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ABSTRACT
In this paper a framework for software-hardware migration
evaluation is proposed. This framework is conceived to be
applied to embedded system design in which energy con-
sumption is the main concern. The proposed framework
allows designers to identify consumption distribution along
the executable code so that partitioning such centers in
hardware, in order to promote energy savings. The proces-
sor behavior is modeled in Coloured Petri Net (CPN) so
that to use CPN properties to capture behavioral parame-
ters. This approach allows to analyze software-power met-
rics using widespread analysis approaches presents in the
CPN universe. Such approaches are very consolidated on
well-known CPN tools, as CPNTools and Design/CPN. Due
to proposed architecture‘s modeling, general-purpose CPN
tools can be used as a retargetable evaluation environment.
Additionally, this framework was integrated into an envi-
ronment in order to implement some analysis functions and
for optimizing the designer‘s interface. The framework also
allows architecture flexibility based on an instruction-CPN
models library. An important contribution included in this
framework is the proposition of a method for software-power
cost centers identification, based on a formal token based
computing model.

1. INTRODUCTION
An embedded system may be defined as a digital system

embedded in a bigger system, being such embedded sys-
tem responsible for very specifics, and normally very crucial,
tasks. In more general case embedded systems is composed
by a dedicated processor surrounded by specific hardware
devices. In order to improve designs, methods for design
space exploration play an important role, searching for opti-
mizations of parameters relatives to performance and energy
consumption. In power critical embedded systems, energy
consumption may be regarded to the processor and to spe-
cific hardware device. Despite of processor hardware opti-
mization, processor consumption is affected by the software
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dynamic behavior [14], meaning that the software-power
analysis is crucial. Many embedded computing applications
are power critical, such as: portable medical instruments,
notebook computers, personal digital assistant and cellular
phones. Hence, power constraints are an important part of
design specifications. Additionally, the embedded software
is basically not modified during the system life. Even though
embedded systems normally allows firmware updates, such
modification does not change radically the software struc-
ture. Based on these facts, works as [13] and [12] have
shown that power-aware software-hardware migration can
promote up to 76% of energy savings. This paper proposes
a framework for binary-code evaluation in order to software-
hardware migration. The proposed framework allows de-
signers to identify consumption distribution along the exe-
cutable code so that partitioning such centers in hardware,
for promoting energy savings [12]. Additionally, an environ-
ment to deal with such framework is presented. In previous
work [1, 2], we proposed a software cost analysis framework
based on Coloured Petri Net (CPN) and a specific taxon-
omy. Moreover, analysis entities were presented in order to
help the identification of code structures and its energy cost.
This paper extend previous work in order to apply such con-
cept for providing practical resources for the designer. This
paper is organized as follows: Section 2 introduces Coloured
Petri Nets concepts, Section 3 presents the power analysis
model, Section 4 shows the proposed framework, Section 5
presents a case study and Section 6 concludes the paper.

2. COLOURED PETRI NET: AN OVERVIEW
Petri nets are families of formal net-based modeling tech-

niques, that model actions and states of systems using four
basics entities: places, transitions, arcs and tokens. In the
majority of models, places are associated with local states
and transitions with actions. Arcs represent the dependency
among actions and states. An action occurs when a transi-
tion is “fired”, moving tokens from incoming places to out-
going places. A parallel process is described in Figure 1.
Arcs describe which action (or actions) is possible from a
given local state. In this figure, arc A1 links place P1 (state
1) to transition T1 (action 1), representing that action T1
requires local state P1. Arcs A2 and A3 connect transition
T1 to places P2 and P3. It is easy to see two parallel paths
(P3-T3-P5 and P2-T2-P4) as a representation of parallel
processes. In order to accomplish the action T4 is necessary
to reach state in which places P4 and P5 are marked. In
order to represent possible local states, it is used a mark,
called token. This simple net is known as place-transition



