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Abstract 
 Microcode is a way of using programmability of (micro) 

architectural structures to enhance functionality and to apply 
patches to an existing design.   As more features get added to 
a CPU core, the area and power costs associated with 
microcode increase. Code density is an important issue in 
memory constrained systems, and compression techniques 
have been developed to reduce system area and power 
consumption.  Thus, it is desirable to apply compression 
techniques to microcode. 

Microcode poses unique challenges for compression due 
to the long instruction format, the hand-coded nature of the 
programs and to stringent performance requirements that 
require fast decompression. This paper describes a technique 
for microcode compression that achieves area and power 
savings, while presenting a streamlined architecture that 
enables high throughput within the requirements of a high 
performance CPU. The key idea is to break each microcode 
word into fields, and take advantage of redundancy in these 
fields. The codewords for the compressed fields are chosen in 
order to reduce power consumption by minimizing ROM 
loading. The paper presents results for microcode 
compression on a commercial CPU which demonstrates area 
savings in the order of 32% and estimated power savings of 
more than 25%. 

 

1 Introduction 

Recent trends have migrated more and more advanced 
functionality to the microcoded portion of a CPU core. For 
example, a state-of-the art product processor design contains 
more than 22,000 lines of microcode. This number is due to 
increase as new technologies such as protection, 
virtualization and management assistance are added. 
Designers have the choice to migrate functionality to 
microcode: a given function may be achieved via dedicated 
hardware, at an associated hardware and power cost with 
possible performance benefits, or by microcode 
enhancements. Typically, functionality that is less 
performance-critical is relegated to microcode. Microcode 
bloat causes increased costs in terms of die area and 
associated power consumption.  

The cost for microcode storage is particularly acute in 
cores for applications requiring small footprint dies and 
reduced power consumption. These are embedded 
applications and CPUs that contain arrays of cores in the 
same die. A recent design targeted at low power and small 
footprint has estimated the area costs (and associated power 
consumption) to approach 20% of the die. 

Code density is an important issue in embedded systems. 
The size of flash memory directly affects system cost and 
therefore program memory is often constrained.  Processors 
with higher code density allow more programs to be 
supported at lower overall system cost. One solution to 

address issues with code size in such systems is to apply 
compression techniques [WolfeChanin92, Breternitz97, 
Araujo98]. 

Similarly, one may use compression to reduce the area of 
microcode ROM (UROM). The idea is to store the microcode 
in a transformed representation (compressed) and decompress 
during execution. This enables savings in UROM static size. 
By judicious design of the decompression mechanism, it is 
possible to avoid and minimize the performance impact of 
this approach. 

The contributions of the paper are summarized as follows: 

• A technique to compress microcode by identifying sub 
instruction fields suitable for compression; 

• A decompression architecture that reduces the 
performance impact of microcode compression and 
enables its application to a high performance CPU; 

• A technique to reduce power consumption by reducing 
UROM loading that takes advantage of the compression 
mechanism. 

The rest of the paper is organized as follows.  Section �2 
outlines related work. Section 3 discusses microcode 
compression and Section 4 presents a field-based microcode 
compression technique. Section 5 discusses area savings and 
Section 6 describes a power reduction technique by reducing 
UROM loading. Section 7 concludes the paper and discusses 
future work.   

2 Related Work 
There have been several efforts to reduce code size    via 

code compression. We assume that the best effort to remove 
redundancy by software means has already been applied. 
These range from the use of classical compiler optimizations 
such as strength reduction, dead code elimination, tail 
merging, and common sub-expression elimination [Debray-
02].  The compiler optimization called Procedural 
Abstraction [Fraser-84, Liao-96] is also shown to reduce code 
size. 

