
Fast Configurable-Cache Tuning with a Unified Second-Level Cache

Abstract 
Tuning a configurable cache subsystem to an application can 
greatly reduce memory hierarchy energy consumption. Previous 
tuning methods use a level one configurable cache only, or a 
second level with separate instruction and data configurable 
caches. We instead use a commercially-common unified second 
level, a seemingly minor difference that actually expands the 
configuration space from 500 to about 20,000. We develop 
additive way tuning for tuning a cache subsystem with this large 
space, yielding 62% energy savings and 35% performance 
improvements over a non-configurable cache, greatly 
outperforming an extension of a previous method.   
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1. Introduction and Motivation 
The memory hierarchy of a microprocessor can consume as much 
as 50% of the system power in a microprocessor [11][17]. Such a 
large contributor to total system power is a good candidate for 
optimizations to reduce total system power and energy. Low 
power or energy is needed not only in embedded systems that run 
on batteries or have limited cooling ability, but also in desktop 
and mainframes where chips are requiring costly cooling 
methods. 

Applications require highly diverse cache configurations for 
optimal energy consumption in the memory hierarchy [22]. Even 
different phases of the same application may benefit from 
different cache configurations in each phase [12][18]. For 
example, the size of the cache should reflect the working set of 
the application. Too large of a cache would result in cache fetches 
consuming excessively high energy. Too small of a cache would 
result in wasted energy due to thrashing in the cache, with 
frequently used items repeatedly swapped in and out of the cache. 
Additionally, the cache line size and associativity should reflect 
the needs of a particular application or application phase to 
achieve the most energy efficient cache configuration.  

Recent technologies have enabled the tuning of cache 
parameters to the needs of an application. Core-based processor 
technologies allow a designer to design a specific cache 
configuration [2][3][4][13][19]. Additionally, processor designs 
with configurable caches are available that can have their caches 
configured during system reset or even during runtime 
[1][11][22]. Such configurable caches have been shown to have 
very little size or performance overhead compared to non-
configurable caches [11][21]. 

With the option of cache configuration readily available, a 
problem is to determine the best cache configuration for a 
particular application. Previous methods use cache hierarchies 
with limited configurability, yielding cache configuration spaces 
of at most a few hundred possible cache configurations, making 
fast exploration relatively straightforward. Most such methods 
configure total size, line size, and associativity for only a single 
level of cache, having less than 50 possible configurations, 
achieving memory hierarchy energy savings of 40% [21]. A few 
methods also include a second level of separate instruction and 

data configurable caches, having a few hundred possible 
configurations, achieving increased memory hierarchy energy 
savings of 53% [10]. The increased savings suggest that 
increasing the size of the cache configuration space reveals a 
greater opportunity for energy savings, by allowing the cache to 
be tuned more closely to an application’s needs. However, 
increased configuration space leads to increased difficulty in 
exploration heuristic development. 

Two-level caches are common in desktop systems and 
becoming quite common in increasingly capable embedded 
systems. However, the second level of such two-level caches is 
commonly unified (having one cache with both instructions and 
data), rather than separate (having one cache for instructions and 
another for data). A multi-way unified cache enables tradeoffs 
between the number of instruction ways and the number of data 
ways, with those tradeoffs known as way management [11]. Each 
way may be used for instructions only, data only, or both 
instructions and data (or may even be shut down). An example 
configuration of a four-way unified cache is 3 instruction ways 
and 1 data way; another example is 2 instruction ways, 1 data 
way, and one instruction/data way. The interdependence has a 
(perhaps surprisingly) large impact on the cache configuration 
space that we must explore. With separated level two caches, we 
can effectively explore the instruction cache hierarchy 
independently from the data cache hierarchy, because a 
configuration of one cache hierarchy doesn’t (significantly) affect 
the other cache hierarchy. In contrast, with a unified second level, 
the two hierarchies become tightly interdependent, requiring us to 
consider (roughly) the cross product of the two configuration 
spaces. For example, two spaces of 200 configurations each, when 
independent yield 400 configurations to be searched, but when 
interdependent yield 40,000. Our results will show that this larger 
space, rather than consisting of uninteresting or impractical 
configurations, indeed contains useful configurations that allow 
for intense specialization of the cache hierarchy to an 
application’s needs.  

