
Field-Based Microcode Compression for Area and Power Savings
Author 1 and email
Author 1 and email

Affiliation
Abstract
 Microcode is a way of using programmability of (micro)

architectural structures to enhance functionality and to apply
patches to an existing design. As more features get added to
a CPU core, the area and power costs associated with
microcode increase. Code density is an important issue in
memory constrained systems, and compression techniques
have been developed to reduce system area and power
consumption. Thus, it is desirable to apply compression
techniques to microcode.

Microcode poses unique challenges for compression due
to the long instruction format, the hand-coded nature of the
programs and to stringent performance requirements that
require fast decompression. This paper describes a technique
for microcode compression that achieves area and power
savings, while presenting a streamlined architecture that
enables high throughput within the requirements of a high
performance CPU. The key idea is to break each microcode
word into fields, and take advantage of redundancy in these
fields. The codewords for the compressed fields are chosen in
order to reduce power consumption by minimizing ROM
loading. The paper presents results for microcode
compression on a commercial CPU which demonstrates area
savings in the order of 32% and estimated power savings of
more than 25%.

1 Introduction

Recent trends have migrated more and more advanced
functionality to the microcoded portion of a CPU core. For
example, a state-of-the art product processor design contains
more than 22,000 lines of microcode. This number is due to
increase as new technologies such as protection,
virtualization and management assistance are added.
Designers have the choice to migrate functionality to
microcode: a given function may be achieved via dedicated
hardware, at an associated hardware and power cost with
possible performance benefits, or by microcode
enhancements. Typically, functionality that is less
performance-critical is relegated to microcode. Microcode
bloat causes increased costs in terms of die area and
associated power consumption.

The cost for microcode storage is particularly acute in
cores for applications requiring small footprint dies and
reduced power consumption. These are embedded
applications and CPUs that contain arrays of cores in the
same die. A recent design targeted at low power and small
footprint has estimated the area costs (and associated power
consumption) to approach 20% of the die.

Code density is an important issue in embedded systems.
The size of flash memory directly affects system cost and
therefore program memory is often constrained. Processors
with higher code density allow more programs to be
supported at lower overall system cost. One solution to

address issues with code size in such systems is to apply
compression techniques [WolfeChanin92, Breternitz97,
Araujo98].

Similarly, one may use compression to reduce the area of
microcode ROM (UROM). The idea is to store the microcode
in a transformed representation (compressed) and decompress
during execution. This enables savings in UROM static size.
By judicious design of the decompression mechanism, it is
possible to avoid and minimize the performance impact of
this approach.

The contributions of the paper are summarized as follows:

• A technique to compress microcode by identifying sub
instruction fields suitable for compression;

• A decompression architecture that reduces the
performance impact of microcode compression and
enables its application to a high performance CPU;

• A technique to reduce power consumption by reducing
UROM loading that takes advantage of the compression
mechanism.

The rest of the paper is organized as follows. Section �2
outlines related work. Section 3 discusses microcode
compression and Section 4 presents a field-based microcode
compression technique. Section 5 discusses area savings and
Section 6 describes a power reduction technique by reducing
UROM loading. Section 7 concludes the paper and discusses
future work.

2 Related Work
There have been several efforts to reduce code size via

code compression. We assume that the best effort to remove
redundancy by software means has already been applied.
These range from the use of classical compiler optimizations
such as strength reduction, dead code elimination, tail
merging, and common sub-expression elimination [Debray-
02]. The compiler optimization called Procedural
Abstraction [Fraser-84, Liao-96] is also shown to reduce code
size.

In 1992, Wolfe proposed the Compressed Code RISC
Processor (CCRP) [WolfeChannin99] using Huffman
encoding to compress MIPS R2000 instructions. It achieved a
70% compression ratio with negligible performance loss. To
fetch the (variable-sized) compressed words from memory, a
translation table “Line Address Table (LAT)” is used.
Breternitz/Smith [Breternitz97] enhances on this architecture
by pre-processing the program such that I-cache miss
addresses point to the fetch address of the compressed
program, avoiding the need for a LAT. Note: we define
compression ratio as the fraction of the compressed program
over the original program, taking into account the cost of
auxiliary look up tables and structures, so a smaller value is
better.