net [11]. Place-transition nets are adequate to analyze some
characteristics of system such as: repetitiveness, liveness
and reachability, that means determinating whether a spe-
cific state is reachable. There are various extended Petri net
models, each one dealing with a specific modeling problem
and distinct abstraction level. CPN is a high-level model
that consider abstract data-types and hierarchy. CPN tools
provide an environment for design, specification, validation
and verification of systems [8]. Informally, Coloured Petri
Net is a Petri net with some modeling improvements: (i) to-
kens express values and data structures with Types (colors);
(ii)places have associated Type (color set) determining the
kind of data (token) those places may contain; (iii) tran-
sitions may express complex behavior by changing token
value; (iv) Hierarchy can be handled at different abstrac-
tion levels . Transitions in a hierarchical net may represent
more complex structures, where each transition (substitu-
tion transition) expresses another more complex net, and
so on. A hierarchical net may describe complex systems by
representing their behavior using a compact and expressive
net. (v) Behaviors can be also described using high level
program language.

In this way, it is possible to model a complex system using
tokens for carrying sets of internal data values. Transitions
represent actions that modify internal set of data values.
The entire net represents the flow of changes into the sys-
tem during its states evolution. The model can be analyzed
by simulation, states and invariant analysis. State analysis
means to study all possible system states, or an important
subset, in order to capture system patterns. There are some
widespread academic tools such as Design/CPN and CPN-
Tools, for handling with Colored Petri Net and its analysis
techniques.
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Figure 1: Petri net example

Figure 2: Execution Profile Example

3. SOFTWARE POWER COST MODEL

In previous work [2] we proposed a new approach based
on Coloured Petri Net for performing software power cost
analysis. This framework explore Coloured Petri Nets as
formal description language. The simulation mechanism is
used to capture behavioral patterns that characterize energy
consumption. The atomic behavior associated to consump-
tion is modeled as processor instruction and, based on it,
a power model is yielded. During the program execution
flow, each instruction changes the internal processor context
so that processor reaches new states. In this approach, the
program flow is modeled as a Coloured Petri Net where each
possible processor state is modeled as a place, the internal
context as a data structure within a token1, and instructions
as transitions that processes this token. Figure 3 shows a
JNC instruction model for 8051 architecture (MCS51), the
instruction behavior is defined by an associated CPN-ML
code (a Standard ML Language subset) [8] that invokes
CPN-ML functions defined in a shared area. Such func-
tion can be accessed by every instructions of the code-model
and represents processor-hardware resources. For example,
the write m() and read m() implements memory accesses.
In contrast to previous CPN processor architecture models
[5][4], where the processor is modeled based on architec-
tural/RTL hardware model, i.e. based on its internal hard-
ware resources, (pipeline stages, AU, Icache, and Dcache,
for example ), this approach models processor mainly by its
instruction set. Models based on architectural/RTL hard-
ware have to be constructed based on very detailed hard-
ware consumption data related with implementation tech-
nologies, that is not often available to the system designer
[10]. On other hand, instruction-level power model can be
implemented only based on physical measures [9]. The pro-
posed CPN modeling explicitly represents control and data
dependencies, hence allowing mapping consumption features
to software structures. Information about the internal be-
havior pattern is capture by probes variables strategically
embedded on function and instructions description.

3.1 Nomenclatures and Definitions
In [1] was presented a taxonomy and some definitions

that are necessary for better understanding the proposed
method. These definition are informally showed in the fol-
lowings.

Definition 3.1 (Execution Vector). :
Execution Vector is a vector,enumerated by the instructions
memory ordering, where each component represents the num-
ber of instruction execution.

Definition 3.2 (Consumption Vector). :
Consumption Vector is a vector, enumerated by the instruc-
tion memory ordering , where each component represents
the respective instruction energy cost (base cost + inter-
instruction cost)2.

Figure 2 depicts the Execution Profile for a nested-loop
example. Analyzing the Execution Profile, it is possible to
identify execution patterns such as:
1In fact the model has one token in pipeline-less archi-
tectures. For SimpleScalar architectures, for example, the
model will deal with two tokens. SimpleScalar architecture
models will be presented in futures papers.
2Base cost is the instruction specific energy cost. Inter-
instructions cost means the circuit overhead that appears
when two instruction are executed consecutively[9]



Definition 3.3 (Patch). :
Patch is a set of instructions that are located in consecutive
addresses and are executed the same number of times.