How to adapt existing cache tuning methods to a way-
managed unified second level cache is not obvious, due to the 
increased tuning interdependency between the caches. Previous 
methods limited tuning dependency to limit the configuration 
space, thus making heuristic development easier. Previous tuning 
methods that address the tuning dependency between the level 
one and separate level two caches cannot be directly applied to a 
unified second level of cache. 

In this paper, we present a heuristic cache tuning method for a 
highly configurable two-level cache hierarchy. We improve upon 
previous methods by significantly increasing the search space via 
a unified second level configurable cache, resulting in greater 
energy savings than previous methods and increased applicability 
to current and future systems. Our cache hierarchy allows for 
18,144 possible cache configurations. Our heuristic achieves an 
average energy savings of 62%, while requiring explicit 
examination of a mere 0.2% of the search space on average – 
approximately 34 configurations. We also examine the effects of 
increasing static energy on the fidelity cache configuration 
heuristics. We further describe how our cache tuning heuristic is 
efficient enough to be used in simulation environments, while at 
the same time being simply enough to be implemented in an on-
chip dynamic tuning approach.  



2. Related Work 
Commercial systems with tunable caches (e.g., [4][11]) do not 
address how to tune those caches, leaving the task to the designer. 
Several research efforts therefore focus on providing automated 
assistance for such tuning. Most such efforts focus on single level 
cache tuning. Platune [8] is a framework for tuning configurable 
system-on-a-chip (SOC) platforms. Platune offers many 
configurable parameters and prunes the search space by isolating 
interdependent parameters from independent parameters. 
However, the level one cache parameters, being dependent, are 
explored exhaustively. Whereas exhaustive exploration was 
feasible for a level one cache due to the small number of possible 
configurations, the exhaustive method is not feasible with a 
highly configurable cache. An exhaustive search of tens of 
thousands of configurations could take months or more to fully 
explore. 

To speed up exploration time, heuristic methods have been 
developed. Palesi et al. [14] designed an extension to the Platune 
tuning environment that used a genetic algorithm to speed up 
exploration time and produce comparable results. Zhang et al. 
[21] presents a heuristic method for tuning a configurable cache 
that searches the cache parameters in their order of impact on 
energy consumption. The heuristic produces a set of Pareto-
optimal points trading off energy consumption and performance. 
Ghosh et al. [9] presents a heuristic that, through an analytical 
model, directly determines the cache configuration based on the 
designers performance constraints. 

A few methods exist for tuning two levels of cache, using 
reduced configurability to maintain a manageable search space. 
Balasubramonian et al. [5] proposes a method for redistributing 
the cache size between the level two and level three caches while 
maintaining a conventional level one cache. Gordon-Ross et al. 
[10] designs an exploration heuristic for a configurable cache 
hierarchy that explores separate level one instruction and data 
caches and separate level two instruction and data caches.  

3. Configurable Cache Architecture 
Our configurable two-level cache architecture, shown in Figure 
1(a), consists of separate configurable level one caches and a 
unified level two cache. The level one configurable cache 
architecture is based on the tunable cache described in [22] and is 
illustrated in Figure 1(b). Hardware layout verification for the 
configurable cache is presented in [21]. The tunable parameters 
consist of cache size, line size, and associativity. The base cache 
structure in an 8 KB cache consisting of four 2 KB banks where 
each bank acts as a way. Special way configuration registers 
allow for a 2-way set associative and a direct mapped cache using 
way concatenation. Additionally, ways may be shut down to 
allow for a direct mapped and 2-way set associative 4 KB cache 
and a direct mapped 2 KB cache. As a result of the configurable 
banks, 2 KB 2-way or 4-way set associative caches and a 4 KB 4-
way set associative cache are not possible configurations. This 
limitation is only applicable to a hardware based configurable 
cache. In a simulation-based exploration, any cache configuration 
is possible.  