Lefurgy [Lefurgy97, Lefurgy99] uses a dictionary to store
repeated sequences of instructions in the code. It assigns

codewords to these sequences and mixes codewords with
uncompressed instructions in the program. The compression
ratio ranged from 60%, to 70% for the PowerPC, ARM and
i386 architectures.

CodePack [GameBooker98] was designed by IBM for the
PowerPC processor using two dictionaries, one for each half
(16 bits) of the instructions. The instructions are encoded as
two indexes and two tags to specify the index size. They
translated the addresses using a Compression Index Table.
Their final compression ratio ranges from 60% to 65% and
performance from 10% of slowdown to 10% of speedup.

Araujo [Araujo04,Araujo00,Araujo98] presented three
methods for code compression: Pattern Based, Tree Based
and Instruction Based Compression, achieving a compression
ratio of 61.3%, 60.7% and 53.6%.

Most of above techniques are applied to 32-bit processor
architectures. Compression of microcode instructions
containing many operations is more challenging. The closest
similarities are in works compressing DSP programs and
VLIW programs. Xie et. Al. [XieWolfe01] developed VLIW
code compression techniques, achieving 70% compression
rate.

3 Microcode Compression
Microcode has some unique characteristics that challenge

compression. First, it uses a long instruction format
comprised of multiple independent fields. Multiple
operations may be specified in a (micro) instruction and the
number of alternative encodings grows combinatorially. This
makes techniques like Instruction-Based Compression
[Araujo04] less likely to succeed. Second, microcode is
usually hand-coded and crafted for performance. As such, it
is less likely to contain repeated code patterns such as found
in code generated by compilers.

Further, in high-performance processors, it is necessary to
provide a steady stream of instructions to the micro engine.
So, the decompression engine must have low latency and
enable high throughput instruction flow. For such reasons, it
is desirable to avoid compression techniques that utilize
variable-length codes (e.g., Lempel-Ziv, used in prior art
[Craft-98,Ziv-77]), as this approaches require a more
complex decoder, incurring costs in area and power, in
addition to added design and verification time.

This paper proposes a two-level organization for the
compressed microcode structure. The basic idea is to identify
the set of unique bit patterns in the microcode program and
store these in a table. The actual microcode UROM consists
of ‘pointers’ into this table. Two key advantages of this two-
level organization are that 1) it enables pipelining, which
reduces the performance impact of decompression for long
microcode sequences, and 2) it allows use of fixed-sized
‘pointers’ which facilitate and simplify the decompression
hardware. These are the basic ideas in Instruction Based
Compression [Araujo04].

An improvement of the above idea is to split the
microcode word into fields such that the number of unique
patterns for each field is minimized. For example, one
approach uses the microinstruction’s operational fields. Such
as opcode, source arguments, destination arguments, and

immediate values. A later section describes an alternative
method that uses hyperspace distance metrics and K-means
analysis to group related microcode columns together.

Figure 1 below illustrates a microcode structure for
compressed microcode. Figure 1, left, shows the original
uncompressed UROM. Solid rectangles represent the ROM
array, and dashed rectangles indicate data. Each
microinstruction is accessed in the UROM by its address in
that table (“uaddr”). One access to the table produces the
whole microinstruction with all its component fields
(represented as UOP in the figure). Figure 1, right, is a
microinstruction composed of two fields, each being an index
in a corresponding table of unique patterns. The vertical bar
on the compressed UROM array indicates the fact that each
data word contains two such pointers. There are two unique
pattern tables, one for each field.

Phase1: Identify bitfields in
microcode word and build a table
of unique patterns for each field

Phase2: Transform each UOP to
a sequence of pointers to unique
pattern fields for each field in
UOP word

Phase3: Optionallly, assign
entries in unique pattern tables
to minimize UROM loading

Figure 2. Flowchart of the microcode compression

algorithm

 UOP

(two fields shown)

Figure 1 –UnCompressed/Compressed UROM mechanism

UROM

UniquePatternTables

 for each field

Compressed

 UOP

UOP
uaddr uaddr

C
om

pressed

U
R

O
M

Figure 2 illustrates the steps to generate compressed
microcode. First, we identify bit fields in the instruction such
that the number of unique patterns is minimized, then the
microinstruction word is constructed by substituting each
field with pointers to the corresponding fields’ value in the
table of unique patterns for that field. Finally, the tables are
organized such so that pointer values minimize UROM
loading. This step is described in a later section.

