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Abstract  
Due to difficulties in distributing a single global clock signal over 
increasingly large chip areas, a globally asynchronous, locally 
synchronous design is considered a promising technique in the system 
on a chip (SoC) era. In the context of today’s increasingly complex 
SoCs, there is a need for design methodologies that start at higher 
levels of abstraction. Much of the previous work has been devoted to 
design of asynchronous communication schemes such as mixed clock 
FIFOs and pausible clocks for globally asynchronous, locally 
synchronous systems, but at low levels of abstraction, such as circuit 
level.  To enable early design evaluation of such schemes, this paper 
proposes to use a SystemC-based modeling methodology for the 
asynchronous communication among various locally synchronous 
islands. The modeling framework encompasses various levels of 
abstraction and enables system-level validation of circuit or RT level 
hardware descriptions, as well as their impact on high-level design 
decisions.  

1 Introduction 
Due to increasing die sizes, higher clock speeds and high clock 
skews, future digital VLSI designs will require a paradigm shift 
from the globally synchronous design style. In addition, the 
integration of various IP (Intellectual Property) cores on complex 
systems on a chip requires a multitude of available clock 
frequencies on a single die. A globally asynchronous, locally 
synchronous design (GALS) paradigm enables such integration, by 
allowing for synchronous blocks to operate asynchronously with 
respect to each other. In such a scenario, not only the speed, but 
also the voltage of each block can be customized or chosen so as to 
meet the power and performance requirements of the target 
application. This design paradigm is also particularly attractive for 
a system-on-chip where circuit building blocks (or IP blocks) from 
a number of design houses are integrated onto a single chip.  
       Communication between the building blocks of a SoC is a 
complex problem, particularly when a range of clocking strategies 
has to be tailored to each building block in order to obtain a 
required performance within a power budget. Also, in the context 
of the increasing complexity of systems-on-chip (SoCs) and time-
to-market pressures, the design abstraction has to be raised to the 
system level to increase design productivity. Transaction level 
modeling [6], which is enabled and supported by system level 
languages such as SystemC, can be used to separate the 
computation components from the communication components. 
Communication can be modeled as channels, while transaction 
requests take place by calling the interface of these channel 
models. Unnecessary details of communication and computation 
can be hidden in a TLM and can be added later. This enables 
speeding up of simulation and allows for exploration and validation 
of design alternatives at a higher level of abstraction. 
1.1 Paper contributions 
      This paper addresses the problem of power and performance 
analysis of GALS based systems, using transaction level modeling, 
in which the computation components are modeled as processes 
(with or without cycle accurate representations) while the 
communication is modeled in a cycle accurate manner.  SystemC 
excels in its usefulness to model designs at system level, while still 
supporting synthesizable RT level hardware descriptions. Thus, a 
seamless refinement of a design can occur such that each part of 

the design is implemented independently, without resorting to 
changes of other parts of the design. This paper advances the state-
of-the-art by providing ways of using SystemC to model mixed 
clock communication channels of primarily two types: mixed clock 
FIFOs [2,3] and pausible clocks [4,5]. The computation processes 
are modeled as untimed algorithmic descriptions in a procedural 
language (such as C) that interface with the communication 
channel in a cycle accurate manner.  
     To this end, this paper introduces a system level methodology 
amenable for analyzing the power and performance characteristics 
of asynchronous/mixed clock communication interfaces that have 
already been designed and validated at circuit-level. A system 
level model of such interfaces built by abstracting these circuit 
level characteristics enables plug-and-play capabilities for these 
interfaces into any SoC application and provides the designer fast 
analysis of the communication overhead in terms of power and/or 
performance. The proposed system level modeling methodology 
also enables design exploration of these applications in terms of 
which communication interfaces or architectures are more suitable 
for deploying.  Since power is an important metric for SoC 
applications, providing reliable estimates for the power overhead 
introduced by various on-chip communication schemes on target 
real life SoC applications is of extreme importance, and is thus a 
main ingredient of the approach proposed herein. 
1.2 Paper Organization 

The rest of the paper is organized as follows. Section 2 presents 
related work. Section 3 introduces GALS based systems, while 
Section 4 describes specific GALS based communication 
architecture that we model in this paper. Section 5 shows how 
system level analysis would aid a system designer make design 
decisions based on power and performance. Section 6 shows the 
experimental results, while Section 7 concludes the paper with final 
remarks and directions for future research.   

