
Fast Configurable-Cache Tuning with a Unified Second-Level Cache

Abstract
Tuning a configurable cache subsystem to an application can
greatly reduce memory hierarchy energy consumption. Previous
tuning methods use a level one configurable cache only, or a
second level with separate instruction and data configurable
caches. We instead use a commercially-common unified second
level, a seemingly minor difference that actually expands the
configuration space from 500 to about 20,000. We develop
additive way tuning for tuning a cache subsystem with this large
space, yielding 62% energy savings and 35% performance
improvements over a non-configurable cache, greatly
outperforming an extension of a previous method.

Keywords
Configurable cache, cache hierarchy, cache exploration, cache
optimization, low power, low energy, architecture tuning,
embedded systems.

1. Introduction and Motivation
The memory hierarchy of a microprocessor can consume as much
as 50% of the system power in a microprocessor [11][17]. Such a
large contributor to total system power is a good candidate for
optimizations to reduce total system power and energy. Low
power or energy is needed not only in embedded systems that run
on batteries or have limited cooling ability, but also in desktop
and mainframes where chips are requiring costly cooling
methods.

Applications require highly diverse cache configurations for
optimal energy consumption in the memory hierarchy [22]. Even
different phases of the same application may benefit from
different cache configurations in each phase [12][18]. For
example, the size of the cache should reflect the working set of
the application. Too large of a cache would result in cache fetches
consuming excessively high energy. Too small of a cache would
result in wasted energy due to thrashing in the cache, with
frequently used items repeatedly swapped in and out of the cache.
Additionally, the cache line size and associativity should reflect
the needs of a particular application or application phase to
achieve the most energy efficient cache configuration.

Recent technologies have enabled the tuning of cache
parameters to the needs of an application. Core-based processor
technologies allow a designer to design a specific cache
configuration [2][3][4][13][19]. Additionally, processor designs
with configurable caches are available that can have their caches
configured during system reset or even during runtime
[1][11][22]. Such configurable caches have been shown to have
very little size or performance overhead compared to non-
configurable caches [11][21].

With the option of cache configuration readily available, a
problem is to determine the best cache configuration for a
particular application. Previous methods use cache hierarchies
with limited configurability, yielding cache configuration spaces
of at most a few hundred possible cache configurations, making
fast exploration relatively straightforward. Most such methods
configure total size, line size, and associativity for only a single
level of cache, having less than 50 possible configurations,
achieving memory hierarchy energy savings of 40% [21]. A few
methods also include a second level of separate instruction and

data configurable caches, having a few hundred possible
configurations, achieving increased memory hierarchy energy
savings of 53% [10]. The increased savings suggest that
increasing the size of the cache configuration space reveals a
greater opportunity for energy savings, by allowing the cache to
be tuned more closely to an application’s needs. However,
increased configuration space leads to increased difficulty in
exploration heuristic development.

Two-level caches are common in desktop systems and
becoming quite common in increasingly capable embedded
systems. However, the second level of such two-level caches is
commonly unified (having one cache with both instructions and
data), rather than separate (having one cache for instructions and
another for data). A multi-way unified cache enables tradeoffs
between the number of instruction ways and the number of data
ways, with those tradeoffs known as way management [11]. Each
way may be used for instructions only, data only, or both
instructions and data (or may even be shut down). An example
configuration of a four-way unified cache is 3 instruction ways
and 1 data way; another example is 2 instruction ways, 1 data
way, and one instruction/data way. The interdependence has a
(perhaps surprisingly) large impact on the cache configuration
space that we must explore. With separated level two caches, we
can effectively explore the instruction cache hierarchy
independently from the data cache hierarchy, because a
configuration of one cache hierarchy doesn’t (significantly) affect
the other cache hierarchy. In contrast, with a unified second level,
the two hierarchies become tightly interdependent, requiring us to
consider (roughly) the cross product of the two configuration
spaces. For example, two spaces of 200 configurations each, when
independent yield 400 configurations to be searched, but when
interdependent yield 40,000. Our results will show that this larger
space, rather than consisting of uninteresting or impractical
configurations, indeed contains useful configurations that allow
for intense specialization of the cache hierarchy to an
application’s needs.