4 Microcode Compression Techniques

4.1 Field-Based Compression
The basic idea for microcode compression is to identify a

set of unique bit patterns that compose the microcode word
and store these in a table. The microcode programs stores
only a (short) unique id for each pattern in the original
microcode word sequence, as shown in Figure 3. In this
figure, uaddr is the address of a microcode word. In the
uncompressed form, the uaddr directly access the UROM to
fetch a microcode word. In the compressed form, the unique
microcode words are stored in the “unique insts” table, and
only the index into the table is stored in the original place of
the microcode word. Assume the original UROM has N
microcode words each with L bits, and there are a total of M
unique microcode words. The original UROM takes N*L bits
and the compressed UROM takes only N*log2(M)+M*L bits.
For N=20000, M=12000, and L=70, the compressed UROM
uses 1140000 bits while the original UROM uses 1400000
bits. This is about 19% reduction in bits. (Note: in this
discussion we use the number of bits in the UROM as an
estimate for its area requirements. Section 5 presents
experimental results from layout estimates showing that
reductions in actual UROM size are in line with this
estimate).

Unique
insts

before after

U
R
O
M

uaddr
uaddr

uop uop

Compressed array

Figure 3. Basic microcode compression idea

An improvement of the above idea is to split the
microcode word into a number of sub-words such that the
number of unique patterns for each word is minimized. The
intuition behind this idea is to take advantage of entropy for
each field. For example, even though a microcode word may
have, say, upwards of 70 bits, there are fields such as
‘opcode’ (about 8 bits), in which there is not much variation
and in which a few values are dominant. Figure 4 shows an
example when each microcode word is split into two roughly
equal-sized sub-words. Assume M1 and M2 are the number
of unique patterns for the two halves. The original UROM
takes N*L bits and the compressed UROM takes only
N*(log2(M1)+ log2(M2))+M1*L/2 + M2*L/2 bits. For
N=20000, M1=5000, M2=5000, and L=70, the compressed
UROM uses 20000*26 + 10000*35 = 870000 bits while the

original UROM uses 1400000 bits. This is about 38%
reduction in number of bits.

The key observation from the above scheme is that with a
proper partitioning of the UROM into subsets of columns, the
number of the unique patterns in the partitions is reduced and
thus the total area will be reduced. We describe a general
clustering technique in the next section.

uop

Uniqu
e

before

after

U
R
O
M

uaddr
uaddr

uop

Compressed arrays

Uniqu
e

Figure 4. Partitioned compression

4.2 Clustering example
The clustering-based compression selectively groups

similar columns into clusters, and goes beyond the simple
partitioning of the microcode words into sub-words
composed of adjacent bits. For example, Figure 5 shows a
simple partitioning of each micro-code word into two sub-
words. With this partitioning, the two partitions each have
three different patterns and require two bits to index the
unique patterns. Using the partitioning method shown in
Figure 5, the compressed form needs 10*(2+2)+ 3*3 + 3*3 =
48, about 20% reduction from the original size of 60 bits.

Col1 Col2 Col3 Col4 Col5 Col6

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

0 0 0 0 0 0

0 1 0 1 0 1

1 0 1 0 1 0

0 0 0 0 0 0

0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1

Figure 5. Partitioning method

The clustering-based compression partitions columns that
are similar to each other into groups. For example, the
sample UROM in Figure 5 may be clustered into the two
groups shown in Figure 6, where columns 1, 3, and 5 are
clustered into the first group and the columns 2, 4, and 6 are
clustered into the second group. With this new clustering,
both groups have only two unique patterns and need only a 1
bit index. As a result, the compressed form requires only

10*(1+1) + 2*3 + 2*3 = 32 bits, nearly 50% reduction and a
significant reduction vs. the partitioning method.

