
Energy and Performance Analysis for Multi-threaded
Tasks on A Multi-Processor System

Blind

ABSTRACT
Multiprocessor systems offer superior performance and
potentially better energy-reduction than single-processor systems.
It all depends, however, on how well the application can be
mapped onto the architecture. Indeed, a careful tradeoff of energy
and performance requires a thorough understanding of the energy
consumption pattern across the architecture, both in hardware and
software. This paper proposes MultiPo-Sim, a cycle-accurate
simulator to estimate performance and energy consumption in
multiprocessor systems. MultiPo-Sim can profile the energy per
hardware module, and can also analyze the behavior of the
application running on the multiprocessor. Several applications
illustrate the capabilities of MultiPo-Sim, including a fingerprint
minutiae detection program and a data-flow image encoder. The
fingerprint detection program, which is data parallelized,
consumes most energy on the computation of the algorithm
(88%~99%). The data-flow image encoder, which is task
parallelized, consumes most energy on inter-process
communications (51%~69%). By using MultiPo-Sim, designers
can easily evaluate the system characteristics and evaluate if the
parallelism of the algorithm matches the parallelism of the
architecture.

1. Introduction
 Multiprocessor systems-on-chip (MPSOC) have been

proposed as a way to achieve high performance as well as low
energy consumption [1][2]. Multiple cores on the chip offer
higher parallelism and thus potentially higher performance. In
addition, by lowering the supply voltage and operating frequency
for processor cores, the energy consumption of the system can be
reduced significantly. However, in order to design an energy
efficient multiprocessor system while still maintaining a given
performance, a thorough understanding of the energy
consumption patterns is required.

There are three design issues of concern when evaluating the
energy-efficiency of a multiprocessor system. Each of these issues
is specific for multiprocessor systems, and does not play a
significant role in single-processor systems. The first one is the
use of hardware synchronization hardware modules in the
multiprocessor system. These synchronization modules help in the
resource management among multiple processor units, and they
have impact on both performance and energy consumption of
multiprocessor systems. The second issue is the use of resource
management software in application program running on the
multiprocessor system, such as for example semaphores or
mutexes in multithreaded programs. This software also causes
extra execution cycles as well as energy consumption. The third
issue is the partitioning of the application over the processors into
parallel, communicating tasks. Applications can be partitioned
according to their major data streams, or according to their
composing subtasks. This gives rise to two different parallelizing

strategies, called data- and task parallelizing. Each strategy has a
different impact on the application characteristics and the
additional overhead caused on the multiprocessor architecture.
We will have a further discussion on these issues in section 5 and
6.

This paper proposes a cycle-accurate framework, MultiPo-
Sim, to analyze both the performance and energy consumption of
a multiprocessor system. Besides cycle count, MultiPo-Sim can
evaluate the energy consumption of each module in the
multiprocessor system, such as cores, caches and the central bus
interconnect. Moreover, MultiPo-Sim can also trace the program
running on each core and profile the energy consumption of a
specific sub-function or primitive. This feature can be used to
extract the energy spent on the synchronization among processor
cores. MultiPo-Sim also supports processor cores with
voltage/frequency scaling, and returns the impact of scaling on
performance as well as energy consumption. The modular
configuration of MultiPo-Sim also enables to simulate different
multiprocessor architectures easily. MultiPo-Sim can simulate
331,500 cycles per second for a four-processor system on a 3GHz,
512MByte Fedora-2 PC. Two multi-threaded applications, the
fingerprint minutiae detection program and a data-flow image
encoder, are used as the drivers to explore the multiprocessor
system architecture. With different parallelization strategies, the
two applications result in different energy and performance
characteristics.
This paper is organized as follows. Section 2 briefly discusses the
related research efforts on the estimation of energy consumption
of microprocessor systems. Section 3 introduces the power
models used in the paper. Section 4 gives a more detail discussion
on the proposed multiprocessor system and also explains how the
MultiPo-Sim has been implemented. Two applications with
different parallelizing schemes are introduced in section 5. The
performance and energy results are shown in section 6. Section 7
will draw the conclusion.