How to adapt existing cache tuning methods to a way-
managed unified second level cache is not obvious, due to the
increased tuning interdependency between the caches. Previous
methods limited tuning dependency to limit the configuration
space, thus making heuristic development easier. Previous tuning
methods that address the tuning dependency between the level
one and separate level two caches cannot be directly applied to a
unified second level of cache.

In this paper, we present a heuristic cache tuning method for a
highly configurable two-level cache hierarchy. We improve upon
previous methods by significantly increasing the search space via
a unified second level configurable cache, resulting in greater
energy savings than previous methods and increased applicability
to current and future systems. Our cache hierarchy allows for
18,144 possible cache configurations. Our heuristic achieves an
average energy savings of 62%, while requiring explicit
examination of a mere 0.2% of the search space on average –
approximately 34 configurations. We also examine the effects of
increasing static energy on the fidelity cache configuration
heuristics. We further describe how our cache tuning heuristic is
efficient enough to be used in simulation environments, while at
the same time being simply enough to be implemented in an on-
chip dynamic tuning approach.

2. Related Work
Commercial systems with tunable caches (e.g., [4][11]) do not
address how to tune those caches, leaving the task to the designer.
Several research efforts therefore focus on providing automated
assistance for such tuning. Most such efforts focus on single level
cache tuning. Platune [8] is a framework for tuning configurable
system-on-a-chip (SOC) platforms. Platune offers many
configurable parameters and prunes the search space by isolating
interdependent parameters from independent parameters.
However, the level one cache parameters, being dependent, are
explored exhaustively. Whereas exhaustive exploration was
feasible for a level one cache due to the small number of possible
configurations, the exhaustive method is not feasible with a
highly configurable cache. An exhaustive search of tens of
thousands of configurations could take months or more to fully
explore.

To speed up exploration time, heuristic methods have been
developed. Palesi et al. [14] designed an extension to the Platune
tuning environment that used a genetic algorithm to speed up
exploration time and produce comparable results. Zhang et al.
[21] presents a heuristic method for tuning a configurable cache
that searches the cache parameters in their order of impact on
energy consumption. The heuristic produces a set of Pareto-
optimal points trading off energy consumption and performance.
Ghosh et al. [9] presents a heuristic that, through an analytical
model, directly determines the cache configuration based on the
designers performance constraints.

A few methods exist for tuning two levels of cache, using
reduced configurability to maintain a manageable search space.
Balasubramonian et al. [5] proposes a method for redistributing
the cache size between the level two and level three caches while
maintaining a conventional level one cache. Gordon-Ross et al.
[10] designs an exploration heuristic for a configurable cache
hierarchy that explores separate level one instruction and data
caches and separate level two instruction and data caches.

3. Configurable Cache Architecture
Our configurable two-level cache architecture, shown in Figure
1(a), consists of separate configurable level one caches and a
unified level two cache. The level one configurable cache
architecture is based on the tunable cache described in [22] and is
illustrated in Figure 1(b). Hardware layout verification for the
configurable cache is presented in [21]. The tunable parameters
consist of cache size, line size, and associativity. The base cache
structure in an 8 KB cache consisting of four 2 KB banks where
each bank acts as a way. Special way configuration registers
allow for a 2-way set associative and a direct mapped cache using
way concatenation. Additionally, ways may be shut down to
allow for a direct mapped and 2-way set associative 4 KB cache
and a direct mapped 2 KB cache. As a result of the configurable
banks, 2 KB 2-way or 4-way set associative caches and a 4 KB 4-
way set associative cache are not possible configurations. This
limitation is only applicable to a hardware based configurable
cache. In a simulation-based exploration, any cache configuration
is possible.

The second level cache is a configurable unified cache quite
different than the first level cache, illustrated in Figure 1(c). For
the second level, we utilize way management implemented in
Motorola’s M*CORE processor [11]. Way management allows
for each particular way in a unified cache to be specified as a

unified way (instruction and data), an instruction-only way, a
data-only way, or the way can be shut down entirely.