In 1992, Wolfe proposed the Compressed Code RISC 
Processor (CCRP) [WolfeChannin99] using Huffman 
encoding to compress MIPS R2000 instructions. It achieved a 
70% compression ratio with negligible performance loss. To 
fetch the (variable-sized) compressed words from memory, a 
translation table “Line Address Table (LAT)”  is used. 
Breternitz/Smith [Breternitz97] enhances on this architecture 
by pre-processing the program such that I-cache miss 
addresses point to the fetch address of the compressed 
program, avoiding the need for a LAT. Note: we define 
compression ratio as the fraction of the compressed program 
over the original program, taking into account the cost of 
auxiliary look up tables and structures, so a smaller value is 
better. 

Lefurgy [Lefurgy97, Lefurgy99] uses a dictionary to store 
repeated sequences of instructions in the code. It assigns 



codewords to these sequences and mixes codewords with 
uncompressed instructions in the program. The compression 
ratio ranged from 60%, to 70% for the PowerPC, ARM and 
i386 architectures. 

CodePack [GameBooker98] was designed by IBM for the 
PowerPC processor using two dictionaries, one for each half 
(16 bits) of the instructions. The instructions are encoded as 
two indexes and two tags to specify the index size. They 
translated the addresses using a Compression Index Table. 
Their final compression ratio ranges from 60% to 65% and 
performance from 10% of slowdown to 10% of speedup. 

Araujo [Araujo04,Araujo00,Araujo98] presented three 
methods for code compression: Pattern Based, Tree Based 
and Instruction Based Compression, achieving a compression 
ratio of 61.3%, 60.7% and 53.6%. 

Most of above techniques are applied to 32-bit processor 
architectures. Compression of microcode instructions 
containing many operations is more challenging. The closest 
similarities are in works compressing DSP programs and 
VLIW programs.  Xie et. Al. [XieWolfe01] developed VLIW 
code compression techniques, achieving 70% compression 
rate. 

 

3 Microcode Compression 
Microcode has some unique characteristics that challenge 

compression. First, it uses a long instruction format 
comprised of multiple independent fields. Multiple 
operations may be specified in a (micro) instruction and the 
number of alternative encodings grows combinatorially. This 
makes techniques like Instruction-Based Compression 
[Araujo04] less likely to succeed. Second, microcode is 
usually hand-coded and crafted for performance. As such, it 
is less likely to contain repeated code patterns such as found 
in code generated by compilers. 

Further, in high-performance processors, it is necessary to 
provide a steady stream of instructions to the micro engine. 
So, the decompression engine must have low latency and 
enable high throughput instruction flow. For such reasons, it 
is desirable to avoid compression techniques that utilize 
variable-length codes (e.g., Lempel-Ziv, used in prior art 
[Craft-98,Ziv-77]), as this approaches require a more 
complex decoder, incurring costs in area and power, in 
addition to added design and verification time. 

This paper proposes a two-level organization for the 
compressed microcode structure. The basic idea is to identify 
the set of unique bit patterns in the microcode program and 
store these in a table. The actual microcode UROM consists 
of ‘pointers’  into this table. Two key advantages of this two-
level organization are that 1) it enables pipelining, which 
reduces the performance impact of decompression for long 
microcode sequences, and 2) it allows use of fixed-sized 
‘pointers’  which facilitate and simplify the decompression 
hardware. These are the basic ideas in Instruction Based 
Compression [Araujo04]. 

An improvement of the above idea is to split the 
microcode word into fields such that the number of unique 
patterns for each field is minimized. For example, one 
approach uses the microinstruction’s operational fields. Such 
as opcode, source arguments, destination arguments, and 

immediate values. A later section describes an alternative 
method that uses hyperspace distance metrics and K-means 
analysis to group related microcode columns together. 

Figure 1 below illustrates a microcode structure for 
compressed microcode. Figure 1, left, shows the original 
uncompressed UROM. Solid rectangles represent the ROM 
array, and dashed rectangles indicate data. Each 
microinstruction is accessed in the UROM by its address in 
that table (“uaddr”). One access to the table produces the 
whole microinstruction with all its component fields 
(represented as UOP in the figure). Figure 1, right, is a 
microinstruction composed of two fields, each being an index 
in a corresponding table of unique patterns. The vertical bar 
on the compressed UROM array indicates the fact that each 
data word contains two such pointers. There are two unique 
pattern tables, one for each field.  