Col1 Col3 Col5 Col2 Col4 Col6

1 1 1 0 0 0

0 0 0 1 1 1

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 1 1 1

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 1 1 1

1 1 1 0 0 0

0 0 0 1 1 1

Figure 6. Clustering method

Figure 7 shows how to access the microcode word in the
clustering method. There is a new component called
“spreader” for each cluster that spreads the unique patterns in
a cluster into the appropriate bits in the final microcode word.
This spreader is simply a rewiring of the original path that
connects the output to the microcode word and should NOT
cost any additional die area or power. Although we only
show two clusters, this method is not limited by the number
of clusters, and we expect sometimes 3 or 4 clusters are
possible.

uop

Unique
cluster

before

after

U
R
O
M

uaddr
uaddr

uop

Compressed arrays

Unique
cluster

spreader

spreader

Figure 7. Clustering method

4.3 Clustering problem
A clustering algorithm tries to group the similar columns

of UROM into clusters, such that an objective function is
minimized. To define the objective function, we define the
following items:

L: the number of columns in the UROM

N: the number of bits in each column

K: the number of clusters that the L columns are clustered
into

L1, L2, …, Lk: the number of columns in each cluster 1,
2, …, K

M1, L2, …, Mk: the number of unique patterns in clusters
1, 2, …, K

The clustering algorithm tries to find K clusters such that
the following objective function is minimized:

F =]*)(log[
1

2 ii

K

i
i LMMN +�

=

For the example in Figure 6, N = 10, K = 2, L1 = 2, L2 =
2, M1 = 3, M2 = 3, and F = 10*log2+3*2 + 10*log2 + 3*2 =
32.

This clustering problem is clearly an NP-hard optimization
problem. We need to use heuristics to solve it. A general
heuristic approach is described in Figure 8. The algorithm
iterates from K = 1, to some number X that is less than the
number of columns L. For each such K, it first obtains a
simple K clusters by equally dividing the L columns into K
clusters, and then repeatedly apply heuristics to improve the
K clusters until the heuristic termination condition is met.
Find, the best clustering among the X clustering results are
selected as the final result.

For K = 1 to X

 Equally divide the L columns into K clusters

 Repeat

 Heuristic_improvement

 Until heuristic_termination_condition met

Select the K with the best clustering

Figure 8. High-level heuristic clustering algorithm

In the following, we present a K-mean based approach to
refine the algorithm. Figure 9 shows a k-mean based
heuristics that tries to improve the initial clustering by
moving columns around until the distance between columns
within each cluster cannot be minimized. During each
iteration, the algorithm first computes the center for each
cluster, then computes the distance from each column to each
center, and moves the column to the cluster whose center is
closest to the column. The repetition terminates when no
column is moved from its current cluster to a different cluster
during the current iteration.

For K = 1 to X

 Equally divide the L columns into K clusters

 Repeat

 Compute the centers for the K clusters

 For each column, find the center that is closest
to it and assign it to that cluster (if not already in the
cluster)

 Until no column moves to a different cluster

Select the K with the best clustering

Figure 9. K-mean based heuristic

Intuitively, the K-mean based algorithm tries to cluster
columns that are similar to each other together. Thus the
definition of “similarity” or the “distance” between two
columns is critical to the algorithm. For the algorithm to
identify clusters that minimize our objective function, when
the “distance” between the columns in a cluster is small, the
number of unique patterns in the cluster must be small. The
following definitions of “distance” can be used in the
algorithm, where (c1, c2, …, cn) and (d1, d2, …, dn) are two
distinct columns.

Hamming distance ((c1, c2, …, cn), (d1, d2, …, dn))

= �
=

n

i
ii dc

1

^ .

Min hamming distance(A,B)

= min(Hamming_distance(A,B), Hamming_distance(A,
~B)), where ~B is the complement of B.

In this paper, we use the standard K-mean algorithm with
the Hamming distance. Figure 10 shows the result of the K-
mean algorithm applied to production microcode for an
actual microprocessor. For this particular processor, the
program contains 22,568 microinstructions of 75 bits each.
The best clustering is obtained when K=3, with a
compression ratio of 61%.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Num ber of clusters

C
o

m
p

re
ss

io
n

 r
at

io
s

Figure 10. Compression ratios with clusters found by K-

mean algorithm

4.4 Field-Based compression by instruction fields
In this section we describe application of the field-based

compression technique to a production microcode. The
program contains 22,568 microinstructions of 75 bits each.
The instruction is divided into several fields such as: control
of instruction format, opcode, argument designator fields.
Argument designators indicate registers, immediate values,
branch targets or memory addresses.