2. Prior Art
The estimation of energy-consumption and power modeling

of processor-based systems has been widely studied. Due to the
large size and high complexity of processor-based systems, it is
not practical to use the low-level power estimation tools such as
PowerMill and QuickPower. Several techniques are being used to
abstract the power model and speed up the power estimation
process. Instruction-based power analysis uses the instructions or
instruction-pairs and associates them to power models [3]. Micro-
architectural power models [4][5] are proposed to provide a more
accurate power model. Power macro models are constructed based
on the knowledge of the internal micro-architectures. Because it
models the micro-architecture in more detail, the simulation time
is longer. Macro-modeling is proposed to connect the
architectural power model to the application software. The

program behavior, such as sub-routine calls[6] and system
calls[7] are used to estimate the energy consumption.

Several power estimation platforms have also been developed by
extending cycle-accurate simulators with power models
[8][9][10]. A cycle-accurate simulator provides detailed behavior
of a processor-based system, including the internal pipelining, the
cache access behavior, and the communication to the external
system. Usually the cycle-accurate behavior will be ported into
power models for different components, such as data-path logic,
memory, and interconnect.

Although a lot of research effort has been done on power
modeling for processor-based systems, most of them are focusing
on the single processor system. M.Loghi et. al [11] proposed a
cycle-accurate power analysis for a multiprocessor SoC. By using
the cycle-accurate behavior, the authors combine the power and
performance models of different components. However, they can
only breakdown the energy consumption for different hardware
modules.

In this paper, we propose the MultiPo-Sim, which is a cycle-
accurate energy/performance simulation platform for
multiprocessor systems. In addition to profiling hardware
modules, MultiPo-Sim can also analyze software functions, which
gives the designers insight into the energy consumption behavior
of the multiprocessor system.

3. Power Model
Fig.1 shows an instance of the multiprocessor. A shared

memory architecture [13] is chosen to reuse as much as possible
from existing single processor systems. There are four ARM cores
with private instruction and data caches. Each ARM has a specific
voltage/frequency(V/f) module which controls the operating clock
frequency and the supply voltage to achieve energy scaling.
Besides ARM processors, there are two other components in the
system: a hardware test-and-set lock to support inter-process
communication and synchronization, and a memory interface to
access off-chip memory. The system uses a central bus as the
medium to connect the modules.

D I D I D I

ARM ARM ARM

V/f V/f V/f

system clk

n n n

BUS

memory interface

main memory

chip boundary

D I

ARM

V/f

test-and-set lock

n

Fig.1: A shared memory multiprocessor system with

energy scaling

Based on this multi-processor architecture, we categorize the
power model into three different components: processor cores,
caches, and synchronization modules. We apply different models
for each component. Based on the cycle-accurate behavior of each
component, the power model will estimate the energy
consumption. The power models are developed for 0.18um
CMOS technology.

3.1 Processor Core (without Cache)
The processor core used in MultiPo-Sim is a 5-stage pipelined

StrongARM microarchitecture. While we have a cycle-accurate
model of the ARM core [23], developing a detailed power model
for the core itself is not trivial, especially when energy scaling
techniques are supported. Therefore, MultiPo-Sim uses the
average power consumption to determine the energy consumption
of the processor core. We choose a processor core from ARM
Corp., ARM966E-S[23], which is similar to the ISS of MultiPo-
Sim in both architecture and performance. We use the
performance characteristics of the processor core provided by
ARM Corp., which shows the nominal operating frequency and
the average power consumption of ARM966E-S core without
cache are 200MHz and 0.70 mW/MHz respectively.