 

Phase1: Identify bitfields in 
microcode word and build a table 
of  unique patterns for each field 

Phase2: Transform each UOP to 
a sequence of pointers to unique 
pattern fields for each field in 
UOP word 

Phase3: Optionallly, assign 
entries in unique pattern tables 
to minimize UROM loading 

 
Figure 2. Flowchart of the  microcode compression 

algorithm 
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(two fields shown) 

Figure 1 –UnCompressed/Compressed UROM mechanism 
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Figure 2 illustrates the steps to generate compressed 
microcode. First, we identify bit fields in the instruction such 
that the number of unique patterns is minimized, then the 
microinstruction word is constructed by substituting each 
field with pointers to the corresponding fields’  value in the 
table of unique patterns for that field. Finally, the tables are 
organized such so that  pointer values minimize UROM 
loading. This step is described in a later section. 

 

4 Microcode Compression Techniques 

4.1 Field-Based Compression 
The basic idea for microcode compression is to identify a 

set of unique bit patterns that compose the microcode word 
and store these in a table. The microcode programs stores 
only a (short) unique id for each pattern in the original 
microcode word sequence, as shown in Figure 3.  In this 
figure, uaddr is the address of a microcode word.  In the 
uncompressed form, the uaddr directly access the UROM to 
fetch a microcode word.  In the compressed form, the unique 
microcode words are stored in the “unique insts”  table, and 
only the index into the table is stored in the original place of 
the microcode word.  Assume the original UROM has N 
microcode words each with L bits, and there are a total of M 
unique microcode words. The original UROM takes N*L bits 
and the compressed UROM takes only N*log2(M)+M*L bits.  
For N=20000, M=12000, and L=70, the compressed UROM 
uses 1140000 bits while the original UROM uses 1400000 
bits. This is about 19% reduction in bits. (Note: in this 
discussion we use the number of bits in the UROM as an 
estimate for its area requirements. Section 5 presents 
experimental results from layout estimates showing that 
reductions in actual UROM size are in line with this 
estimate). 
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Figure 3. Basic microcode compression idea 

An improvement of the above idea is to split the 
microcode word into a number of sub-words such that the 
number of unique patterns for each word is minimized. The 
intuition behind this idea is to take advantage of entropy for 
each field. For example, even though a microcode word may 
have, say, upwards of 70 bits, there are fields such as 
‘opcode’  (about 8 bits), in which there is not much variation 
and in which a few values are dominant. Figure 4 shows an 
example when each microcode word is split into two roughly 
equal-sized sub-words.  Assume M1 and M2 are the number   
of unique patterns for the two halves.  The original UROM 
takes N*L bits and the compressed UROM takes only 
N*(log2(M1)+ log2(M2))+M1*L/2 + M2*L/2 bits. For 
N=20000, M1=5000, M2=5000, and L=70, the compressed 
UROM uses 20000*26 + 10000*35 = 870000 bits while the 

original UROM uses 1400000 bits. This is about 38% 
reduction in number of bits. 

The key observation from the above scheme is that with a 
proper partitioning of the UROM into subsets of columns, the 
number of the unique patterns in the partitions is reduced and 
thus the total area will be reduced.  We describe a general 
clustering technique in the next section. 
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Figure 4. Partitioned compression 

 

4.2 Clustering example  
The clustering-based compression selectively groups 

similar columns into clusters, and goes beyond the simple 
partitioning of the microcode words into sub-words 
composed of adjacent bits.  For example, Figure 5 shows a 
simple partitioning of each micro-code word into two sub-
words.  With this partitioning, the two partitions each have 
three different patterns and require two bits to index the 
unique patterns.  Using the partitioning method shown in 
Figure 5, the compressed form needs 10*(2+2)+ 3*3 + 3*3 = 
48, about 20% reduction from the original size of 60 bits. 