To evaluate the automated K-mean clustering technique,
we experimented with a manual clustering technique guided
by the designer’s knowledge of each field. For example we
have selected fields that, because of the field semantics, have
a reasonable expectation of reduced variation in values.
Examples of such fields are the ‘opcode’ and ‘source register
1’ fields.

Here we present the experimental results. These are the
best results obtained by the designers using knowledge of the

expected entropy of each field. The microinstruction word
was separated in two parts, respectively with 38 and 37 bits.
The first part contains opcode and source argument
information fields. The second part contains immediate
values and other miscellaneous fields. Of the 22,568
instructions, there are 3359 unique values for the first part (38
bits) and 7356 unique values for the second part (37 bits).
The tables containing unique values can be indexed by 12
and 13 bits, respectively. The resulting compression ratio of
the hand-clustering technique is 58%. This is better than that
achieved by the automated K-mean clustering. However, this
is also an indication of potential for future enhancements to
our clustering technique. Notice that the automated clustering
with K=3 achieved results that are competitive with the best
hand-coded results. We intend to investigate enhanced
automated clustering techniques, possibly with designer-led
‘seeding’ of fields to consider clustering first.

5 Die Area Reduction

So far we have discussed compression ratio in terms of the
reduction in number of bits stored in the UROM. However on
the final layout, actual area reduction may differ from
reduction in the number of bits. This is because the memory
arrays require a rectangular, regular layout. Imagine, for
example, a reduction in a single bit. This may not cause any
area reduction because the rectangle area is the same. Unless
the reduction in number of bits is enough to change the array
dimensions, there may be no noticeable area reduction.
Further, there may be several such arrays and their
arrangement also affects the actual layout. Finally, the
additional control structures and buffers affect the final area.

We applied the previous compression technique to a
microcode program and modeled the area for the final layout
with help from circuit design engineers. Three cases were
considered (the die area is measured in “units” of space):

1. The original UROM with 22,568 entries, each
containing a full microcode word. In this technology, the
UROM structure contains one array with dimensions
711x800 units, with total area 568,800 units;

2. An organization similar to Figure 1, left, in which a
table of unique patterns, considering the whole
microcode word, is created. This organization has two
ROM arrays; the first array has dimensions 484x214
units and the second array has dimensions 291x1034
units. The total area is 404,470 units;

3. An organization with K=2 (the best hand-developed
version) in which the microcode word is broken in two
fields. This organization has three arrays, respectively
with areas 484x349, 155x286 and 277x634 for a total
area of 388,864 units.

The above experiment found an area reduction to 68% of
the original area, whereas the best reduction in the number of
UROM bits for this program was to 58%. This difference is
not unusual, as we discussed above, due to the rectangular
form of the arrays. It also demonstrates that our estimates
based on bit counts are a good approximation of the actual
area savings.

6 Reducing UROM loading
UROM power consumption is determined, in part, by the

number of bits set to ‘1’ in the UROM
[deAngelSwartzlander97]. Thus, a transformation technique
that reduces the number of UROM bits that are set to ‘1’ also
reduces its power consumption. Microcode compression may
be thought of as a transformation technique.

It is possible to select the bit pattern for the unique id of
each unique value on a microcode field. The unique id is a
pointer into the table containing the unique values. We select
the bit pattern corresponding to a unique id by storing the
corresponding pattern in the appropriate entry on the table.
For example, the very first entry on the table corresponds to
the bit pattern of all zeroes.

As a simple example, assume the field in consideration is
the ‘opcode’ field with only four possible values: ADD,
SUB, LOAD, and STORE. Assume a simple program
containing twice as many ‘ADD’ opcodes as ‘MUL’ opcodes.
We reduce the number of bits set to ‘1’ by assigning the bit
pattern ‘00’ to ‘ADD’ .