For the exploration parameters, we chose values to reflect
typical off-the-shelf embedded systems. For the level one cache,
we explore 2, 4, and 8 KB cache sizes, 16, 32, and 64 byte line
sizes, and direct-mapped, 2-, and 4-way set associativities. For the
level two cache, we use a 64 KB cache consisting of four
configurable ways and configurable line sizes of 16, 32, and 64
bytes. However, our heuristic is not dependent on these values,
nor on embedded applications – for desktop applications, larger
total-size values would be appropriate.

Our configurable cache architecture offers 18,144 different
cache configurations. For each level one cache, there are 18
different cache configurations (configurable parameters are size,
line size and associativity, each with three possible values). The
second cache level has 36 unique combinations of way
configuration for each of the three line sizes, resulting in 108
different level two configurations. Thus, the maximum number of
cache configurations is 34,992. However, restrictions reduce the
number of configurations. As described above, not all
associativities are possible for each cache size. Further, the
second level line size must be equal than or greater than the
largest level one line size. With these restrictions, the design
space reduces to 18,144 – still a very large number of
configurations.

Due to the huge exploration space, exhaustive exploration to
determine the optimal cache configuration for every benchmark
for comparison with our heuristic is not feasible as it would take
more than a year. Even so, we generated optimal results for 5
randomly chosen benchmarks. For comparison purposes we also
use a common cache configuration to act as a base cache
configuration to show the effectiveness of our cache tuning
heuristic in reducing energy. The base cache configuration
consists of an 8 Kbyte 4-way set associative cache with a 32 byte
line size for the level one cache and a 64 Kbyte fully unified
cache with a 64 byte line size for the level two cache – a
reasonably common configuration.

Figure 1: Configurable Cache Architecture: (a) the cache
hierarchy used, (b) configurability available for the level one

caches, and (c) configurability available for the level two cache.

M
ic

ro
pr

oc
es

so
r

I-Cache

D-Cache

Level One
Caches

Level Two
Cache

M
ai

n
M

em
or

y

U-Cache

(a)

Associativity – Way
concatenation

Size – Way
Shut-down

Line
size

Line
size

I-
w

ay

D
-w

ay

U
-w

ay

(b) (c)
Each way can be an instruction,

data or unified way

4. Tuning Heuristics
For our configurable cache hierarchy, the full configuration space
consists of 18,144 different configurations. Even if the time to
explore one configuration only took only half a second, exploring
all configurations for a benchmark would still take half an hour –
clearly not feasible for a dynamic tuning method. If exploring
each configuration took five minutes (a typical runtime for a
simulation-based tuning approach on contemporary workstations),
it would take 63 days to exhaustively explore the search space for
a single benchmark. We sought to develop a tuning heuristic to
efficiently explore a small portion of the search space and
produce good energy savings over the base cache configuration.
We considered two possible heuristics, which we now describe.

4.1 Sequential Exploration with Ratio
Projection
A straightforward heuristic is to ignore the tuning dependency
between the level one instruction and data caches and tune the
level one caches while ignoring the second level cache. After the
first level caches are tuned, the second level of cache is then
tuned. State-of-the-art tuning methods are not applicable to a
cache with way management so we present this exploration
heuristic as a close comparison to current methods and to
illustrate the need to fully explore the tuning dependencies.

For level one exploration, the parameters are explored in the
order of their impact on the energy consumption with higher
impact parameters explored first [22]. Cache size is explored first
followed by associativity and then line size. To reduce the amount
of necessary cache flushing, each parameter is explored starting
with the smallest value and increasing to the largest value. The
same heuristic cannot be used directly for the level two cache
because that cache is unified. Thus, not only must the heuristic
determine the total size, line size, and ways, but the heuristic must
also determine how many ways will be for data, how many for
instruction, how many for both instruction and data, and how
many will be shut down. For level two cache exploration, we
initially designed the ratio projection method of level two cache
exploration.