In Figure 2, five patches are identified : from instruction 2
to instruction 6 (patch 1), from instruction 7 to instruction
9 (patch 2), from instruction 10 to instruction 14 (patch 3),
from instruction 15 to instruction 18 (patch 4) and from
instruction 19 to instruction 25(patch 5).

Definition 3.4 (Loop-Patch). :
Loop-Patch represents a single loop. It consists of a patch
in which the incoming (first) and outgoing (last) instruction
are executed only once.

There is no Loop-Patch in Figure 2.

Definition 3.5 (Cluster). :
Cluster is a set of Patches joined together (aggregated) in
consecutive addresses, in which the incoming (first) and out-
going (last) instruction are executed only once.

In Figure 2 there is only one cluster: {patch1, patch2,
patch3, patch4, patch5}.

Definition 3.6 (Bound-Patch Set). :
Bound-Patch Set is a set of Patches executed the same num-
ber of times and belong to the same Cluster.

In Figure 2, there are two Bound-Patch Set: {patch1,
patch5}, {patch2, patch4}.

Definition 3.7 (Free-Patch). :
Free-Patch is a Patch present in a Cluster but not within the
Cluster Bound-Patch Set.

In Figure 2, there is only one Free-Patch: patch3.

The Execution Profile can also define metrics such as:

1. Instruction Consumption
Ii = (Ni × Bi)

where Ii is the total consumption due to instruction
i, Ni is its number of executions and Bi is its energy
cost (base cost + inter-instruction cost).

2. Patch Consumption
Pcj =

�
i
(Nj × Bi) = Nj ×

�
i
(Bi)

where Pcj is the consumption of Patch j, Nj is the
Patch j execution number, and Bi the instruction i

energy cost.

3. Cluster Consumption
Cck =

�
j

�
i
(Nj × Bi) =

�
j
(Pcj)

4. Consumption Profile Vector
Cpm = (Evm • Cvm)

where Evm is program m Execution Vector and Cvm

is its Consumption Vector.

From this moment on, Execution Profile and Consump-
tion Profile denote graphics representation of Execution and
Consumption Profile Vectors, respectively.

Such definitions and metrics help the designer to figure out
code structures and their energy consumption. For example,

a Loop-Patch represents an isolated loop within the code.
A Cluster represents consumption and time cost regions. A
Cluster with Bound-Patch Sets such that its Patches have
symmetric positions in the Execution Profile may represent
a nested-loop (see Figure 2). Inspecting Execution Profiles
and the Consumption Profile graphics, the designer is able
to map consumption to code structures. In fact, entities
as Patches, Clusters and Bound-Patch Sets are clues to fig-
ure out the code flow characteristic. In the scope of em-
bedded systems is very important to analyze optimization
with respect to total consumption and consumption pro-
file. Under the consumption profile point of view, the de-
signer may opt for some consumption distribution allow-
ing best software-hardware migration from code-segments
(Patches/Clusters), improving total consumption, as postu-
lated in [12].