The second level cache is a configurable unified cache quite 
different than the first level cache, illustrated in Figure 1(c). For 
the second level, we utilize way management implemented in 
Motorola’s M*CORE processor [11]. Way management allows 
for each particular way in a unified cache to be specified as a 

unified way (instruction and data), an instruction-only way, a 
data-only way, or the way can be shut down entirely. 

For the exploration parameters, we chose values to reflect 
typical off-the-shelf embedded systems. For the level one cache, 
we explore 2, 4, and 8 KB cache sizes, 16, 32, and 64 byte line 
sizes, and direct-mapped, 2-, and 4-way set associativities. For the 
level two cache, we use a 64 KB cache consisting of four 
configurable ways and configurable line sizes of 16, 32, and 64 
bytes. However, our heuristic is not dependent on these values, 
nor on embedded applications – for desktop applications, larger 
total-size values would be appropriate. 

Our configurable cache architecture offers 18,144 different 
cache configurations. For each level one cache, there are 18 
different cache configurations (configurable parameters are size, 
line size and associativity, each with three possible values). The 
second cache level has 36 unique combinations of way 
configuration for each of the three line sizes, resulting in 108 
different level two configurations. Thus, the maximum number of 
cache configurations is 34,992. However, restrictions reduce the 
number of configurations. As described above, not all 
associativities are possible for each cache size. Further, the 
second level line size must be equal than or greater than the 
largest level one line size. With these restrictions, the design 
space reduces to 18,144 – still a very large number of 
configurations. 

Due to the huge exploration space, exhaustive exploration to 
determine the optimal cache configuration for every benchmark 
for comparison with our heuristic is not feasible as it would take 
more than a year. Even so, we generated optimal results for 5 
randomly chosen benchmarks. For comparison purposes we also 
use a common cache configuration to act as a base cache 
configuration to show the effectiveness of our cache tuning 
heuristic in reducing energy. The base cache configuration 
consists of an 8 Kbyte 4-way set associative cache with a 32 byte 
line size for the level one cache and a 64 Kbyte fully unified 
cache with a 64 byte line size for the level two cache – a 
reasonably common configuration. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Configurable Cache Architecture: (a) the cache 
hierarchy used, (b) configurability available for the level one 

caches, and (c) configurability available for the level two cache. 
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4. Tuning Heuristics 
For our configurable cache hierarchy, the full configuration space 
consists of 18,144 different configurations. Even if the time to 
explore one configuration only took only half a second, exploring 
all configurations for a benchmark would still take half an hour – 
clearly not feasible for a dynamic tuning method. If exploring 
each configuration took five minutes (a typical runtime for a 
simulation-based tuning approach on contemporary workstations), 
it would take 63 days to exhaustively explore the search space for 
a single benchmark. We sought to develop a tuning heuristic to 
efficiently explore a small portion of the search space and 
produce good energy savings over the base cache configuration. 
We considered two possible heuristics, which we now describe.  

4.1 Sequential Exploration with Ratio 
Projection  
A straightforward heuristic is to ignore the tuning dependency 
between the level one instruction and data caches and tune the 
level one caches while ignoring the second level cache. After the 
first level caches are tuned, the second level of cache is then 
tuned. State-of-the-art tuning methods are not applicable to a 
cache with way management so we present this exploration 
heuristic as a close comparison to current methods and to 
illustrate the need to fully explore the tuning dependencies. 