2 Related Work 
Chapiro has first introduced and studied GALS systems in detail in 
his thesis [1]. His work covers metastability issues in GALS 
systems and outlines a stretchable clocking strategy which provides 
a mechanism for asynchronous communication. 

In GALS systems, the asynchronous modules have to 
communicate with each other asynchronously which may lead to 
metastability issues. Chelcea et al. [2] use mixed clock FIFOs as 
low latency communication mechanism between synchronous 
blocks. Cummings [3] uses a memory based mixed clock FIFO to 
communicate between different clock domains. We use his work 
and a pausible clocking scheme by Yun et al. [4] to model GALS 
communication interfaces at the system level. Mutterbasch et al. 
[5] have implemented asynchronous wrappers around synchronous 
blocks. Most of this existing work is done at the RTL or circuit 
level. Thus, there is a need for system level tools for analyzing 
these communication architectures, which we attempt to address in 
this paper.  Transaction level modeling [6] has been researched in 
the system level language and modeling area. The concept of 
channel, which enables separating communication from 
computation, has been introduced and discussed in [7]. [8] broadly 
describes the transaction leveling modeling features based on the 
channel concept and presents some design examples. 
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Figure 1. Mixed clock FIFO [3]                         Figure 2.   Pausible clock architecture [4] 

We use these transaction level concepts, but our focus is on 
GALS communication interfaces, which has not been looked into 
before. Various on-chip communication architectures, such as 
networks on chip (NoCs) have been recently introduced and 
studied [9,10] in multiple voltage/frequency island environments to 
achieve low power and high performance.  

3 GALS Systems 
Globally asynchronous locally synchronous systems may offer a 
solution for SoC implementations seeking good performance and 
low power consumption. Locally clocked building blocks can be 
integrated on a single chip via asynchronous interconnect between 
them. This may lead to the common problem of metastability due 
to non-synchronization conditions of data and clock signal. This 
can be crudely resolved by using a double latching mechanism [11] 
to allow for metastability resolution. However, such a mechanism 
introduces an additional latency in the circuit.  
     An alternative strategy is to stretch the clock when there is a 
risk of metastability [4]. Such a scheme relies on generating the 
clock from a delay line because such a clock is simple to stop by 
gating the clock pulse. Self-calibrating delay lines may be used to 
provide an accurate timing reference. In this paper, we use 
SystemC to model such a clock-pausing scheme and evaluate 
certain metrics of using such communication architecture in a 
simple producer consumer scheme as well as real life applications 
that may be implemented as a GALS based system-on-a-chip.  
     A second solution is to use a mixed clock FIFO to account for 
the burstiness of data exchanged between the producer and the 
consumer, as well as interface the two different clock domains. 
Several examples of such mixed clock FIFOs [2,3] exist in 
literature. We also use a SystemC modeling methodology for 
evaluating a mixed clock FIFO at the system level for studying its 
impact on power and performance of real life and synthetic 
applications.    

4 Communication Circuits and Architecture 
In this section we describe the implementation of the 
communication architecture for point-to-point interconnect 
between locally synchronous modules. We describe two such 
communication schemes: (I) a memory based mixed clock FIFO 
and (II) a pausible clocking scheme. 
4.1 Mixed Clock FIFO Architecture 
      In this case, we propose the use of a mixed clock FIFO for 
reading and writing data from and to locally clocked synchronous 
islands with different rates of producing or consuming data items. 
In the proposed scenario, we use a RAM based design for the 