The V/f units in Fig.1 provide different voltage/frequency
operation modes, or power modes, for each ARM processor. The
power modes are controlled by the application. In order to model
the energy scaling capability of the processors, we use similar
voltage/frequency scaling characteristics as the LART
platform[14]. The LART platform uses SA-1100 processor core,
which is also a StrongARM-based processor. The SA-1100 runs
at 251MHz with the supply voltage of 1.65V, and 59MHz with
the supply voltage of 0.79V. The energy scaling ratio (V2f ratio)
of the high frequency mode and low frequency mode is 18.5.
These characteristics are mapped to the processor cores used in
MultiPo-Sim. The ARM core in MultiPo-Sim supports two steps
of energy scaling. We use the same supply voltages for high/low
power modes as in the LART, and keep energy scaling ratio the
same by adjusting the operating frequency. The energy scaling
characteristics are shown in Table-1.

Table-1: Power characteristics of the processor cores

Besides dynamic energy consumption, there is also static energy
consumed by the system. A lot of techniques have been proposed
at circuit and architecture level to reduce the static energy
consumption [14][15]. In this paper we are using 0.18um
technology, thus the static energy does not occupy a significant
portion of the total energy consumption of the system. The static
energy of a 0.18um CMOS circuit is typically less than 1% of the
total energy dissipation. This paper will focus on the dynamic
energy consumption. However we do believe that the static energy
would play an important role when more advanced semiconductor
technology is used.

3.2 Cache
In both single processor and multiprocessor systems, caches

usually consume a significant portion of the total energy [11][16].
Therefore we need a cache power model which is accurate enough
to reflect the energy consumption of the caches. Thanks to the
cycle-accurate simulation provided by MultiPo-Sim, we can trace
the access behavior to the caches as precise as every clock cycle.

 Pouwelse[12]
Energy-Scaled ARM Core

in MultiPo-Sim

Processor StrongARM StrongARM

V/f high power (V/MHz) 1.65 / 251 1.65 / 200

V/f low power (V/MHz) 0.79 / 59 0.79 / 47

Frequency(f) ratio 4.25 4.25

V2f ratio (high/low) 18.5 18.5

Sim-Panalyzer[9] is a energy estimation tool for the ARM
architecture. It is an augmentation to the SimpleScalar
performance simulator [17] attaching the power models for the
components and using the cycle-accurate behavior provided by
SimpleScalar as the input of the power model. The latest version
of Sim-Panalyzer provides very detailed energy estimation models
for the components which account for a large portion of the total
energy of the processor core, such as L1 caches and clock trees.
We port the cache model used in Sim-Panalyzer into our platform.
By providing the access behavior of the cache, the power model
of the cache can return the energy consumption.

The Sim-Panalyzer cache model is divided into two parts, the tag
model and the memory bank model. These two models are similar
but with different parameters, e.g. size of the memory bank. Based
on the data of the 0.18um technology, the Sim-Panalyzer cache
model first calculates the effective capacitances of switching
(Cswitch), internal (Cinternal) and leakage (Cleakage). The size of the
effective capacitances will change based on the parameters such
as the size of the memory, number of the bit lines, number of the
ports and which type of the port (read, write, or read/write), etc.
Due to the cycle-accurate simulation, the cache power model uses
the actual access data from the processor as the inputs. The
number of the switchings on the cache lines is calculated by
actually counting the value differences on the cache line. The total
energy consumption within a certain clock cycle can be estimated
by:

{(# of switchings) * Cswitch + Cinternal + Cleakage } * SV2 (1)

where SV2 is the square of the supply voltage.

3.3 Central Bus and Synchronization
Modules

In addition to the processor cores and caches, a
multiprocessor system also requires a medium as the interconnect
of the system and modules to handle the synchronization among
processors. In this paper, the interconnect is implemented with a
central bus architecture, and multiprocessor synchronization is
implemented with a test-and-set lock (as shown in Fig.1).