For level one exploration, the parameters are explored in the 
order of their impact on the energy consumption with higher 
impact parameters explored first [22]. Cache size is explored first 
followed by associativity and then line size. To reduce the amount 
of necessary cache flushing, each parameter is explored starting 
with the smallest value and increasing to the largest value. The 
same heuristic cannot be used directly for the level two cache 
because that cache is unified. Thus, not only must the heuristic 
determine the total size, line size, and ways, but the heuristic must 
also determine how many ways will be for data, how many for 
instruction, how many for both instruction and data, and how 
many will be shut down. For level two cache exploration, we 
initially designed the ratio projection method of level two cache 
exploration. 

Ratio projection, illustrated in Figure 2, projects the number 
of necessary instruction and data ways needed for the best cache 
configuration. Ratio projection sets the level two cache to have 
one instruction way and adds data ways one at a time. The lowest 
energy configuration suggests the ideal number of data ways 
needed in the level two cache. Similarly, the ideal number of 
instruction ways needed for the level two cache is also 
determined. To determine the level two cache configuration, the 

ideal number of instruction and data ways are combined. 
However, simply combining the number of ways could exceed the 
available number of ways in the level two cache. To account for 
this situation, we decrease the number data and instruction ways 
by unifying them and trying to keep the ratio of instruction to data 
ways as close to the ideal as possible.  

We combined the level two tuning method to the level one 
tuning heuristic and discovered that the heuristic did not perform 
well for many of the benchmarks. Whereas for the majority of the 
benchmarks, the tuning method showed a 20-40% decrease in 
energy consumption over the base cache configuration, the 
average energy consumption over all benchmarks actually 
increased by 24%. In the worst case, a cache configuration 
consuming 3.6 times more energy than the base cache was found 
by the heuristic. Clearly a simple adaptation of current methods 
does not sufficiently explore tuning dependencies.  

4.2 Alternating Cache Exploration with 
Additive Way Tuning – ACE-AWT 
The poor results of the first heuristic substantiate the hypothesis 
that precise exploration with regards to tuning dependencies is 
necessary. Exploring the level one cache separately from 
exploring the level two cache naively assumes that the tuning of 
the caches can be done independently. But, tuning dependency 
exists between the level one instruction and data caches via the 
level two unified cache, and between the level one and level two 
caches. For example, altering a parameter in the level one 
instruction cache changes the effectiveness of the level two cache 
by changing the quantity of level two fetches and the addresses 
fetched. Also, the change in level two utilization by instructions 
affects the level one data cache by changing the contention among 
instructions and data in the shared level two cache.  

Gordon-Ross [10] arrived at a similar conclusion about level 
one and level two cache dependencies, and designed the 
interlaced method of exploration to interlace the tuning of the 
level one and level two caches. Instead of fully exploring the level 
one cache and then proceeding to the level two cache, each 
parameter is explored for the level one cache and then the level 
two cache before proceeding to explore the next parameter. 
However, the interlaced method developed by Gordon-Ross only 
addresses dependency between separate level one and level two 
caches and not the dependency between the level one instruction 
and data caches. Additionally, the interlaced method cannot be 
adapted to a cache featuring way management. 

For level two exploration, way management makes interlaced 
exploration of the cache levels difficult because of the 
dependency between size and associativity exploration. To 
change the size, either a way is added or removed from the cache. 
However, the added or removed way is either a unified, data, or 
instruction way, additionally affecting the associativity. Similarly, 
when changing the cache’s associativity, a way is either added or 
removed which also changes the size of the cache as well. This 
dependency complicates the exploration of the level two cache, 
since we can’t just explore either associativity or size alone.  

To overcome the difficulty arising in interlaced exploration 
we designed the alternating cache exploration with additive way 
tuning heuristic for level two cache exploration – or ACE-AWT 
for short. For each cache parameter, exploration will first tune the 
level one instruction cache then the level one data cache followed 
by additive way tuning for the level two cache. The first phase of 
additive way tuning, illustrated in Figure 3(a), adds ways one at a 

 
 
 
 
 
 
 
 
 

 

Figure 2: Ratio projection for level two cache way exploration. 
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time and chooses the next way to add based on what type of 
added way resulted in the lowest energy cache configuration. 
Additive way tuning starts by adding one way to the level two 
cache and three configurations are explored – a single instruction, 
data, or unified way. The configuration with the lowest energy 
consumption is chosen and another way is added to the level two 
cache, again trying either an instruction, data, or unified way. 
This additive method of increasing the cache size and 
associativity is continued until the level two cache is full or there 
is no longer a decrease in energy consumption. This phase of 
additive way tuning is done when the level two cache size is 
initially explored. 