FIFO, with read and write addresses being passed by the producer 
and the consumer modules. Figure 1 shows a detailed description 
of the logic level circuit for the mixed clock FIFO implementation. 
The FIFO memory buffer is a dual ported RAM module that is 
accessed by both the read and write clock domains. The 
asynchronous pointer comparison module (Asynchronous compare 
in Figure 1) is used to generate signals that control the assertion of 
the asynchronous full and empty status bits. This module only 
contains combinational comparison logic. The FIFO- wptr-&-full 
block in Figure 1 is synchronous to the write clock domain and 
contains the FIFO write pointer and full flag logic. Assertion of the 
afull_n signal is synchronous to the write clock domain since 
afull_n can only be asserted if the write pointer is incremented. 
However, the de-assertion of the afull_n signal happens when the 
read pointer is incremented which is asynchronous to the write 
clock. Thus we need a pair of latches to synchronize this signal to 
the write clock domain.  The same holds good for the FIFO-rptr-
&-empty logic block in Figure 1 that is synchronous to the read 
clock domain. Assertion of the aempty_n signal is synchronous to 
the read clock, but de-assertion of the signal is asynchronous to the 
read clock and must be passed through a double latch synchronizer. 
Thus the main overhead in a mixed clock FIFO can be attributed to 
the synchronization of the full and empty signals to the write and 
read logic blocks respectively. 
4.2 Pausible clocking based communication architecture 
      In this type of asynchronous communication between 
synchronous islands, we use a pausible clocking based scheme as 
proposed by Yun et al. [4]. Synchronous clock domains 
communicate with each other via completely asynchronous FIFO 
channels as opposed to mixed clock FIFOs as described in the 
earlier scheme.  The interfaces between the synchronous modules 
and the FIFO are pausible clocking control (PCC) circuits. A block 
diagram of the communication architecture is shown in Figure 2. 
The signals Aρ, Rρ, Aσ, Rσ are handshaking signals to request and 
acknowledge data transfers between the producer and consumer 
modules. The PCC is a scheme used to avoid synchronization 
failure by adjusting the local clock. A synchronization failure at the 
module interface occurs when the arrival times of an external 
signal transition and a sampling edge of the clock are 
indistinguishable by the sampling latch at the module boundary. In 
this case, pausing or stretching the local clock module when 
necessary circumvents the synchronization failure. The scheme 
uses a mutual exclusion element (ME) to force the temporal 
separation of the sampling edges of the clock and the external 
signal transitions. A ring oscillator is used instead of a crystal 
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oscillator in order to be able to adjust the duration of the off phases 
of the clock. As shown in Figure 2, a request event Rρ is 
forwarded to the mutual exclusion element (ME) via the 
asynchronous finite state machine (AFSM). If rclk is low when R1 
rises, then the ME immediately raises G1, which prompts the 
AFSM (algorithmic finite state machine) to generate an event on 
SRp. This event is eventually synchronized to sysclk, i.e., 
guaranteed not to induce a synchronization failure when sampled 
by the FSM.  
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    The important difference between the mixed clock FIFO 
architecture and the pausible clock based architecture is that the 
latter ensures that metastability does not occur, while the former 
has a very small (albeit, non-zero) probability of entering a 
metastable state depending on the time allowed during extra 
latching for synchronization purposes in the read and write logic 
blocks.  

5 System Level Analysis of GALS based SOCs 
Due to complexity incurred in distributing a single global clock 
across the entire chip area, and the varying power requirements for 
different functional blocks of system-on-chip applications, next 
generation systems will most certainly be implemented using 
multiple voltage/frequency islands [12]. Each such 
Voltage/Frequency Island (VFI) would have its own internal clock 
for its logic and powered by an off-chip or on-chip voltage source. 
This would enable designers to scale up or down the voltage and 
frequency of an on-chip module based on its performance 
requirements, thereby saving dynamic and static power. In this 
paper, we assume that an application is already logically 
partitioned into several on-chip synchronous modules 
communicating asynchronously with each other through GALS 
communication interfaces as described in the previous section. To 
this end, the proposed methodology relies on cycle-accurate models 
for the mixed-clock communication interfaces, validated against 
detailed, circuit level implementations. By using power and 
performance macro models validated against real implementations, 

we are thus able to provide highly reliable models for use at system 
level. 

Figure 3. SystemC/SPECTRE comparison of mixed clock FIFO (above) and pausible clock (below)

