
System Level Power and Performance Modeling of GALS Point-to-point
Communication Interfaces

Abstract
Due to difficulties in distributing a single global clock signal over
increasingly large chip areas, a globally asynchronous, locally
synchronous design is considered a promising technique in the system
on a chip (SoC) era. In the context of today’s increasingly complex
SoCs, there is a need for design methodologies that start at higher
levels of abstraction. Much of the previous work has been devoted to
design of asynchronous communication schemes such as mixed clock
FIFOs and pausible clocks for globally asynchronous, locally
synchronous systems, but at low levels of abstraction, such as circuit
level. To enable early design evaluation of such schemes, this paper
proposes to use a SystemC-based modeling methodology for the
asynchronous communication among various locally synchronous
islands. The modeling framework encompasses various levels of
abstraction and enables system-level validation of circuit or RT level
hardware descriptions, as well as their impact on high-level design
decisions.

1 Introduction
Due to increasing die sizes, higher clock speeds and high clock
skews, future digital VLSI designs will require a paradigm shift
from the globally synchronous design style. In addition, the
integration of various IP (Intellectual Property) cores on complex
systems on a chip requires a multitude of available clock
frequencies on a single die. A globally asynchronous, locally
synchronous design (GALS) paradigm enables such integration, by
allowing for synchronous blocks to operate asynchronously with
respect to each other. In such a scenario, not only the speed, but
also the voltage of each block can be customized or chosen so as to
meet the power and performance requirements of the target
application. This design paradigm is also particularly attractive for
a system-on-chip where circuit building blocks (or IP blocks) from
a number of design houses are integrated onto a single chip.
 Communication between the building blocks of a SoC is a
complex problem, particularly when a range of clocking strategies
has to be tailored to each building block in order to obtain a
required performance within a power budget. Also, in the context
of the increasing complexity of systems-on-chip (SoCs) and time-
to-market pressures, the design abstraction has to be raised to the
system level to increase design productivity. Transaction level
modeling [6], which is enabled and supported by system level
languages such as SystemC, can be used to separate the
computation components from the communication components.
Communication can be modeled as channels, while transaction
requests take place by calling the interface of these channel
models. Unnecessary details of communication and computation
can be hidden in a TLM and can be added later. This enables
speeding up of simulation and allows for exploration and validation
of design alternatives at a higher level of abstraction.
1.1 Paper contributions
 This paper addresses the problem of power and performance
analysis of GALS based systems, using transaction level modeling,
in which the computation components are modeled as processes
(with or without cycle accurate representations) while the
communication is modeled in a cycle accurate manner. SystemC
excels in its usefulness to model designs at system level, while still
supporting synthesizable RT level hardware descriptions. Thus, a
seamless refinement of a design can occur such that each part of

the design is implemented independently, without resorting to
changes of other parts of the design. This paper advances the state-
of-the-art by providing ways of using SystemC to model mixed
clock communication channels of primarily two types: mixed clock
FIFOs [2,3] and pausible clocks [4,5]. The computation processes
are modeled as untimed algorithmic descriptions in a procedural
language (such as C) that interface with the communication
channel in a cycle accurate manner.
 To this end, this paper introduces a system level methodology
amenable for analyzing the power and performance characteristics
of asynchronous/mixed clock communication interfaces that have
already been designed and validated at circuit-level. A system
level model of such interfaces built by abstracting these circuit
level characteristics enables plug-and-play capabilities for these
interfaces into any SoC application and provides the designer fast
analysis of the communication overhead in terms of power and/or
performance. The proposed system level modeling methodology
also enables design exploration of these applications in terms of
which communication interfaces or architectures are more suitable
for deploying. Since power is an important metric for SoC
applications, providing reliable estimates for the power overhead
introduced by various on-chip communication schemes on target
real life SoC applications is of extreme importance, and is thus a
main ingredient of the approach proposed herein.
1.2 Paper Organization

The rest of the paper is organized as follows. Section 2 presents
related work. Section 3 introduces GALS based systems, while
Section 4 describes specific GALS based communication
architecture that we model in this paper. Section 5 shows how
system level analysis would aid a system designer make design
decisions based on power and performance. Section 6 shows the
experimental results, while Section 7 concludes the paper with final
remarks and directions for future research.