Ratio projection, illustrated in Figure 2, projects the number
of necessary instruction and data ways needed for the best cache
configuration. Ratio projection sets the level two cache to have
one instruction way and adds data ways one at a time. The lowest
energy configuration suggests the ideal number of data ways
needed in the level two cache. Similarly, the ideal number of
instruction ways needed for the level two cache is also
determined. To determine the level two cache configuration, the

ideal number of instruction and data ways are combined.
However, simply combining the number of ways could exceed the
available number of ways in the level two cache. To account for
this situation, we decrease the number data and instruction ways
by unifying them and trying to keep the ratio of instruction to data
ways as close to the ideal as possible.

We combined the level two tuning method to the level one
tuning heuristic and discovered that the heuristic did not perform
well for many of the benchmarks. Whereas for the majority of the
benchmarks, the tuning method showed a 20-40% decrease in
energy consumption over the base cache configuration, the
average energy consumption over all benchmarks actually
increased by 24%. In the worst case, a cache configuration
consuming 3.6 times more energy than the base cache was found
by the heuristic. Clearly a simple adaptation of current methods
does not sufficiently explore tuning dependencies.

4.2 Alternating Cache Exploration with
Additive Way Tuning – ACE-AWT
The poor results of the first heuristic substantiate the hypothesis
that precise exploration with regards to tuning dependencies is
necessary. Exploring the level one cache separately from
exploring the level two cache naively assumes that the tuning of
the caches can be done independently. But, tuning dependency
exists between the level one instruction and data caches via the
level two unified cache, and between the level one and level two
caches. For example, altering a parameter in the level one
instruction cache changes the effectiveness of the level two cache
by changing the quantity of level two fetches and the addresses
fetched. Also, the change in level two utilization by instructions
affects the level one data cache by changing the contention among
instructions and data in the shared level two cache.

Gordon-Ross [10] arrived at a similar conclusion about level
one and level two cache dependencies, and designed the
interlaced method of exploration to interlace the tuning of the
level one and level two caches. Instead of fully exploring the level
one cache and then proceeding to the level two cache, each
parameter is explored for the level one cache and then the level
two cache before proceeding to explore the next parameter.
However, the interlaced method developed by Gordon-Ross only
addresses dependency between separate level one and level two
caches and not the dependency between the level one instruction
and data caches. Additionally, the interlaced method cannot be
adapted to a cache featuring way management.

For level two exploration, way management makes interlaced
exploration of the cache levels difficult because of the
dependency between size and associativity exploration. To
change the size, either a way is added or removed from the cache.
However, the added or removed way is either a unified, data, or
instruction way, additionally affecting the associativity. Similarly,
when changing the cache’s associativity, a way is either added or
removed which also changes the size of the cache as well. This
dependency complicates the exploration of the level two cache,
since we can’t just explore either associativity or size alone.

To overcome the difficulty arising in interlaced exploration
we designed the alternating cache exploration with additive way
tuning heuristic for level two cache exploration – or ACE-AWT
for short. For each cache parameter, exploration will first tune the
level one instruction cache then the level one data cache followed
by additive way tuning for the level two cache. The first phase of
additive way tuning, illustrated in Figure 3(a), adds ways one at a

Figure 2: Ratio projection for level two cache way exploration.

Instruction way exploration

D
-w

ay

I-
w

ay

D
-w

ay

I-
w

ay

I-
w

ay

I-
w

ay

D
-w

ay

I-
w

ay

I-
w

ay

Choose lowest energy configurations to determine ideal
number of instruction and data ways

Data way exploration

I-
w

ay

D
-w

ay

I-
w

ay

D
-w

ay

D
-w

ay

D
-w

ay

I-
w

ay

D
-w

ay

D
-w

ay
 Use unified ways

to keep ratio of
instruction to data
ways as close as
possible for the

final configuration

I-
w

ay

I-
w

ay

D
-w

ay

U
-w

ay

Final
Configuration

time and chooses the next way to add based on what type of
added way resulted in the lowest energy cache configuration.
Additive way tuning starts by adding one way to the level two
cache and three configurations are explored – a single instruction,
data, or unified way. The configuration with the lowest energy
consumption is chosen and another way is added to the level two
cache, again trying either an instruction, data, or unified way.
This additive method of increasing the cache size and
associativity is continued until the level two cache is full or there
is no longer a decrease in energy consumption. This phase of
additive way tuning is done when the level two cache size is
initially explored.