Alternating level exploration with a unified second level of 
cache increases the difficulty of exploring the line size. It is 
necessary to make sure that the line size of the level two cache is 
always equal or greater than the line sizes of both of the level one 
instruction and data caches. To allow for level one line size 
exploration, it is necessary to increase the size of the level two 
line size while increasing the size of the level one line size. After 
the level one line sizes are determined, the remaining larger level 
two line sizes are explored 

.During associativity exploration, Figure 3(b) illustrates the 
final tuning step applied to fine tune the cache configuration. The 
ways are adjusted to hone in on the best cache configuration by 
attempting to add and/or remove ways. First, we try to increase 
the number of ways by adding either an instruction, data, or 
unified way one at a time. We then explore decreasing the size of 
the cache by removing an instruction, data, or unified way one at 
a time. The lowest energy cache configuration is chosen if it 
improves upon the current cache configuration. This tuning step is 
continued until there is no improvement in energy consumption. 

5. Results 
5.1 Experimental Setup 
We applied each heuristic to 27 benchmarks - sixteen benchmarks 
from the EEMBC benchmark suite [7] and eleven benchmarks 
from the Powerstone benchmark suite [11]. These benchmarks are 
all embedded system benchmarks and thus suitable for the 
configurable cache parameter values we examined. We stress that 
we could also run desktop benchmarks using suitable cache 
parameter values, and we are doing so for related and future work. 

Estimation methods and measurements are used to calculate 
the total system energy consumption including both dynamic and 
static energy. We use CACTI [16] to determine the dynamic 
energy consumption consumed by a cache fetch for each cache 
configuration for 0.18-micron technology. We obtained the main 
memory fetch energy using a standard Samsung memory, and 
CPU stall energy from a 0.18-micron MIPS microprocessor. We 
estimate cache static energy as 10% of total cache energy – a 
reasonable assumption for current and near future technology. For 
miss penalties and throughput for both cache levels, we estimate 
ratios typical for an embedded system. We assume a level two 
fetch is four times slower than a level one fetch, and a main 
memory fetch is ten times slower than a level two fetch. We 
assume memory throughput is 50% of latency, meaning blocks 
fetches after the first block take 50% the latency of the first block.  
Gordon-Ross [10] shows that cache hierarchy exploration 
heuristics maintain good integrity across systems with varying 
memory latency and throughput. 

We modified SimpleScalar [6] to simulate way management 
in the level two cache and to determine cache hit and miss values 
for each cache configuration. We ran exploration scripts that 

 

 

 

 

 

 

 

 

 

Figure 3: Additive way tuning for level two cache way exploration for the (a) first phase and (b) the fine tuning step. 

  

 

 

 

 

 

Figure 4: Energy consumption normalized to the base cache configuration (bold line) for both cache exploration heuristics and the 
optimal cache configuration.  
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applied each heuristic to every benchmark. 

5.2 Energy Consumption and Performance 
Figure 4 shows the energy consumption for each benchmark for 
both tuning heuristics and the optimal cache energy consumption 
for 5 randomly chosen benchmarks (we are continuing to generate 
optimal cache configurations for the remaining benchmarks). 
Energy consumption for each heuristic is normalized to the 
energy consumption of the base cache for each benchmark. Figure 
4 shows that while the sequential with ratio projection performed 
well on a number of benchmarks, on average the energy increased 
over all benchmarks with some benchmarks consuming 
significantly more energy over the base cache configuration. 
However, the ACE-AWT heuristic improves greatly over the 
initial heuristic showing energy savings of 62% averaged over all 
benchmarks. For the 5 benchmarks with optimal cache 
configuration information, the ACE-AWT either finds the optimal 
cache configuration or determines a cache configuration that is 
very near the optimal. The ACE-AWT achieves these energy 
savings by exploring only 34 unique configurations – a mere 
0.2% of the total search space. 