5.1 Modeling and Validation of GALS Interfaces 
    We have developed both SystemC models and complete circuit 
implementations of the mixed clock FIFO and pausible clock based 
communication interfaces. The circuit implementation is done 
using STMicroelectronics 130nm technology. SystemC enables 
modeling of these interfaces at various levels of abstraction. Thus, 
these models can be used at both RTL as well as transaction level 
depending on the stage of the design. Since SystemC is primarily 
used for modeling synchronous clock based systems, a completely 
asynchronous interface needs to be modeled and analyzed at the 
circuit level in order to extract the relevant delay parameters, which 
can be plugged into SystemC. To our knowledge, there has not 
been any similar effort in past literature to characterize such 
asynchronous interfaces in SystemC. Circuit-level accurate 
characterizations are used to validate and build the system-level 
models for the asynchronous interfaces. Figure 3 shows the 
SystemC and SPECTRE waveforms for a mixed clock FIFO [3] 
and pausible clock circuit [4]. The mixed clock FIFO has the write 
clock running at twice the frequency of the read clock.  This makes 
the wfull (write full) signal go high at time t=25ns and t=55ns 
respectively. For the pausible clock case, we run the producer and 
the consumer modules at 1.89 GHz and 1.47 GHz respectively. 
This causes a clock pause at the producer (signal sysclk2) at 
t=1.4ns. As described in Section 4.2, this is caused by arbitration 
between the clock signal and the acknowledgement signal received 
from the consumer. 
5.2 Metrics for Characterizing Impact of GALS Interfaces 
     In order to characterize at system level GALS based SoC 
applications, we need to define metrics relevant at both power and 
performance, as well as input parameters affecting these metrics. 
The most important metric is the throughput of the application. 
System level analysis of the application can not only allow 
designers to analyze the effect of system parameters such as FIFO 
sizing, producer rate and consumer rate on the throughput of the 
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application, but also enable them to do a cycle by cycle analysis of 
the throughput of the system.  
      For a mixed clock FIFO interface, we define a few metrics 
relevant to this type of GALS interface. The first one is related to 
the number of times an application experiences an additional clock 
cycle latency due to synchronization of the full/empty signals 
(NUM_FE_LATENCY) and what is the average duration of this 
latency in terms of clock cycles (AVG_FE_LATENCY). Such 
metrics enable designers to evaluate the performance penalty in 
using a mixed clock interface with respect to the single clock 
domain case.  
      In case of the pausible clock circuitry, two other metrics are 
relevant for its behavior and impact on overall performance or 
power. The first one is related to the number of times the clock 
signal of a synchronous module is paused (NUM_RW_PAUSES) 
and  the second is associated to the total latency incurred by such 
read-write pauses over a specified simulation time 
(TOT_RW_LATENCY). Again, such metrics enable the system 
level designer to estimate the performance penalty for a pausible 
clock based circuit and explore other GALS communication 
architectures. For the pausible clock metrics, we use latency values 
obtained from SPECTRE simulations of the pausible clock 
asynchronous circuitry and plug them into the SystemC simulation 
environment. Finally, in both cases, we also consider the ratio of 
communication cycles to the computation cycles for a particular 
application, which helps the designer to analyze whether the 
application is communication or computationally intensive.  
      Due to increasing clock frequencies and smaller device sizes, 
power is an equally important metric in SoC based applications. 
Since GALS based architectures incur an extra overhead in terms 
of asynchronous communication circuitry, it is useful to 
characterize the power consumption of the computation cores and 
the communication interfaces for a particular application. To this 
end, we also evaluate the power requirements of both the 
communication elements using circuit level simulation, as well the 
computational cores using an architectural simulator to compare 
the energy consumption in different architectures.  

6 Experimental Setup and Results 
In this section we describe case studies on synthetic, as well as real 
life applications, which can be implemented as heterogeneous 
system-on-chip applications. We implement the GALS based 
communication interfaces as SystemC modules with input and 
output ports which can be plugged into any application 
implemented in SystemC either at the behavioral or RT level.  
6.1 Synthetic Trace Case Study 
     The synthetic case studies are based on a simple producer 
consumer model, where the user can vary input parameters of the 
producer and consumer such as rate of production, rate of 
consumption, burst size of data, FIFO size and clock frequency of 
the producer and the consumer modules. The producer rate is 
defined as the probability that the producer will send a token to the 
consumer at a producer clock cycle (same definition holds for the 
consumer rate).  The burst size is defined as the number of data 
tokens transferred by the producer during one data transfer from 
the producer to the consumer. For the experiments related to 
synthetic applications, we varied the clock frequency of the 
producer module from 200 MHz to 300 MHz. The clock ratio 
between the producer and the consumer modules is defined as the 
ratio of the consumer clock frequency to the producer clock 
frequency. We varied the clock ratio from 0.3 to 5 in steps of 0.15, 
which allows us to examine various phase relationships between 
the producer and the consumer clock. We also vary the FIFO size 
between 4 and 16 to observe the impact of FIFO size on throughput 

and other performance related metrics. We vary the producer and 
consumer rate between 0.4 and 1, while the burst size is varied 
from 1 to 8. 
     We implemented both the mixed clock FIFO and the pausible 
clock circuits in ST Microelectronics 130 nm technology. We 
performed SPECTRE simulations in order to verify our SystemC 
simulation results and also to abstract the delay parameters for the 
asynchronous logic in the pausible clock circuit. Experimental 
results for the synthetic models are shown in Figures 4-10.  