Alternating level exploration with a unified second level of
cache increases the difficulty of exploring the line size. It is
necessary to make sure that the line size of the level two cache is
always equal or greater than the line sizes of both of the level one
instruction and data caches. To allow for level one line size
exploration, it is necessary to increase the size of the level two
line size while increasing the size of the level one line size. After
the level one line sizes are determined, the remaining larger level
two line sizes are explored

.During associativity exploration, Figure 3(b) illustrates the
final tuning step applied to fine tune the cache configuration. The
ways are adjusted to hone in on the best cache configuration by
attempting to add and/or remove ways. First, we try to increase
the number of ways by adding either an instruction, data, or
unified way one at a time. We then explore decreasing the size of
the cache by removing an instruction, data, or unified way one at
a time. The lowest energy cache configuration is chosen if it
improves upon the current cache configuration. This tuning step is
continued until there is no improvement in energy consumption.

5. Results
5.1 Experimental Setup
We applied each heuristic to 27 benchmarks - sixteen benchmarks
from the EEMBC benchmark suite [7] and eleven benchmarks
from the Powerstone benchmark suite [11]. These benchmarks are
all embedded system benchmarks and thus suitable for the
configurable cache parameter values we examined. We stress that
we could also run desktop benchmarks using suitable cache
parameter values, and we are doing so for related and future work.

Estimation methods and measurements are used to calculate
the total system energy consumption including both dynamic and
static energy. We use CACTI [16] to determine the dynamic
energy consumption consumed by a cache fetch for each cache
configuration for 0.18-micron technology. We obtained the main
memory fetch energy using a standard Samsung memory, and
CPU stall energy from a 0.18-micron MIPS microprocessor. We
estimate cache static energy as 10% of total cache energy – a
reasonable assumption for current and near future technology. For
miss penalties and throughput for both cache levels, we estimate
ratios typical for an embedded system. We assume a level two
fetch is four times slower than a level one fetch, and a main
memory fetch is ten times slower than a level two fetch. We
assume memory throughput is 50% of latency, meaning blocks
fetches after the first block take 50% the latency of the first block.
Gordon-Ross [10] shows that cache hierarchy exploration
heuristics maintain good integrity across systems with varying
memory latency and throughput.

We modified SimpleScalar [6] to simulate way management
in the level two cache and to determine cache hit and miss values
for each cache configuration. We ran exploration scripts that

Figure 3: Additive way tuning for level two cache way exploration for the (a) first phase and (b) the fine tuning step.

Figure 4: Energy consumption normalized to the base cache configuration (bold line) for both cache exploration heuristics and the
optimal cache configuration.

Start with empty cache

Current Cache Configuration

Try three possible way additions for
the current cache configuration

Add I-way Add D-way Add U-way

Choose the way addition that results
in the lowest energy cache

If the addition of a
way decreases the
energy from the
previous cache

configuration, add
that way to the
current cache
configuration

If cache
is full

If no decrease in energy over previous configuration

DONE

Start with resulting cache
from first phase

Current Cache Configuration

Try three possible way additions and three possible
way removals for the current cache configuration

Add
U-way

Choose the way addition or way removal
that results in the lowest energy cache

If the addition or
removal of a way

decreases the energy
from the previous

cache configuration,
add/remove that way
to/from the current
cache configuration

If no decrease in energy over previous configuration

DONE

Add
D-way

Add I-
way

Remove
I-way

Remove
D-way

Remove
U-way

(a) (b)

If no new
configurations

to try

0.0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

A2T
IM

E01

Base
FP01

CACHEB01

CANRDR01

IIR
FLT01

MATRIX
01

PUW
MOD01

RSPEED01

TBLOOK01

AIFFTR01

AIIF
FT01

AIFIR
F01

BIT
MNP01

ID
CTRN01

PNTRCH01

TTSPRK01 bc
nt bil

v
bin

ary bli
t

bre
v

g3
fax

matm
ul

po
csa

g

ps-
jpe

g

uc
bq

sor
t

v4
2

av
g

E
ne

rg
y

co
ns

um
pt

io
n

no
rm

al
iz

ed
 to

th

e
ba

se
 c

ac
he

 c
on

fig
ur

at
io

n

Sequential/Rati
o Projection

ACE-AWT

optimal

2.4 2.1 3.6 3.1 2.0

applied each heuristic to every benchmark.