A simple algorithm for power reduction is as follows:
first, identify the unique values. Next, sort the unique values
in descending order of frequency and then assign table
positions such that the corresponding bit patterns have the
least number of ‘1’ bits set. So, the first position, assigned to
the highest-occurring pattern is all zeros. Next, all bit patterns
containing one bit set are assigned. (If there are n unique
patterns, the number of bits to identify the pattern is N=
ceiling(log2 n). Thus, there are N patterns with only one bit
set. Next, patterns with two bits set are assigned and so forth.

This technique has been applied to a production
microcode. The microcode consists of 22528
microinstructions of 75 bits each, with a total of 273,264 bits
set to 1. Note that microcode has been hand-coded and takes
into consideration UROM loading, by reducing the number
of bits set to ‘1’ wherever possible. The compressed
organization, with the above power reduction algorithm
applied, contains 114,549 bits set. For this microcode
sequence, our technique is able to further reduce the total
number of bits set to 1 by about 60%. Analyzing the UROM
area savings and UROM load reduction via spreadsheet
analysis, we estimate the power savings for this compressed
microcode organization to be more than 25%.

7 Conclusion
In this paper we first show potential benefits and

challenges for microcode compression. Then we describe
techniques to achieve compression while allowing for a
pipelined high-throughput design. Also described are
algorithms for separating a microinstruction into fields to
achieve higher compression. Then a technique to reduce
UROM loading for reduced power consumption is presented.
The techniques are illustrated by application to production
microcode for an actual microprocessor design.

8 Acknowledgements
Anonymous, etc

9 References

[Araujo04] E.Wanderley Netto, R.Azevedo,
P.Centoducatte, G.Araujo,” Multi Profile Code
Compression” , Design Automation Conf., June 2004.

[Araujo00]G. Araujo, P. Centoducatte, R. Azevedo, and R.
Pannain. Expression tree based algorithms for code
compression on embedded RISC architectures. IEEE
Transactions on VLSI Systems, Mar. 2000.

[Araujo98]G. Araujo, P. Centoducatte, M. Cˆortes, and R.
Pannain. Code compression based on operand
factorization. In Proc. Int’ l Symp. on Microarchitecture,
pages 194–201, Dec. 1998.

[Breternitz97] Mauricio Breternitz Jr. and Roger Smith.
Enhanced compression techniques to simplify program
decompression and execution. ICCD, Oct 1997.

[Craft98] A Fast Hardware Data Compression Algorithm and
Some Algorithmic Extensions, IBM J.Research and
Development, vol 42 no 6, Nov.1998

[deAngel,Swartzlander97] Survey of Low-Power Techniques
for ROMS, International Symposium on Low-Power
Electronics and Design, 1997

[Debray-02] S. Debray, W. Evans, R. Muth, and B. de Sutter.
“Compiler techniques for code compression,” ACM
Trans. on Programming Languages and Systems, pages
378–415, 2000.

[Fraser-84] C. Fraser, E. Myers, and A. Wendt, “Analyzing
and compressing assembly code,” SIGPLAN Notices,
19(6):117-121, June 1984

 [GameBooker98] M. Game and A. Booker.
CodePack: Code Compression for PowerPC
Processors. International Business Machines
(IBM) Corporation, 1998.

 [Lefurgy97] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge.
Improving code density using compression techniques. In
Proc. Int’ l Symp. on Microarchitecture, Dec. 1997.

[Lefurgy99]] C. Lefurgy, E. Piccininni, and T. Mudge.
Analysis of a high performance code compression
method. In Proc. Int’ l Symp. on Microarchitecture, Nov.
1999.

[Liao-96] S. Liao. “Code Generation and Optimization for
Embedded Digital Signal Processors,” Ph.D. thesis, 1996.
Massachusetts Institute of Technology.

 [WolfeChannin92] A. Wolfe and A. Chanin. Executing
compressed programs on an embedded RISC
architecture. In Proc. Int’ l Symp. On Microarchitecture,
1992.

[XieWolfe01] Y. Xie, H. Lekatsas, and W. Wolf. Code
compression for VLIW processors. In Proc. Data
Compression Conference, March 2001

[Ziv-77] J. Ziv and A Lempel, “A Universal Algorithm for
Sequential Data Compression,” IEEE Transaction on
Information Theory, 23 (3), p337-343, May 1977.