2 Related Work
Chapiro has first introduced and studied GALS systems in detail in
his thesis [1]. His work covers metastability issues in GALS
systems and outlines a stretchable clocking strategy which provides
a mechanism for asynchronous communication.

In GALS systems, the asynchronous modules have to
communicate with each other asynchronously which may lead to
metastability issues. Chelcea et al. [2] use mixed clock FIFOs as
low latency communication mechanism between synchronous
blocks. Cummings [3] uses a memory based mixed clock FIFO to
communicate between different clock domains. We use his work
and a pausible clocking scheme by Yun et al. [4] to model GALS
communication interfaces at the system level. Mutterbasch et al.
[5] have implemented asynchronous wrappers around synchronous
blocks. Most of this existing work is done at the RTL or circuit
level. Thus, there is a need for system level tools for analyzing
these communication architectures, which we attempt to address in
this paper. Transaction level modeling [6] has been researched in
the system level language and modeling area. The concept of
channel, which enables separating communication from
computation, has been introduced and discussed in [7]. [8] broadly
describes the transaction leveling modeling features based on the
channel concept and presents some design examples.

 1

Figure 1. Mixed clock FIFO [3] Figure 2. Pausible clock architecture [4]

We use these transaction level concepts, but our focus is on
GALS communication interfaces, which has not been looked into
before. Various on-chip communication architectures, such as
networks on chip (NoCs) have been recently introduced and
studied [9,10] in multiple voltage/frequency island environments to
achieve low power and high performance.

3 GALS Systems
Globally asynchronous locally synchronous systems may offer a
solution for SoC implementations seeking good performance and
low power consumption. Locally clocked building blocks can be
integrated on a single chip via asynchronous interconnect between
them. This may lead to the common problem of metastability due
to non-synchronization conditions of data and clock signal. This
can be crudely resolved by using a double latching mechanism [11]
to allow for metastability resolution. However, such a mechanism
introduces an additional latency in the circuit.
 An alternative strategy is to stretch the clock when there is a
risk of metastability [4]. Such a scheme relies on generating the
clock from a delay line because such a clock is simple to stop by
gating the clock pulse. Self-calibrating delay lines may be used to
provide an accurate timing reference. In this paper, we use
SystemC to model such a clock-pausing scheme and evaluate
certain metrics of using such communication architecture in a
simple producer consumer scheme as well as real life applications
that may be implemented as a GALS based system-on-a-chip.
 A second solution is to use a mixed clock FIFO to account for
the burstiness of data exchanged between the producer and the
consumer, as well as interface the two different clock domains.
Several examples of such mixed clock FIFOs [2,3] exist in
literature. We also use a SystemC modeling methodology for
evaluating a mixed clock FIFO at the system level for studying its
impact on power and performance of real life and synthetic
applications.

4 Communication Circuits and Architecture
In this section we describe the implementation of the
communication architecture for point-to-point interconnect
between locally synchronous modules. We describe two such
communication schemes: (I) a memory based mixed clock FIFO
and (II) a pausible clocking scheme.
4.1 Mixed Clock FIFO Architecture
 In this case, we propose the use of a mixed clock FIFO for
reading and writing data from and to locally clocked synchronous
islands with different rates of producing or consuming data items.
In the proposed scenario, we use a RAM based design for the