5.2 Energy Consumption and Performance
Figure 4 shows the energy consumption for each benchmark for
both tuning heuristics and the optimal cache energy consumption
for 5 randomly chosen benchmarks (we are continuing to generate
optimal cache configurations for the remaining benchmarks).
Energy consumption for each heuristic is normalized to the
energy consumption of the base cache for each benchmark. Figure
4 shows that while the sequential with ratio projection performed
well on a number of benchmarks, on average the energy increased
over all benchmarks with some benchmarks consuming
significantly more energy over the base cache configuration.
However, the ACE-AWT heuristic improves greatly over the
initial heuristic showing energy savings of 62% averaged over all
benchmarks. For the 5 benchmarks with optimal cache
configuration information, the ACE-AWT either finds the optimal
cache configuration or determines a cache configuration that is
very near the optimal. The ACE-AWT achieves these energy
savings by exploring only 34 unique configurations – a mere
0.2% of the total search space.

As well as showing good energy savings across all
benchmarks, the performance impact of the ACE-AWT heuristic
should be examined. In real time systems, negative performance
impacts are likely unacceptable. Figure 5 shows the execution
time of each benchmark for the ACE-AWT heuristic normalized
to the execution time for the base cache configuration. Each
benchmark shows an improvement in performance with an
average speedup of 35%. We found that this improvement comes
due to tuning the line size configuration to the locality needs of
the application [20].

5.3 Static Energy for Future Technology
For the results presented in section 0, we assumed static energy
accounted for 10% of the total energy consumption of the cache.
However, static energy becomes a greater factor in total energy
consumption as technology pushes further in deep sub-micron
feature sizes, and it is interesting to investigate the fidelity of
cache configuration. We explored systems where static energy
accounted for 15%, 20%, 25%, and, for possible farther distant

technologies, 50% of the total energy consumption of the cache.
Table 1 shows the average energy consumption normalized to

the base cache configuration averaged across all benchmarks for
the heuristics studied. Averages with energy savings are shown in
bold. The ACE-AWT heuristic shows very good fidelity with
increasing static energy consumption.

Both heuristics show the same trend – as the percentage of
static energy consumption increases, the cache tuning heuristics
are revealing greater energy savings. This trend is expected since
cache tuning improves performance and thus eliminates costly
idle cycles while waiting for fetches from a higher level of the
cache hierarchy. Going from 10% to 50% static energy
contribution, sequential exploration with ratio projection revealed
an additional 34% energy savings and the ACE-AWT heuristic
showed an additional 40% energy savings.

The additional energy savings due to increased static power
consumption can also soften the poor performance of inadequate
tuning heuristics. Table 1 shows that for 50% static energy
consumption, sequential exploration with ratio projection actually
shows an average energy savings of 18% as opposed to the 24%
increase in energy observed with the 10% static energy
consumption. Whereas a tuning heuristic with an average energy
savings of 24% is hardly a good heuristic compared to the ACE-
AWT heuristic, this trend does suggest that tuning methodologies
deemed as unsuccessful with today’s technology may seem more
attractive as new technologies are revealed.

6. Tuning Environments
The ACE-AWT heuristic is primarily intended for use as a
runtime optimization method for either desktop environments or
embedded systems. However, the ACE-AWT heuristic is quite
flexible and is easily applicable to all tuning environments such as
a simulation-based configuration exploration or a hardware
prototyping platform, as described in this section

The ACE-AWT heuristic is highly suitable for a dynamic
runtime tuning environment for desktop environments or
embedded systems. Zhang et al. [22] shows that level one cache
tuning is feasible during runtime and the level one tuning in our
work is based on Zhang’s tuning heuristic. Zhang shows that the
actual tuning hardware adds very little area overhead. Zhang also
explores the cache parameters such that cache flushing is
minimized. However, for the cache flushing that does happen, we
observe that flushing is very infrequent compared to the long run
time needed to determine stabilized hit and miss rates for each
cache configuration. Our level two configurable cache is based on
the Motorola M*CORE processor which was not allowed to have
any overhead [15].