As well as showing good energy savings across all 
benchmarks, the performance impact of the ACE-AWT heuristic 
should be examined. In real time systems, negative performance 
impacts are likely unacceptable. Figure 5 shows the execution 
time of each benchmark for the ACE-AWT heuristic normalized 
to the execution time for the base cache configuration. Each 
benchmark shows an improvement in performance with an 
average speedup of 35%. We found that this improvement comes 
due to tuning the line size configuration to the locality needs of 
the application [20]. 

5.3 Static Energy for Future Technology 
For the results presented in section 0, we assumed static energy 
accounted for 10% of the total energy consumption of the cache. 
However, static energy becomes a greater factor in total energy 
consumption as technology pushes further in deep sub-micron 
feature sizes, and it is interesting to investigate the fidelity of 
cache configuration. We explored systems where static energy 
accounted for 15%, 20%, 25%, and, for possible farther distant 

technologies, 50% of the total energy consumption of the cache.  
Table 1 shows the average energy consumption normalized to 

the base cache configuration averaged across all benchmarks for 
the heuristics studied. Averages with energy savings are shown in 
bold. The ACE-AWT heuristic shows very good fidelity with 
increasing static energy consumption.  

Both heuristics show the same trend – as the percentage of 
static energy consumption increases, the cache tuning heuristics 
are revealing greater energy savings. This trend is expected since 
cache tuning improves performance and thus eliminates costly 
idle cycles while waiting for fetches from a higher level of the 
cache hierarchy. Going from 10% to 50% static energy 
contribution, sequential exploration with ratio projection revealed 
an additional 34% energy savings and the ACE-AWT heuristic 
showed an additional 40% energy savings.  

The additional energy savings due to increased static power 
consumption can also soften the poor performance of inadequate 
tuning heuristics. Table 1 shows that for 50% static energy 
consumption, sequential exploration with ratio projection actually 
shows an average energy savings of 18% as opposed to the 24% 
increase in energy observed with the 10% static energy 
consumption. Whereas a tuning heuristic with an average energy 
savings of 24% is hardly a good heuristic compared to the ACE-
AWT heuristic, this trend does suggest that tuning methodologies 
deemed as unsuccessful with today’s technology may seem more 
attractive as new technologies are revealed.  

6.  Tuning Environments 
The ACE-AWT heuristic is primarily intended for use as a 
runtime optimization method for either desktop environments or 
embedded systems. However, the ACE-AWT heuristic is quite 
flexible and is easily applicable to all tuning environments such as 
a simulation-based configuration exploration or a hardware 
prototyping platform, as described in this section 

The ACE-AWT heuristic is highly suitable for a dynamic 
runtime tuning environment for desktop environments or 
embedded systems. Zhang et al. [22] shows that level one cache 
tuning is feasible during runtime and the level one tuning in our 
work is based on Zhang’s tuning heuristic. Zhang shows that the 
actual tuning hardware adds very little area overhead. Zhang also 
explores the cache parameters such that cache flushing is 
minimized. However, for the cache flushing that does happen, we 
observe that flushing is very infrequent compared to the long run 
time needed to determine stabilized hit and miss rates for each 
cache configuration. Our level two configurable cache is based on 
the Motorola M*CORE processor which was not allowed to have 
any overhead [15].  