4. PROPOSED FRAMEWORK
Analyzing software in order to identify its better sector

for partitioning on hardware implies capture the Highest
Consumption Patch (HCP) and Cluster (HCC) on binary-
level code. In order to guarantee the best possibilities ex-
ploration, such binary-codes3 should comes from different
implementation of the target algorithm described in high-
level language, typically C. Different implementation here
means binary-code generated by different compilers or/and
different compiler-optimization option. Different implemen-
tation does not mean a different high-level description of the
same algorithm or a different algorithms for the same func-
tionality, even though such options enclose interesting pos-
sibilities. Thus, the framework proposed performs a binary-
code space exploration in order to capture the best one, tak-
ing into account the system energy constraints. The basic
framework, illustrated in Figure 4, consists of a CPN en-
gine, a Binary-CPN compiler that translates machine-code
to CPN model, and a set of specific functions for power
and performance evaluation. These functions return met-
rics, among then, Consumption Profile Vector, Patch Con-
sumption, Cluster Consumption and Patch Consumption.
The Binary-CPN compiler and analysis functions are en-
capsulated on “hidden-tools”4 Environment [3]. Figure 4
illustrates the framework to tuning the compilation process,
termed as “hidden-tools”-PCAF (“hidden-tools”- Power Cost
Analysis Framework). The source-code is compiled under
each implementation option. “hidden-tools”-PCAF performs
Binary-CPN compilation, opens the CPN-Model in CPN-
Engine, engages communication with CPN-Engine and eval-
uates analysis functions. Such actions can be visualized on
Figure 5. For each code version a power analysis can be per-
formed under the “hidden-tools”-PCAF environment. Af-
terward, the results can be compared in order to identify
the more adequate code for partitioning process. The CP-
Ntools [7] has been used as the CPN-Engine. The front-end
is performed by the “hidden-tools” environment, providing
a specific interface for power analysis. Moreover, the same
framework can be used to either explore C code versions of
the same algorithm or different algorithms for same func-
tionality.

4.1 Binary-CPN Compiler
3In this context Binary means executable machine-code.
4The Tools’s name is hidden due to blind review



Figure 3: Colored Petri net model for a branch instruction

Figure 4: The Proposed Framework

The Binary-CPN compiler considers two entries files: the
machine-code and the CPN-Instruction model. The CPN-
Instruction model consists of sets of CPN nets representing
target architecture (processor/microcontroller). Figure 3
shows a JNC (Jump if Not Carry) instruction model de-
scribed using CPNTools tool. Based on these information,
the Binary-CPN compiler generates a model, a Coloured
Petri Net model, according to machine-code input. The
model is represented in the XML file format defined by the
CPNTools. In this work, the target architecture is the 8051
architecture, due to its widespread application in embed-
ded systems. Note that, due to the standardization present
on the formal model (CPN-Instruction model), the Binary-

Figure 5: “hidden-tools” Power Cost Analysis

Framework

CPN compiler can deal with different architectures with
minimal modifications. The net entities, as places and tran-
sitions, keep the same meaning whatever be the architecture.
The changes will be concentrated on the CPN-instruction
model, with the minimal impact on the net formation rules.

During the code(net) simulation dynamic jumps can de-
viate the program flow to, possibly, any point of the model.
This would cause an arc to be created for every place ex-
isting in the net. When an interruption occurs the more
critical situation appear, because interruption can be called



from every point of the code driving the flow in the direction
of an interruption routine. Such routines can return possibly
to any of those points. This would result in an extremely
complicated net. In order to solve this problem, a special
structure was created. It acts as a dynamic branch proces-
sor in the net. Its function is for analyzing the state of the
program, at the simulation time, and to lead the token by
the correct arc. This structure is unique for each net. Every
place in the net has an arc that goes to its entry point and
an arc that comes from it. This structure reduces drastically
the complexity of the net as it maintain the adequate net
behavior in occurrence of interruptions and dynamic jumps.

4.2 “hidden-tools” Environment
The “hidden-tools” environment presents a new integra-

tion perspective combining existing Petri net tools and new
applications into a single environment.This environment is
based on the IBM-Eclipse platform, allowing the coupling
of new features easily.

In order to integrate this work to “hidden-tools”, the
“hidden-tools”-PCAF (Power Cost Analysis Framework) has
been developed. It implements functions such as codes enti-
ties identification (Patches and Clusters) and consumption
analysis. The results generated by the analysis are shown
in a GUI as charts and tables. Figure 6 depicts the PCAF
results. Additionally, these results may be presented as a
portable document format (pdf) file.

To reach the results, several operations are executed by
this environment (see Figure 5) . The “hidden-tools” be-
gins loading the machine-code file, which one is compiled
to a CPN model (see Section 4.1). After that, the model
is sent to a CPN Tools proxy through a TCP/IP channel.
Then, the proxy loads the model in the CPN Tools. Using
the Comms/CPN[6], the model establishes a TCP/IP con-
nection in order to interchange information with the proxy.
The model is analyzed on CPNTools so that to capture in-
formation about energy consumption pattern. Finally, the
proxy sends such information back to “hidden-tools”-PCAF,
which performs analysis and presents the results as already
discussed.