Central Bus. An energy model for bus-based interconnect is not
a trivial matter. Different bus architectures and techniques used on
the bus raise the complexity to analyze the energy consumption
on the bus, and consequently also the complexity to model it.
Since we use relatively simple bus scheme, the energy is mainly
consumed by the switching activity on the bus wires. We
therefore model the bus as a long wire on the chip, and use
Berkeley Predictive Technology Model (BPTM) [18] to model
the wire capacitance of the bus interconnect. The length of the bus
is estimated as the following:

Bus Length = 2 * Sqrt(Atotal_core + Atotal_cache) (2)

Equation (2) reflects the length of the sum of the width and height
of the chip die where Atotal_core and Atotal_cache are the area of the
processor cores and the caches respectively. Using the
accumulated area as the die size somewhat underestimates the
impact of the inefficiency of the placement and the bus-
interconnect. However, recent semiconductor technology usually
has multiple metal layers which can mitigate the area increased by
global interconnect. Moreover, modern processor systems,
including multiprocessor systems, are highly customized design in

terms of performance and area optimization. Therefore we believe
equation (2) can provide an appropriate first-order estimation.

We assume the bus uses inverter-based drivers and receivers
(Fig.2(b)), which will add a load of 0.05pF to 0.1pF according to
TSMC 0.18um technology. In this paper, we use 0.1pF as the load
for each node on the bus. Thus more processors connected to the
bus will increase the total load on the bus, which consequently
raises the energy consumption for each switching on the bus.

Chip Die

width

he
ig

ht

 Bus wire

 (a) (b)

Fig.2 : (a) The height and width of the chip die (b) Driver and
receiver connected to the bus wire

External memory interface. The external memory interface
supports a connection to an off-chip memory system. It is
composed of a control logic unit and data registers. Due to its low
complexity, the energy consumption will be dominated by the
large receiver- and driver buffers connected to the bus. Therefore
we use the energy consumption of the buffer to represent the
power model of the external interfaces.

Test-and-set lock. The test-and-set module manages the access to
the locks of the resources. It contains 16 registers to store the
value of the lock (1 means lock and 0 means free) for a specific
resource and control logic to handle the test-and-set protocol.
Same as the external interface, the simple functionality of test-
and-set lock makes its bus buffer the dominant energy
consumption component. We use the energy consumption of the
buffer to represent the power model of the test-and-set lock.

4. Multiprocessor Platform
4.1 Multiprocessor Architecture

In this paper, we use a shared memory multiprocessor
architecture (Fig.1). Each processor core has its own data and
instruction cache. The caches implement a write-through policy.
Whenever the cache writes on the bus, the transaction will also be
observed by all the other caches. Therefore, the cache coherency
has been sustained by snooping on the write-transactions. Each
processor has a 4K instruction cache and a 4K data cache.

A hardware test-and-set lock is implemented to provide the
synchronization function of the system. This is used as a
semaphore and mutexes for the shared resources. Whenever a
processor wants to access a shared resource, e.g. shared memory,
it has to acquire the lock for this resource. The lock will be
released after it has finished accessing the resource. The so-called
spin-lock scheme[19] has been used as the protocol for the
processor to grab the lock: when the processor wants to acquire
the lock, it will repeatedly check the lock until the processor owns
it. It currently supports 16 different locks to handle the resources
synchronization in the system.

The hardware modules are connected by a central bus. The central
bus uses a master-slave transaction-based scheme. Each master
can initiate read- or write transactions to the slave. Only one
transaction can be conducted on the bus at a time, and there is no
support for split transaction.

The multithread programming model is based on the
QuickThreads cooperative multithreading library [20]. The main
thread will first create other threads and then calls start to
initiate the execution of multithreading. After threads are created,
thread context information is stored in a queue. When a processor
is idle, it will check the queue and take one thread if there is any
thread needs to be executed.

