEE, pp.79-85, Sept. 1997. 
[2] A.Jerraya, W.Wolf, “Multiprocessor Systems-on-Chips,” Morgan 

Kaufmann, Sept 2004, ISBN 0-12-385251-X. 
[3] V.Tiwari, S.Malik, A.Wolfe, ”Power Analysis of Embedded 

Software: a First Step Towards Software Power Minimization,” 
IEEE VLSI Systems, Vol. 2, no. 4, pp.437-445, Dec. 1994. 

[4] D. Brooks et al., ”Power-Aware Micro-Architecture: Designand 
Modeling Challenges for Next-Generation Microprocessors,” IEEE 
Micro, Vol. 20, no. 6, pp. 24-44,Nov.-Dec. 2000. 

[5] N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim, W. Ye, 
D.Duarte, ”Evaluating Integrated Hardware-Software Optimizations 
using a Unified Energy Estimation Framework,” IEEE Trans. on 
Computers, Vol. 52, no. 1, pp. 59-76,Jan. 2003. 

[6] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, ”Cosimulation-
Based Power Estimation for System-on-Chip Design,” IEEE VLSI 
Systems, Vol. 10, no. 3, pp. 253-266, June 2002. 

[7] R. Dick, G. Lakshminarayana, A. Raghunathan, N. Jha,”Analysis of 
Power Dissipation in Embedded Systems using Real-Time 
Operating Systems,” TCAD, Vol. 22, no. 5, pp. 615-627, May 2003. 

[8] D.Brooks, V.Tiwari, M.Martonosi, “Wattch: a framework for 
architectural-level power analysis and optimizations,” ISCA, 
pp.83-94, 2000. 

[9] Sim-Panalyzer Project, http://www.eecs.umich.edu/~panalyzer/ 
[10] G.Contreras, M.Martonosi, J.Peng, R.Ju, G.-Y.Lueh, “XTREM:A 

Power Simulator for the Intel Xscale Core,” LCTES, pp115-125, 
2004. 

[11] M.Loghi, M.Poncino, L.Benini, “Cycle-Accurate Power Analysis for 
Mutliprocessor System-on-a-chip,” GVLSI, pp.401-406, Apr. 2004. 

[12] J. Pouwelse, K. Langedoen, H. Sips, “Application-directed voltage 
scaling,” IEEE Trans. on VLSI Systems, 11(5):812—826. 

[13] HP bookJ. Hennessy, D. Patterson, “Computer Architectures: A 
quantitative approach,” MKP Publishers, 2002. 

[14] Kao, J., S. Narendra, A. Chandrakasan. "Sub-threshold Leakage 
Modeling and Reduction Techniques," ICCAD 2002 (Embedded 
Tutorial) , pp. 141-148, San Jose, California, November 2002. 

[15] S. Martin, et. al “Combined Dynamic Voltage Scaling and Adaptive 
Body Biasing for Lower Power Microprocessors under Dynamic 
Workloads,” ICCAD 2002, pp.721-725. 

[16] J. Montanaro, et al, “! 160-MHz, 32-b, 0.5-W CMOS RISC 
Microprocessor” IEEE JSSC, pp1703-1714, 1996. 

[17] Simple Scalar, http://www.simplescalar.com/ 
[18] Berkeley Predictive Technology Model (BPTM), http://www-

device.eecs.berkeley.edu/~ptm/ 
[19] G. Andrews, “Concurrent programming - principles and practice”, 

102—105, Benjamin Cummings Publ. 1991. 
[20] D. Keppel, “Tools and Techniques for Building Fast Portable 

Threads Packages,” UWCSE 93-05-06, U. Washington, 1993. 
[21] SimIt-ARM, http://simit-arm.sourceforge.net/ 
[22] GEZEL Project, http://www.ee.ucla.edu/~schaum/gezel/ 
[23] ARM Corp, http://www.arm.com/  
[24] S.Yang, K.Sakiyama, I.Verbauwhede, “A Compact and Efficient 

Fingerprint Verification System for Secure Embedded Systems,” 
37th Asilomar Conference, Nov. 2003. 

[25] Energy Aware Linux/RK, http://www-2.cs.cmu.edu/~rtml/ 