Because the ACE-AWT heuristic is a feasible dynamic
runtime tuning heuristic, the tuning heuristic becomes more
flexible to operating environments. The ACE-AWT heuristic can

Figure 5: Execution time of the benchmarks for alternating cache exploration with additive way tuning heuristic (ACE-AWT)
normalized to the execution time of the benchmark with the base cache configuration

Table 1: Energy consumption normalized to the base cache
configuration averaged across all benchmarks for different
static energy consumption. Energy savings are shown in bold.

 Sequential/Ratio Projection ACE-AWT
10% Static Energy 1.24 0.38
15% Static Energy 1.18 0.37
20% Static Energy 1.10 0.33
25% Static Energy 1.05 0.32
50% Static Energy 0.82 0.23

0%

20%

40%

60%

80%

100%

A2T
IM

E01

Base
FP01

CACHEB01

CANRDR01

IIR
FLT01

MATRIX
01

PUW
MOD01

RSPEED01

TBLOOK01

AIFFTR01

AIIF
FT01

AIFIR
F01

BIT
MNP01

ID
CTRN01

PNTRCH01

TTSPRK01 bc
nt bil

v
bin

ary bli
t

bre
v

g3
fax

matm
ul

po
csa

g

ps-
jpe

g

uc
bq

sor
t

v4
2

av
g

E
xe

cu
tio

n
tim

e
no

rm
al

iz
ed

 to
 th

e
ba

se
 c

ac
he

be used to determine one low energy cache configuration to use
throughout the entire run of an application by tuning once during
startup. However, phase changes in applications suggest that
different cache configurations are more appropriate for different
execution phases of an application [12][18]. To better
accommodate a single application environment with multiple
phase changes, the tuning hardware would monitor the miss rates.
When the miss rate exceeds a given threshold, the tuning
hardware would reconfigure the cache for the new execution
phase. To reduce tuning time, the heuristic cache configuration is
saved and restored when the application reaches that execution
phase again instead of rerunning the entire heuristic. Additionally,
the ACE-AWT heuristic is suitable for a multi-application
environment with an operating system. The tuning hardware
would run each time an application swap occurs and, as with the
application phase tuning, cache configurations are saved and
restored to eliminate retuning when returning to a previously
executed application. The minimization of the overhead incurred
by runtime phase-based cache tuning and the implementation
details are the focus of our future work.

In a hardware prototyping environment, two prototyping
options exist - a full hardware prototyping environment and a
platform assisted hardware prototyping environment. The full
hardware prototyping environment consists of all tuning hardware
implemented in hardware on the prototyping board. The tuning
hardware would apply the ACE-AWT heuristic by running each
cache configuration and measuring the hit and miss rates.
Designer provided energy annotations guide the cache tuner to
determine the next cache configuration to try. After completion of
the heuristic, the best cache configuration can be reported to the
designer. A platform assisted hardware prototyping environment
couples a tunable platform with a PC to drive the tuning heuristic.
The PC configures the platform for the configuration to try and
then reads the hit and miss rates after a sufficiently long run of the
application. The PC uses the cache hit and miss rates to drive the
ACE-AWT heuristic and configure the platform for the next
configuration to try.

In a simulation-based approach, application of the ACE-AWT
heuristic is similar to the experimental environment set up for the
results presented in this paper. Energy consumption estimates of
cache and memory accesses are used to annotate the exploration
heuristic. An exploration script is used in conjunction with a
cache simulator to drive the heuristic. In addition to using a
simulation approach for embedded systems, the simulation
approach could also be used for profiling desktop computing
environments.