Figure 6: Tables presented in the user interface

Table 1: Consumption Pattern

Code Energy HCP Average Average
Options Cost Cost Power HCP Power

(J) (mJ) (mW) (mW)

matrix fs rv 1.05 490.36 43.72 42.59
matrix fs cf 1.14 465.02 41.69 30.57
matrix fs cb 0.91 474.7 43.73 40.17
matrix fsp rv 1.04 490.36 43.72 42.59
matrix fsp cf 1.14 465.02 41.69 30.57
matrix fsp cb 0.91 474.7 43.73 40.17

5. EXPERIMENTS AND RESULTS
This section presents the proposed framework evaluating

a matrix product example that was taken from The Dalton
Project‘s Benchmark, University of California Riverside 5.
As C compiler was used the C51 Keil compiler, a widespread
compiler for MSC51 architecture. The Keil compiler allows
nine optimization levels under two emphasis: favor size (fs)
and favor speed (fsp). The optimization selection works
in cumulative way: level 0 implements only constant fold-
ing technique, level 1 implement constant folding and dead
codes elimination, level 2 implements constant folding, dead
codes elimination and data overlaying, and so on. Due to
this, three optimization levels was chosen for analysis: con-
stant folding (cf), register variables (rv) and common block
subroutines (cb). Six binary-codes was analyzed, that was
generated by composing emphasis and level optimization.
The estimation was performed based on the AT89S8252
consumption-model constructed according to methodology
suggested in [9]. Table 1, Figure 7 and Figure 8 show the
consumption pattern captured by the “hidden-tools”-PCAF
environment. Figure 9 depict the more expressive segment
of Execution Profile, where a Loop-Patch and a Cluster can
be identified. Rolling the Execution Profile and the Con-
sumption Profile, from the user interface, the designer is
able to find out cost centers along the code. Additionally,
based on the proposed taxonomy and the code graphical
representation (the CPN model), the designer can figure
out Clusters control structure, being a support for codifica-
tion on Hardware Description Language (HDL). The Table
1 shows the best compiler optimization level: the common
block subroutines. Such optimization level provide the lowest
total consumptions (20.1 %) the highest time and consump-
tion percentage for its Highest Consumption Patch (HCP)-
40% and 52,17% respectively (see Figure 7 and Figure 8).
As result software-hardware migration should be applied on
matrix fs cb6. The HCP is at Cluster showed in Figure 9,
from instruction number 166 to number 250. Such migra-
tion reduces the code size in 29,9%. Additionally, observing
column 4 and 5 at Table 1, the designer can compare the
HCP power cost with code power cost.

6. CONCLUSION
This paper presented a framework for evaluating software

of embedded systems in order to software-hardware migra-
tion. This framework is focused on energy savings by mi-
gration of high consumption code segments to hardware.

5www.cs.ucr.edu/ dalton/i8051/i8051benchmarks/index.html
6For this example the compiler generates same binary-code
for both option: matrix fsp cb and matrix fs cb



Figure 9: The Highest Loop-Patch and Cluster present on the case study

Figure 7: Time percentage for Highest Consumption

Patch

Figure 8: HCP consumption percentage at the total

consumption

Such framework is integrated in the “hidden-tools” Envi-
ronment in order to perform power-aware analysis to be ap-
plied on embedded systems binary-codes. Based on such
analysis the designer can identify:(i)the best binary-code for
migration, from a set of possibles high-level compiler out-
puts,(ii) the best code sector, within such binary-code, for
mapping in hardware. The target software and processor ar-
chitecture are modeled together by a formal computational
model based on tokens, as a Coloured Petri Net. Due to
this formal model, processor capabilities and behaviors are
strictly translated into a set of rules and functions, defined
by Coloured Petri Net semantics. Such modeling allow the
usage of a set of widespread analysis technique available
on the CPN universe, such as simulation- and state space
exploration-driven techniques. The environment yielded is
termed “hidden-tools”-PCAF, providing a powerful resource
to explore binary-codes from the power-aware point of view.
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