 

Col1 Col2 Col3 Col4 Col5 Col6 

1 0 1 0 1 0 

0 1 0 1 0 1 

1 0 1 0 1 0 

0 0 0 0 0 0 

0 1 0 1 0 1 

1 0 1 0 1 0 

0 0 0 0 0 0 

0 1 0 1 0 1 

1 0 1 0 1 0 

0 1 0 1 0 1 

Figure 5. Partitioning method 

The clustering-based compression partitions columns that 
are similar to each other into groups.  For example, the 
sample UROM in Figure 5 may be clustered into the two 
groups shown in Figure 6, where columns 1, 3, and 5 are 
clustered into the first group and the columns 2, 4, and 6 are 
clustered into the second group.  With this new clustering, 
both groups have only two unique patterns and need only a 1 
bit index.  As a result, the compressed form requires only 



10*(1+1) + 2*3 + 2*3 = 32 bits, nearly 50% reduction and a 
significant reduction vs. the partitioning method. 

 

Col1 Col3 Col5 Col2 Col4 Col6 

1 1 1 0 0 0 

0 0 0 1 1 1 

1 1 1 0 0 0 

0 0 0 0 0 0 

0 0 0 1 1 1 

1 1 1 0 0 0 

0 0 0 0 0 0 

0 0 0 1 1 1 

1 1 1 0 0 0 

0 0 0 1 1 1 

Figure 6. Clustering method 

 

Figure 7 shows how to access the microcode word in the 
clustering method.  There is a new component called 
“spreader”  for each cluster that spreads the unique patterns in 
a cluster into the appropriate bits in the final microcode word.  
This spreader is simply a rewiring of the original path that 
connects the output to the microcode word and should NOT 
cost any additional die area or power.   Although we only 
show two clusters, this method is not limited by the number 
of clusters, and we expect sometimes 3 or 4 clusters are 
possible. 

 

 

uop 

Unique  
cluster
 

before 

after 

U 
R 
O 
M 

uaddr 
uaddr 

uop 

Compressed arrays 

Unique  
cluster
 

spreader 

spreader 

 
Figure 7. Clustering method 

 

4.3 Clustering problem 
A clustering algorithm tries to group the similar columns 

of UROM into clusters, such that an objective function is 
minimized.  To define the objective function, we define the 
following items: 

L: the number of columns in the UROM 

N: the number of bits in each column 

K: the number of clusters that the L columns are clustered 
into 

L1, L2, …, Lk: the number of columns in each cluster 1, 
2, …, K 

M1, L2, …, Mk: the number of unique patterns in clusters 
1, 2, …, K 

The clustering algorithm tries to find K clusters such that 
the following objective function is minimized: 

F = ]*)(log[
1

2 ii

K

i
i LMMN +�

=

 

For the example in Figure 6, N = 10, K = 2, L1 = 2, L2 = 
2, M1 = 3, M2 = 3, and F = 10*log2+3*2 + 10*log2 + 3*2 = 
32. 

This clustering problem is clearly an NP-hard optimization 
problem.  We need to use heuristics to solve it.  A general 
heuristic approach is described in Figure 8.  The algorithm 
iterates from K = 1, to some number X that is less than the 
number of columns L.  For each such K, it first obtains a 
simple K clusters by equally dividing the L columns into K 
clusters, and then repeatedly apply heuristics to improve the 
K clusters until the heuristic termination condition is met.   
Find, the best clustering among the X clustering results are 
selected as the final result.  

 

For K = 1 to X 

 Equally divide the L columns into K clusters 

 Repeat 

  Heuristic_improvement 

 Until heuristic_termination_condition met 

Select the K with the best clustering 

Figure 8. High-level heuristic clustering algorithm 

 

In the following, we present a K-mean based approach to 
refine the algorithm.  Figure 9 shows a k-mean based 
heuristics that tries to improve the initial clustering by 
moving columns around until the distance between columns 
within each cluster cannot be minimized.  During each 
iteration, the algorithm first computes the center for each 
cluster, then computes the distance from each column to each 
center, and moves the column to the cluster whose center is 
closest to the column.  The repetition terminates when no 
column is moved from its current cluster to a different cluster 
during the current iteration. 