Figures 4 and 5 show the impact of the clock ratio and FIFO 
size on the average throughput with the rates and burst size kept 
constant, in case of mixed clock FIFO and pausible clock based 
interfaces. We see an almost linear increase in throughput as the 
clock ratio increases, since this corresponds to an increase in the 
clock frequency of the consumer clock frequency, which translates 
to more data being read in the same period of time. Also we see 
that the curves saturate when the clock ratio reaches one. This 
happens because, after the consumer module operates at a faster 
clock frequency than the producer, there is no additional increase 
in throughput. There is a marginal increase in throughput due to 
increase in FIFO size when the producer and consumer operate at 
the same clock frequency. By analyzing the curves closely, we can 
see that the maximum impact of FIFO size on throughput occurs at 
a clock ratio of 0.9 to 1. For smaller values of clock ratio, the 
consumer module operates at a much slower rate than the producer 
and thus after an initial period of instability, the system reaches a 
steady state when the reads and writes occur according to the 
consumer clock frequency. For large values of clock ratio, the 
consumer is always much faster than the producer and thus the 
FIFO never gets full.  

Figure 6 shows the impact of clock ratio and FIFO size on the 
number of stalls in the producer due to synchronization of the full 
signal. As expected, the number of stalls is maximized when the 
consumer module runs at a much slower frequency than the 
producer, since the FIFO fills up quickly. Also, it is seen that the 
number of such stalls becomes higher with increasing producer 
clock frequency. Again, when the producer and consumer clock 
frequencies are nearly equal, an increase in FIFO size reduces the 
number of stalls since we have less instances of the FIFO filling 
up.   

Figure 7 shows the average duration of synchronizing the full 
signal of the producer with varying phase differences between the 
producer and consumer clocks (clock ratio). It can be seen that the 
number of synchronization cycles lies between 1 and 2, and is 
completely arbitrary depending on the phase difference between 
the producer and the consumer clocks. The phase difference 
between the clocks is dependent on the clock ratio between the 
producer and consumer clocks.  

Figures 8 and 9 show the distribution of the number of clock 
pauses and the total latency due to clock pauses in the producer 
with varying phase differences (clock ratios) between the producer 
and consumer clocks for different values of producer rate, 
consumer rate, burst sizes and FIFO sizes. We can see that the 
maximum number of pauses occurs between clock ratios of 0.5 and 
1. This kind of information may be very useful to decide which 
ratios of clock frequencies to avoid at an early stage of the GALS 
based design.  

Finally, Figure 10 shows the average power consumption for 
an eight bit four stage FIFO implementation, with varying clock 
ratios.  As the clock ratio increases, the consumer operates at a 
faster rate and the throughput starts increasing. Due to increasing 
throughput and increasing consumer frequency, power 
consumption increases.  It can be seen that the pausible clock 
consumes more power than the mixed clock FIFO because of its 



F ull La te nc y M ixed C lo ck  (N UM _ F E _LA T E N C Y )

-2000
0

2000
4000
6000
8000

10000

0 0.5 1 1.5 2 2.5 3 3.5

clock ratio

nu
m

be
r o

f w
rit

e 
fu

lls

fsize=4,wclk=210 fsize=4,wclk=300
fsize=8,wclk=210 fsize=8,wclk=300

Pow er Consum ption

0

500

1000

1500

2000

2500

0 1 2 3 4
clock rat io

Av
er

ag
e 

po
w

er
 (m

ic
ro

 
w

at
ts

)

mixed clock pausible clock

S ynthe t ic - thro ughput -paus ible  c lo c k

0

50

100

150

0 1 2 3 4

clock ratio

th
ro

ug
hp

ut
 (M

B/
se

c)