The multiprocessor system supports two energy scaling modes, a
high power mode and a low power mode as explained in section
3. The switching between different power modes is controlled by
the application. Note that this energy scaling control scheme is
orthogonal to the other energy scaling techniques. It can work
with other energy scaling control techniques in different levels as
well, e.g. the energy scaling control by a embedded OS[25].

GEZEL

SimIt ARM SimIt ARM SimIt ARM …… SimIt ARM

Power
Model

Power
Model

Power
Model

Power
Model

Bus Interconnect
Model

Power
Model

Support Modules

Power
Model

Fig.3: The platform architecture of MultiPo-Sim

4.2 Multicore-Power Simulator (MultiPo-Sim)
We construct a cycle-accurate simulation platform, called

MultiPo-Sim, which can analyze both the performance and energy
consumption of a shared-memory multiprocessor architecture
shown in Fig-1. MultiPo-Sim is developed by combining SimIt-
ARM[21] and GEZEL[22]. SimIt-ARM is an ISS (Instruction Set
Simulator) for the ARM ELF instruction set. It models a 5-stage
pipeline ARM micro-architecture. The parameters of the
instruction/data caches, such as associativity, block size, cache
line size and etc, can also be reconfigured. GEZEL is an
environment which facilitates the exploration, simulation and
implementation of domain-specific micro-architectures. It uses
finite-state-machine-datapath (FSMD) semantics, which allows
designers to capture the datapath and control operations of
hardware models independently.

The simulator architecture of the MultiPo-Sim is illustrated in
Fig.3. GEZEL provides a common platform which can co-
simulate different numbers of processors, bus interconnect and
other system modules. Each processor is modeled by one SimIt-
ARM ISS. The power models are attached to each module in the
MultiPo-Sim. The energy consumption is estimated based on the
cycle-accurate behavior of each module. Due to the cycle-accurate
simulation feature, the MultiPo-Sim profiles the performance of
the system in terms of cycle count. In addition, MultiPo-Sim can
also trace the application to evaluate the cycle count and the
energy consumption spent on a specific function of the program.
Later on we will use this capability to profile the energy
consumption spent on the test-and-set lock of the multiprocessor
systems.

MultiPo-Sim uses a modular configuration. Each module in the
system can be added or modified individually. This feature makes
the MultiPo-Sim a very flexible platform. For example, MultiPo-
Sim can easily simulate the system with different numbers of
processor cores by only changing parameters in the configuration
file. The multithread programming model does not assume a

detailed knowledge on the system architecture. Therefore, the
same application can be run on different multiprocessor systems
without changing the program. The multiprocessor architecture
shown in Fig.1 is an instance which can be simulated on MultiPo-
Sim and demonstrate energy and performance characteristics of a
multiprocessor system.

5. Applications
In order to take advantages of the computation power

provided by the multiprocessor system, applications need to be
parallelized. There are basically two schemes to parallelize the
application, data parallelization and task parallelization.

APPLICATION FLOW

APPLICATION FLOW

A task thread

(a)

(b)

Fig.4: (a) Data and (b) task parallelization

We define the application flow as the flow of information from
the input to the output of the system. Given an application flow
from left to right, the process of the application can be partitioned
in parallel with the application flow, which we call data-parallel
processing (Fig.4(a)). Each partition is implemented as a task
thread and can be executed by a processor core. Usually the task
threads in a data parallelized system are independent of each other
and do not require the synchronization very often. The other way
is to parallelize the process of the application according to the
individual tasks in the application flow, which we call a task-
parallel processing (Fig.4(b)). Each task thread can be executed
by any processor core. However, threads depend on the data
passed by the other thread before them. These two parallel system
architectures have different impact on the energy consumption
and performance. We use two applications, a fingerprint minutiae
detection and a data-flow image encoder, to demonstrate the
characteristics of a data-parallel system and a task-parallel system
respectively.