FIFO, with read and write addresses being passed by the producer
and the consumer modules. Figure 1 shows a detailed description
of the logic level circuit for the mixed clock FIFO implementation.
The FIFO memory buffer is a dual ported RAM module that is
accessed by both the read and write clock domains. The
asynchronous pointer comparison module (Asynchronous compare
in Figure 1) is used to generate signals that control the assertion of
the asynchronous full and empty status bits. This module only
contains combinational comparison logic. The FIFO- wptr-&-full
block in Figure 1 is synchronous to the write clock domain and
contains the FIFO write pointer and full flag logic. Assertion of the
afull_n signal is synchronous to the write clock domain since
afull_n can only be asserted if the write pointer is incremented.
However, the de-assertion of the afull_n signal happens when the
read pointer is incremented which is asynchronous to the write
clock. Thus we need a pair of latches to synchronize this signal to
the write clock domain. The same holds good for the FIFO-rptr-
&-empty logic block in Figure 1 that is synchronous to the read
clock domain. Assertion of the aempty_n signal is synchronous to
the read clock, but de-assertion of the signal is asynchronous to the
read clock and must be passed through a double latch synchronizer.
Thus the main overhead in a mixed clock FIFO can be attributed to
the synchronization of the full and empty signals to the write and
read logic blocks respectively.
4.2 Pausible clocking based communication architecture
 In this type of asynchronous communication between
synchronous islands, we use a pausible clocking based scheme as
proposed by Yun et al. [4]. Synchronous clock domains
communicate with each other via completely asynchronous FIFO
channels as opposed to mixed clock FIFOs as described in the
earlier scheme. The interfaces between the synchronous modules
and the FIFO are pausible clocking control (PCC) circuits. A block
diagram of the communication architecture is shown in Figure 2.
The signals Aρ, Rρ, Aσ, Rσ are handshaking signals to request and
acknowledge data transfers between the producer and consumer
modules. The PCC is a scheme used to avoid synchronization
failure by adjusting the local clock. A synchronization failure at the
module interface occurs when the arrival times of an external
signal transition and a sampling edge of the clock are
indistinguishable by the sampling latch at the module boundary. In
this case, pausing or stretching the local clock module when
necessary circumvents the synchronization failure. The scheme
uses a mutual exclusion element (ME) to force the temporal
separation of the sampling edges of the clock and the external
signal transitions. A ring oscillator is used instead of a crystal

 2

oscillator in order to be able to adjust the duration of the off phases
of the clock. As shown in Figure 2, a request event Rρ is
forwarded to the mutual exclusion element (ME) via the
asynchronous finite state machine (AFSM). If rclk is low when R1
rises, then the ME immediately raises G1, which prompts the
AFSM (algorithmic finite state machine) to generate an event on
SRp. This event is eventually synchronized to sysclk, i.e.,
guaranteed not to induce a synchronization failure when sampled
by the FSM.

 3

 The important difference between the mixed clock FIFO
architecture and the pausible clock based architecture is that the
latter ensures that metastability does not occur, while the former
has a very small (albeit, non-zero) probability of entering a
metastable state depending on the time allowed during extra
latching for synchronization purposes in the read and write logic
blocks.

5 System Level Analysis of GALS based SOCs
Due to complexity incurred in distributing a single global clock
across the entire chip area, and the varying power requirements for
different functional blocks of system-on-chip applications, next
generation systems will most certainly be implemented using
multiple voltage/frequency islands [12]. Each such
Voltage/Frequency Island (VFI) would have its own internal clock
for its logic and powered by an off-chip or on-chip voltage source.
This would enable designers to scale up or down the voltage and
frequency of an on-chip module based on its performance
requirements, thereby saving dynamic and static power. In this
paper, we assume that an application is already logically
partitioned into several on-chip synchronous modules
communicating asynchronously with each other through GALS
communication interfaces as described in the previous section. To
this end, the proposed methodology relies on cycle-accurate models
for the mixed-clock communication interfaces, validated against
detailed, circuit level implementations. By using power and
performance macro models validated against real implementations,

we are thus able to provide highly reliable models for use at system
level.

Figure 3. SystemC/SPECTRE comparison of mixed clock FIFO (above) and pausible clock (below)