Because the ACE-AWT heuristic is a feasible dynamic 
runtime tuning heuristic, the tuning heuristic becomes more 
flexible to operating environments. The ACE-AWT heuristic can 

 
 
 
 
 
 
 

Figure 5: Execution time of the benchmarks for alternating cache exploration with additive way tuning heuristic (ACE-AWT) 
normalized to the execution time of the benchmark with the base cache configuration 

 

 

 

 

Table 1: Energy consumption normalized to the base cache 
configuration averaged across all benchmarks for different 
static energy consumption. Energy savings are shown in bold. 

 Sequential/Ratio Projection ACE-AWT 
10% Static Energy 1.24 0.38
15% Static Energy 1.18 0.37
20% Static Energy 1.10 0.33
25% Static Energy 1.05 0.32
50% Static Energy 0.82 0.23
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be used to determine one low energy cache configuration to use 
throughout the entire run of an application by tuning once during 
startup. However, phase changes in applications suggest that 
different cache configurations are more appropriate for different 
execution phases of an application [12][18]. To better 
accommodate a single application environment with multiple 
phase changes, the tuning hardware would monitor the miss rates. 
When the miss rate exceeds a given threshold, the tuning 
hardware would reconfigure the cache for the new execution 
phase. To reduce tuning time, the heuristic cache configuration is 
saved and restored when the application reaches that execution 
phase again instead of rerunning the entire heuristic. Additionally, 
the ACE-AWT heuristic is suitable for a multi-application 
environment with an operating system. The tuning hardware 
would run each time an application swap occurs and, as with the 
application phase tuning, cache configurations are saved and 
restored to eliminate retuning when returning to a previously 
executed application. The minimization of the overhead incurred 
by runtime phase-based cache tuning and the implementation 
details are the focus of our future work. 

In a hardware prototyping environment, two prototyping 
options exist - a full hardware prototyping environment and a 
platform assisted hardware prototyping environment. The full 
hardware prototyping environment consists of all tuning hardware 
implemented in hardware on the prototyping board. The tuning 
hardware would apply the ACE-AWT heuristic by running each 
cache configuration and measuring the hit and miss rates. 
Designer provided energy annotations guide the cache tuner to 
determine the next cache configuration to try. After completion of 
the heuristic, the best cache configuration can be reported to the 
designer. A platform assisted hardware prototyping environment 
couples a tunable platform with a PC to drive the tuning heuristic. 
The PC configures the platform for the configuration to try and 
then reads the hit and miss rates after a sufficiently long run of the 
application. The PC uses the cache hit and miss rates to drive the 
ACE-AWT heuristic and configure the platform for the next 
configuration to try.  

In a simulation-based approach, application of the ACE-AWT 
heuristic is similar to the experimental environment set up for the 
results presented in this paper. Energy consumption estimates of 
cache and memory accesses are used to annotate the exploration 
heuristic. An exploration script is used in conjunction with a 
cache simulator to drive the heuristic. In addition to using a 
simulation approach for embedded systems, the simulation 
approach could also be used for profiling desktop computing 
environments. 

Furthermore, the ACE-AWT heuristic is applicable in 
environments with other tunable parameters such as bus 
configuration and hardware/software partitioning by specifying a 
scheduling order for the configuration of the tunable parameters.  
7. Conclusions and Future Work 
We have presented an efficient method for cache hierarchy tuning 
for a highly configurable cache with a very large design space. 
The heuristic is designed to efficiently and accurately tune the 
level one and level two caches in a system during runtime but is 
also applicable to a hardware prototyping environment and a 
desktop simulation cache exploration environment. Our heuristic 
determines a cache configuration that consumes on average 62% 
less energy than a base cache configuration while exploring only 
0.2% of the design space. Additionally, our cache tuning results in 

an average speedup of 35% due to line size configuration. We 
also show the fidelity of our tuning heuristic across future 
technologies with increasing static power consumption. Future 
work includes recompilation of the application to the best cache 
configuration for further energy and performance benefits. 
Additionally, the heuristic can be expanded to produce a Pareto 
optimal set of cache configurations trading off energy and 
performance. We also plan to examine desktop and mainframe 
applications on appropriate cache configurations for different 
application execution phases. 
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