Fingerprint minutiae detection (Data-Parallel). The minutiae
detection algorithm takes a 256 by 256 gray scale fingerprint
image as the input. Multiple phases of the image processing have
been conducted on the fingerprint and the minutiae are generated
as the output of the algorithm. The reference algorithm is a fixed-
point version of the NIST fingerprint software [24]. The
multithreaded fingerprint minutiae detection program partitions
the fingerprint image into four different sections. As shown in
Fig.5, each image section has 144 by 144 pixels of the fingerprint
image, and will be initiated as an individual thread.

144

256
Minutiae Detection

Minutiae Detection

Minutiae Detection

Minutiae Detection
Minutiae point

Fig.5: Multithreaded fingerprint minutiae detection

Data-flow Image Encoder (Task Parallel). The second
application is a high throughput image encoder which is
implemented as a data-flow system. Fig.6 illustrates an instance of
a data-flow system. It is consists of actors of different operations.
The actors are communicating through the intermediate queues,
and these queues are located in the external memory of the
multiprocessor systems. Thus every access to the queues is
translated as the traffic on the bus. In the data-flow image
encoder, each actor is implemented as a thread and can be
executed by any processor core in the system. There are total 32
actors in the system.

Actor1 Queue_1

Actor2 Queue_2

Actor3 Queue_3

Actor4

Queue_4 Actor5

Queue_5 Actor6

Queue_6 Actor7

Queue_7 Actor8

Fig.6: Data-flow application

6. Energy and Performance Analysis
The MultiPo-Sim can trace both energy consumption and

performance of specific components of hardware as well as
software. The two applications have been applied onto different
processor schemes, including the system with single-processor,
dual-processor and quad-processor. Different power modes are
also used to evaluate the amount of energy saving and the impact
on the performance. We use different labels to indicate the
configurations. For example, 2HL represents the dual-processor
architecture with one processor in high-power mode and another
one in low-power mode, while 2HH means a dual-processor
architecture with both processor cores running at high-power
mode.

1L 2LL 4LLLL 2HL 1H 2HH 4HHHH

mindtct - energy
dfimg - energy
mindtct - cycles
dfimg - cycles

E
ne

rg
y

 (
J)

C
yc

le
s

 (
M

ill
io

n)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

200

400

600

800

1000

1200

Fig.7: Energy consumption and execution cycles on different
processor schemes

6.1 System Performance Enhancement
Fig.7 shows the execution cycles (lines) and energy

consumption (bars) of the minutiae detection (mindtct) and the
data-flow image encoder (dfimg). The basic trend shows that
increasing the number of processor cores and using the high
power mode will enhance the overall system performance.
However, the speed-up does not linearly reflect the number of
processor cores. For example, in mindtct, the 2HH scheme is 36%
faster than 1H scheme, while 4HHHH scheme has only 40%
speed-up compared to 1H. In dfimg, the 4HHHH scheme is even

slower than the 2HH and the 1H scheme. The main reason is that
the bus and the test-and-set lock can only allow the access from
one processor at a time. If more than one processor would like to
access them, the processors have to line up in order to access
these resources. The sequential properties of the bus and the test-
and-set compensate the potential performance enhancement
provided by multiple cores.

6.2 Energy Scaling
The energy consumption of different processor schemes

basically shows a reverse trend as the execution cycles. The
increasing of the number of processor cores and using the high
power mode will consume more energy. The energy scaling
technique applied on the multiprocessor system reduces the total
system energy consumption significantly. However, due to the
additional parallelism and computation power provided by
multiple cores, the overall system performance has been sustained
(or even better) when comparing to a single processor system. For
example, in mindtct, 2HL scheme is 15% faster than the single
processor nominal case (1H) while consuming only 86% of the
1H. With a slightly 2% faster than 1H scheme, the 4LLLL
consumes even only 12% of the total energy consumption of the
1H. This proves that the multiprocessor system can provide
energy reduction as well as faster execution.