 

For K = 1 to X 

 Equally divide the L columns into K clusters 

 Repeat 

  Compute the centers for the K clusters 

  For each column, find the center that is closest 
to it and assign it to that cluster (if not already in the 
cluster) 

 Until no column moves to a different cluster 

Select the K with the best clustering 

Figure 9. K-mean based heuristic 

 



Intuitively, the K-mean based algorithm tries to cluster 
columns that are similar to each other together.  Thus the 
definition of “similarity”  or the “distance”  between two 
columns is critical to the algorithm.  For the algorithm to 
identify clusters that minimize our objective function, when 
the “distance”  between the columns in a cluster is small, the 
number of unique patterns in the cluster must be small.  The 
following definitions of “distance”  can be used in the 
algorithm, where (c1, c2, …, cn) and (d1, d2, …, dn) are two 
distinct columns. 

Hamming distance ((c1, c2, …, cn), (d1, d2, …, dn))  

= �
=

n

i
ii dc

1

^ . 

Min hamming distance(A,B)  

= min(Hamming_distance(A,B), Hamming_distance(A, 
~B)),  where ~B is the complement of B. 

In this paper, we use the standard K-mean algorithm with 
the Hamming distance.  Figure 10 shows the result of the K-
mean algorithm applied to production microcode for an 
actual microprocessor.  For this particular processor, the 
program contains 22,568 microinstructions of 75 bits each. 
The best clustering is obtained when K=3, with a 
compression ratio of 61%.   
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Figure 10. Compression ratios with clusters found by K-

mean algorithm 

 

4.4 Field-Based compression by instruction fields 
In this section we describe application of the field-based 

compression technique to a production microcode. The 
program contains 22,568 microinstructions of 75 bits each. 
The instruction is divided into several fields such as: control 
of instruction format, opcode, argument designator fields. 
Argument designators indicate registers, immediate values, 
branch targets or memory addresses. 

To evaluate the automated K-mean clustering technique, 
we experimented with a manual clustering technique guided 
by the designer’s knowledge of each field. For example we 
have selected fields that, because of the field semantics, have 
a reasonable expectation of reduced variation in values. 
Examples of such fields are the ‘opcode’  and ‘source register 
1’  fields. 

Here we present the experimental results. These are the 
best results obtained by the designers using knowledge of the 

expected entropy of each field. The microinstruction word 
was separated in two parts, respectively with 38 and 37 bits. 
The first part contains opcode and source argument 
information fields. The second part contains immediate 
values and other miscellaneous fields. Of the 22,568 
instructions, there are 3359 unique values for the first part (38 
bits) and 7356 unique values for the second part (37 bits). 
The tables containing unique values can be indexed by 12 
and 13 bits, respectively. The resulting compression ratio of 
the hand-clustering technique is 58%. This is better than that 
achieved by the automated K-mean clustering. However, this 
is also an indication of potential for future enhancements to 
our clustering technique. Notice that the automated clustering 
with K=3 achieved results that are competitive with the best 
hand-coded results. We intend to investigate enhanced 
automated clustering techniques, possibly with designer-led 
‘seeding’  of fields to consider clustering first. 

 

5 Die Area Reduction 

So far we have discussed compression ratio in terms of the 
reduction in number of bits stored in the UROM. However on 
the final layout, actual area reduction may differ from 
reduction in the number of bits. This is because the memory 
arrays require a rectangular, regular layout. Imagine, for 
example, a reduction in a single bit. This may not cause any 
area reduction because the rectangle area is the same. Unless 
the reduction in number of bits is enough to change the array 
dimensions, there may be no noticeable area reduction. 
Further, there may be several such arrays and their 
arrangement also affects the actual layout. Finally, the 
additional control structures and buffers affect the final area. 