Furthermore, the ACE-AWT heuristic is applicable in
environments with other tunable parameters such as bus
configuration and hardware/software partitioning by specifying a
scheduling order for the configuration of the tunable parameters.
7. Conclusions and Future Work
We have presented an efficient method for cache hierarchy tuning
for a highly configurable cache with a very large design space.
The heuristic is designed to efficiently and accurately tune the
level one and level two caches in a system during runtime but is
also applicable to a hardware prototyping environment and a
desktop simulation cache exploration environment. Our heuristic
determines a cache configuration that consumes on average 62%
less energy than a base cache configuration while exploring only
0.2% of the design space. Additionally, our cache tuning results in

an average speedup of 35% due to line size configuration. We
also show the fidelity of our tuning heuristic across future
technologies with increasing static power consumption. Future
work includes recompilation of the application to the best cache
configuration for further energy and performance benefits.
Additionally, the heuristic can be expanded to produce a Pareto
optimal set of cache configurations trading off energy and
performance. We also plan to examine desktop and mainframe
applications on appropriate cache configurations for different
application execution phases.

8. References
[1] Albonesi, D.H. Selective cache ways: on demand cache resource

allocation. Journal of Instruction Level Parallelism, May 2002.
[2] Altera, Nios Embedded Processor System Development,

http://www.altera.com/corporate/news_room/releases/products/nr-
nios_delivers_goods.html

[3] Arc International, www.arccores.com.
[4] ARM, www.arm.com.
[5] Balasubramonian, R., Albonesi, D., Buyuktosunoglu, A.,

Dwarkadas, S. Memory heirarchy reconfiguration for energy and
performance in general-purpose processor architecture. 33rd
International Symposium on Microarchitecture, December 2000.

[6] Burger, D., Austin, T., Bennet, S. Evaluating future microprocessors:
the simplescalar toolset. University of Wisconsin-Madison. Computer
Science Department Tech. Report CS-TR-1308, July 2000.

[7] EEMBC, the Embedded Microprocessor Benchmark Consortium,
www.eembc.org.

[8] Givargis, T., Vahid, F. Platune: a tuning framework for system-on-a-
chip platforms. IEEE Transactions on Computer Aided Design,
November 2002.

[9] Ghosh, A., Givargis, T. Cache optimization for embedded processor
cores: an analytical approach. International Conference on Computer
Aided Design, November 2003.

[10] Gordon-Ross, A., Vahid, F., Dutt, N. Automatic tuning of two-level
caches to embedded applications. Design, Automation and Test
Conference in Europe (DATE), 2004.

[11] Malik, A., Moyer, W., Cermak, D. A low power unified cache
architecture providing power and performance flexibility. International
Symposium on Low Power Electronics and Design, 2000.

[12] Merten, M.C., Trick, A.R., George, C.N., Gyllenhaal, J., Hwu, W.W.
A hardware-driven profiling scheme for identifying program hot spots
to support runtime optimization, In Proceedings of the 26th Annual
International Symposium on Computer Architecture, 1999.

[13] MIPS Technologies, www.mips.com.
[14] Palesi, M., Givargis, T. Multi-objective design space exploration

using genetic algorithms. International Workshop on
Hardware/Software Codesign, May 2002.

[15] Personal communication with M*CORE designers
[16] Reinman, G., Jouppi, N.P. Cacti2.0: an integraded cache timing and

power model. COMPAQ Western Research Lab, 1999.
[17] Segars, S. Low power design techniques for microprocessors,

International Solid State Circuit Conference, February 2001.
[18] Sherwood, T., Perelman, E., Hamerly, G., Sair, S., Calder, B.

Discovering and Exploiting Program Phases, IEEE Micro: Micro's Top
Picks from Computer Architecture Conferences, December 2003

[19] Tensilica, Xtensa Processor Generator, http://www.tensilica.com/.
[20] Veidenbaum, A., Tang, W., Gupta, R., Nicolau, A., Ji, X. Adapting

cache line size to application behavior. International Conference on
Supercomputing, June 1999.

[21] Zhang, C., Vahid, F., Najjar, W. A highly-configurable cache
architecture for embedded systems. 30th Annual International
Symposium on Computer Architecture, June 2003.

[22] Zhang, C., Vahid, F. A self-tuning cache architecture for embedded
systems. Design, Automation and Test Conference in Europe (DATE),
2004