Fig.8 shows the normalized energy consumption breakdown for
different components in the system. For the processor schemes
with high power mode, the processor cores consume the most
energy, 67% to 82% for mindtct and 82% to 93% for dfimg. The
caches dominate the energy consumption in the schemes with low
power mode, 66% to 75% for mindtct and 46% to 60% for dfimg.
Compared to the cores and the caches, the central bus and the
synchronization modules do not consume too much energy (0.8%
to 8%).

0%

20%

40%

60%

80%

100%

Bus+sync

Caches

Core

Bus+sync

Caches

Core

1L
2LL

4LLLL
2HL

1H 4HHHH
2HH

1L
2LL

4LLLL
2HL

1H 4HHHH
2HH

 (a) mindtct (b) dfimg
Fig.8: Normalized energy consumption of different HW

components for two different applications

6.3 Synchronization Overhead
Processor cores are synchronized using a inter-process

communication function, which is implemented as a test-and-set
function in the multiprocessor architecture used in this paper.
MultiPo-Sim traces the execution of the application and profiles
the energy spent on the test-and-set operation for each module.
Fig.9 shows normalized energy of the test-and-set operations.
Note that in this figure the test-and-set operation represents the
energy spent on the inter-process communication for each module

in the system, including processor cores, caches, bus interconnect,
memory interface as well as the hardware test-and-set module.

As we mentioned before, the task threads of data parallelized
applications are almost independent from other task threads.
Therefore, there is a low amount of synchronization in the system.
As illustrated Fig.9(a), the energy consumption for the test-and-
set function in the mindtct occupies 0.4% to 12% of the total
energy consumption. However, in data parallelized applications,
the actors need to pass and receive the data to(from) other actors.
Therefore the synchronization is happening frequently. Fig.9(b)
shows that out of 51% to 69% of the total energy in dfimg is
consumed by the test-and-set function.

Test and Set

Others

0%

20%

40%

60%

80%

100%

Test-and-set

Others

1L
2LL

4LLLL
2HL

1H 4HHHH
2HH

1L
2LL

4LLLL
2HL

1H 4HHHH
2HH

Test and Set

Others

0%

20%

40%

60%

80%

100%

Test-and-set

Others

1L
2LL

4LLLL
2HL

1H 4HHHH
2HH

1L
2LL

4LLLL
2HL

1H 4HHHH
2HH

 (a) mindtct (b) dfimg
Fig.9: Normalized energy consumption of test-and-set

operation for two different applications

Given the energy characteristics of applications with different
parallel strategies, designers can adapt the application model
towards the underlying architecture. For instance, a data
parallelized application can benefit more by running on a bus-
based multiprocessor system as shown in this paper. Or vice
versa, designers can optimize the multiprocessor architecture to
execute a given multithreaded application. For both cases,
MultiPo-Sim can provide the necessary information to the
designers.

7. Conclusion
In this paper, we propose a cycle-accurate simulator, MultiPo-

Sim, which can profile both the performance and energy
consumption of hardware modules as well as software functions.
MultiPo-Sim also supports energy scaling of processor cores. In
addition to high simulation speed, the modular configuration also
enables MultiPo-Sim to simulate different multiprocessor
architectures easily. With these features, MultiPo-Sim returns the
thorough understanding of the performance and energy
characteristics of a multiprocessor system.

Given a data parallelized application, the task threads are
independent from each other and result in a low amount of
synchronization in the system. Therefore the processor cores and
caches consume the most of the total energy. However, the
synchronization happens frequently for a task parallelized
application, which results in a large portion of the total energy
consumed by test-and-set functions. By using MultiPo-Sim,
designers can easily evaluate the system characteristics and
choose the appropriate architecture to achieve energy efficiency
and high performance.