fsize=4,wclk=210 fsize=4,wclk=300
fsize=8,wclk=210 fsize=8,wclk=300

fsize=16,wclk=210 fsize=16,wclk=300

 5

complex asynchronous circuitry. However, it must be noted that 
the power number for the pausible clock circuitry includes the 
current drawn by the local ring oscillator clock. 
6.2 Real Application Case Study 
      The real life application under consideration is software defined 
radio [13], which is partitioned into five components - source, low 
pass filter (LPF), demodulator (DEMOD), equalizer (EQ). Each 
component is assumed to be implemented as a stand-alone 
application executing on a single processor as shown in Figure 11. 
The source module generates samples at a fixed rate (1 KHz), that 
are sent to the LPF node through a GALS based communication 
interface, which may be either a mixed clock FIFO, or a pausible 
clock interface. 
     We performed static profiling of each module on an in-house 
multi-core simulator Myrmigki [14], to obtain the computation 
cycles and power consumption using instruction level models of 
the Hitachi SH core. Figure 12 shows the impact of FIFO sizing on 
the communication cycles in each module. It is seen that there is 
some improvement in the equalizer node when the FIFO size is 
increased from 4 to 16, while the other modules do not show much 

improvement in terms communication latency. Table 1 shows the 
ratio of communication to computation cycles in each module of 
the software radio system-on-chip for processing one sample. The 
number of communication cycles is negligible compared to the 
computation workload in this particular application. Table 1 also 

shows the breakdown of NUM_FE_LATENCY and 
NUM_RW_PAUSES by each module of the software radio 
application. The majority of the full empty stalls and read-write 
pauses occur in the LPF and EQ modules since these operate at a 
larger frequency than the other modules of the application. 

Figure 5. Average throughput for pausible clock circuit
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Figure 7. Average duration of synchronization stall in producer
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Figure 8. Number of clock pauses in producer     Figure 9. Total clock pause time in producer Figure 10. Power consumption in interfaces

Figure 11. Software radio application  
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         Figure 13 shows the energy consumption per sample in the 
communication interfaces between the components as well as the 
computational IPs in the system-on-chip. 1  The pausible clock 
circuit consumes more average power than the mixed clock FIFO 
interfaces as can be seen in the figure. The energy consumption in 
the interfaces between the computational elements depends on the 
clock ratio of the computational IPs and the time for sending and 
receiving one sample, which corresponds to 500ns at a source 
frequency of 1 KHz. The energy consumption in the computational 
elements which are Hitachi SH3 cores in this case is much larger 
compared to the communication energy consumption. The 
computation energy is measured using instruction level power 
estimation in Myrmigki [14]. The power numbers for the 
communication elements is obtained from SPECTRE simulations 
of the mixed clock FIFO and pausible clock circuits.   
 
Module  computation/ 

comm. cycles 
NUM_RW_PAUSES NUM_FE_LATENCY 

LPF 61194/583 102 338 
DEMOD 33086/254 0 3 
EQ 463190/3501 145 255 
SINK 32736/127 0 1 
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                      Table 1. Metrics for Software Radio application 
 

 From a performance perspective, both the mixed clock FIFO 
and pausible clock circuits show similar throughput characteristics. 
However, the designer must keep in mind that while the pausible 
clock design eliminates metastability, it introduces undesirable 
circuit level characteristics like clock jitter due to pauses in the 
local ring oscillator. From a power perspective, the extra logic in 
the asynchronous circuit elements in the pausible clock circuit burn 
more power compared to the relatively simple decoder and full 
empty logic in the mixed clock FIFO.    

7 Conclusion 
This paper describes a system level methodology to evaluate the 
power and performance of GALS based interconnect systems. We 
evaluate two main interconnect architectures namely a mixed clock 
FIFO and a pausible clock based scheme. A system level model of 
these interconnect architectures allows the system level designer to 
design an application at the transaction or RTL level using system 
level models of such point to point asynchronous interconnect 
structures. Such system level characterization of GALS based 
interconnect reduces simulation time of an application by orders of 

                                                             
1 Figure 13 (communication energy) shows energy in picoJoules, while Figure 10 shows 
power in microWatts. For energy, multiplying power with time in nanoseconds gives us 
picoJoules. 

magnitude compared to a Verilog or SPICE simulation. Further, for 
asynchronous circuits, circuit level delay parameters can be 
abstracted and plugged into re-usable SystemC models, thereby 
providing a vertical integration from the circuit to the system level.  
Future direction includes developing system level models of GALS 
based bus interconnects and building a library of such interconnect 
structures for easy use of the system level developer. 
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