We applied the previous compression technique to a 
microcode program and modeled the area for the final layout 
with help from circuit design engineers. Three cases were 
considered (the die area is measured in “units”  of space): 

1. The original UROM with 22,568 entries, each 
containing a full microcode word. In this technology, the 
UROM structure contains one array with dimensions 
711x800 units, with total area 568,800 units; 

2. An organization similar to Figure 1, left, in which a 
table of unique patterns, considering the whole 
microcode word,  is created. This organization has two 
ROM arrays;  the first array has dimensions 484x214 
units and the second array has dimensions 291x1034 
units. The total area is 404,470 units; 

3. An organization with K=2 (the best hand-developed 
version) in which the microcode word is broken in two 
fields. This organization has three arrays, respectively 
with areas 484x349, 155x286 and 277x634 for a total 
area of 388,864 units. 

The above experiment found an area reduction to 68% of 
the original area, whereas the best reduction in the number of 
UROM bits for this program was to 58%. This difference is 
not unusual, as we discussed above, due to the rectangular 
form of the arrays. It also demonstrates that our estimates 
based on bit counts are a good approximation of the actual 
area savings. 



6 Reducing UROM loading  
UROM power consumption is determined, in part, by the 

number of bits set to ‘1’  in the UROM 
[deAngelSwartzlander97]. Thus, a transformation technique 
that reduces the number of UROM bits that are set to ‘1’  also 
reduces its power consumption. Microcode compression may 
be thought of as a transformation technique.   

It is possible to select the bit pattern for the unique id of 
each unique value on a microcode field. The unique id is a 
pointer into the table containing the unique values. We select 
the bit pattern corresponding to a unique id by storing the 
corresponding pattern in the appropriate entry on the table. 
For  example, the very first entry on the table corresponds to 
the bit pattern of all zeroes. 

As a simple example, assume the field in consideration is 
the ‘opcode’  field with only four possible values: ADD, 
SUB, LOAD, and STORE. Assume a simple program 
containing twice as many ‘ADD’  opcodes as ‘MUL’  opcodes. 
We reduce the number of bits set to ‘1’  by assigning the bit 
pattern ‘00’  to ‘ADD’ .  

A simple algorithm for power reduction is as follows: 
first, identify the unique values. Next, sort the unique values 
in descending order of frequency and then assign table 
positions such that the corresponding bit patterns have the 
least number of ‘1’  bits set. So, the first position, assigned to 
the highest-occurring pattern is all zeros. Next, all bit patterns 
containing one bit set are assigned. (If there are n unique 
patterns, the number of bits to identify the pattern is N= 
ceiling(log2 n). Thus, there are N patterns with only one bit 
set. Next, patterns with two bits set are assigned and so forth. 

This technique has been applied to a production 
microcode. The microcode consists of 22528 
microinstructions of 75 bits each, with a total of 273,264 bits 
set to 1. Note that microcode has been hand-coded and takes 
into consideration UROM loading, by reducing the number 
of bits set to ‘1’  wherever possible. The compressed 
organization, with the above power reduction algorithm 
applied, contains 114,549 bits set. For this microcode 
sequence, our technique is able to further reduce the total 
number of bits set to 1 by about 60%. Analyzing the UROM 
area savings and UROM load reduction via spreadsheet 
analysis, we estimate the power savings for this compressed 
microcode organization to be more than 25%. 

 

7 Conclusion 
In this paper we first show potential benefits and 

challenges for microcode compression. Then we describe 
techniques to achieve compression while allowing for a 
pipelined high-throughput design. Also described are 
algorithms for separating a microinstruction into fields to 
achieve higher compression. Then a technique to reduce 
UROM loading for reduced power consumption is presented. 
The techniques are illustrated by application to production 
microcode for an actual microprocessor design.  
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