References
[1] L.Hammond, B.A.Nayfeh, K.Olukotun, “A Single-Chip

Multiprocessor,” Proc. of IEEE, pp.79-85, Sept. 1997.
[2] A.Jerraya, W.Wolf, “Multiprocessor Systems-on-Chips,” Morgan

Kaufmann, Sept 2004, ISBN 0-12-385251-X.
[3] V.Tiwari, S.Malik, A.Wolfe, ”Power Analysis of Embedded

Software: a First Step Towards Software Power Minimization,”
IEEE VLSI Systems, Vol. 2, no. 4, pp.437-445, Dec. 1994.

[4] D. Brooks et al., ”Power-Aware Micro-Architecture: Designand
Modeling Challenges for Next-Generation Microprocessors,” IEEE
Micro, Vol. 20, no. 6, pp. 24-44,Nov.-Dec. 2000.

[5] N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim, W. Ye,
D.Duarte, ”Evaluating Integrated Hardware-Software Optimizations
using a Unified Energy Estimation Framework,” IEEE Trans. on
Computers, Vol. 52, no. 1, pp. 59-76,Jan. 2003.

[6] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, ”Cosimulation-
Based Power Estimation for System-on-Chip Design,” IEEE VLSI
Systems, Vol. 10, no. 3, pp. 253-266, June 2002.

[7] R. Dick, G. Lakshminarayana, A. Raghunathan, N. Jha,”Analysis of
Power Dissipation in Embedded Systems using Real-Time
Operating Systems,” TCAD, Vol. 22, no. 5, pp. 615-627, May 2003.

[8] D.Brooks, V.Tiwari, M.Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” ISCA,
pp.83-94, 2000.

[9] Sim-Panalyzer Project, http://www.eecs.umich.edu/~panalyzer/
[10] G.Contreras, M.Martonosi, J.Peng, R.Ju, G.-Y.Lueh, “XTREM:A

Power Simulator for the Intel Xscale Core,” LCTES, pp115-125,
2004.

[11] M.Loghi, M.Poncino, L.Benini, “Cycle-Accurate Power Analysis for
Mutliprocessor System-on-a-chip,” GVLSI, pp.401-406, Apr. 2004.

[12] J. Pouwelse, K. Langedoen, H. Sips, “Application-directed voltage
scaling,” IEEE Trans. on VLSI Systems, 11(5):812—826.

[13] HP bookJ. Hennessy, D. Patterson, “Computer Architectures: A
quantitative approach,” MKP Publishers, 2002.

[14] Kao, J., S. Narendra, A. Chandrakasan. "Sub-threshold Leakage
Modeling and Reduction Techniques," ICCAD 2002 (Embedded
Tutorial) , pp. 141-148, San Jose, California, November 2002.

[15] S. Martin, et. al “Combined Dynamic Voltage Scaling and Adaptive
Body Biasing for Lower Power Microprocessors under Dynamic
Workloads,” ICCAD 2002, pp.721-725.

[16] J. Montanaro, et al, “! 160-MHz, 32-b, 0.5-W CMOS RISC
Microprocessor” IEEE JSSC, pp1703-1714, 1996.

[17] Simple Scalar, http://www.simplescalar.com/
[18] Berkeley Predictive Technology Model (BPTM), http://www-

device.eecs.berkeley.edu/~ptm/
[19] G. Andrews, “Concurrent programming - principles and practice”,

102—105, Benjamin Cummings Publ. 1991.
[20] D. Keppel, “Tools and Techniques for Building Fast Portable

Threads Packages,” UWCSE 93-05-06, U. Washington, 1993.
[21] SimIt-ARM, http://simit-arm.sourceforge.net/
[22] GEZEL Project, http://www.ee.ucla.edu/~schaum/gezel/
[23] ARM Corp, http://www.arm.com/
[24] S.Yang, K.Sakiyama, I.Verbauwhede, “A Compact and Efficient

Fingerprint Verification System for Secure Embedded Systems,”
37th Asilomar Conference, Nov. 2003.

[25] Energy Aware Linux/RK, http://www-2.cs.cmu.edu/~rtml/