5.1 Modeling and Validation of GALS Interfaces
 We have developed both SystemC models and complete circuit
implementations of the mixed clock FIFO and pausible clock based
communication interfaces. The circuit implementation is done
using STMicroelectronics 130nm technology. SystemC enables
modeling of these interfaces at various levels of abstraction. Thus,
these models can be used at both RTL as well as transaction level
depending on the stage of the design. Since SystemC is primarily
used for modeling synchronous clock based systems, a completely
asynchronous interface needs to be modeled and analyzed at the
circuit level in order to extract the relevant delay parameters, which
can be plugged into SystemC. To our knowledge, there has not
been any similar effort in past literature to characterize such
asynchronous interfaces in SystemC. Circuit-level accurate
characterizations are used to validate and build the system-level
models for the asynchronous interfaces. Figure 3 shows the
SystemC and SPECTRE waveforms for a mixed clock FIFO [3]
and pausible clock circuit [4]. The mixed clock FIFO has the write
clock running at twice the frequency of the read clock. This makes
the wfull (write full) signal go high at time t=25ns and t=55ns
respectively. For the pausible clock case, we run the producer and
the consumer modules at 1.89 GHz and 1.47 GHz respectively.
This causes a clock pause at the producer (signal sysclk2) at
t=1.4ns. As described in Section 4.2, this is caused by arbitration
between the clock signal and the acknowledgement signal received
from the consumer.
5.2 Metrics for Characterizing Impact of GALS Interfaces
 In order to characterize at system level GALS based SoC
applications, we need to define metrics relevant at both power and
performance, as well as input parameters affecting these metrics.
The most important metric is the throughput of the application.
System level analysis of the application can not only allow
designers to analyze the effect of system parameters such as FIFO
sizing, producer rate and consumer rate on the throughput of the

 4

application, but also enable them to do a cycle by cycle analysis of
the throughput of the system.
 For a mixed clock FIFO interface, we define a few metrics
relevant to this type of GALS interface. The first one is related to
the number of times an application experiences an additional clock
cycle latency due to synchronization of the full/empty signals
(NUM_FE_LATENCY) and what is the average duration of this
latency in terms of clock cycles (AVG_FE_LATENCY). Such
metrics enable designers to evaluate the performance penalty in
using a mixed clock interface with respect to the single clock
domain case.
 In case of the pausible clock circuitry, two other metrics are
relevant for its behavior and impact on overall performance or
power. The first one is related to the number of times the clock
signal of a synchronous module is paused (NUM_RW_PAUSES)
and the second is associated to the total latency incurred by such
read-write pauses over a specified simulation time
(TOT_RW_LATENCY). Again, such metrics enable the system
level designer to estimate the performance penalty for a pausible
clock based circuit and explore other GALS communication
architectures. For the pausible clock metrics, we use latency values
obtained from SPECTRE simulations of the pausible clock
asynchronous circuitry and plug them into the SystemC simulation
environment. Finally, in both cases, we also consider the ratio of
communication cycles to the computation cycles for a particular
application, which helps the designer to analyze whether the
application is communication or computationally intensive.
 Due to increasing clock frequencies and smaller device sizes,
power is an equally important metric in SoC based applications.
Since GALS based architectures incur an extra overhead in terms
of asynchronous communication circuitry, it is useful to
characterize the power consumption of the computation cores and
the communication interfaces for a particular application. To this
end, we also evaluate the power requirements of both the
communication elements using circuit level simulation, as well the
computational cores using an architectural simulator to compare
the energy consumption in different architectures.

6 Experimental Setup and Results
In this section we describe case studies on synthetic, as well as real
life applications, which can be implemented as heterogeneous
system-on-chip applications. We implement the GALS based
communication interfaces as SystemC modules with input and
output ports which can be plugged into any application
implemented in SystemC either at the behavioral or RT level.
6.1 Synthetic Trace Case Study
 The synthetic case studies are based on a simple producer
consumer model, where the user can vary input parameters of the
producer and consumer such as rate of production, rate of
consumption, burst size of data, FIFO size and clock frequency of
the producer and the consumer modules. The producer rate is
defined as the probability that the producer will send a token to the
consumer at a producer clock cycle (same definition holds for the
consumer rate). The burst size is defined as the number of data
tokens transferred by the producer during one data transfer from
the producer to the consumer. For the experiments related to
synthetic applications, we varied the clock frequency of the
producer module from 200 MHz to 300 MHz. The clock ratio
between the producer and the consumer modules is defined as the
ratio of the consumer clock frequency to the producer clock
frequency. We varied the clock ratio from 0.3 to 5 in steps of 0.15,
which allows us to examine various phase relationships between
the producer and the consumer clock. We also vary the FIFO size
between 4 and 16 to observe the impact of FIFO size on throughput

and other performance related metrics. We vary the producer and
consumer rate between 0.4 and 1, while the burst size is varied
from 1 to 8.
 We implemented both the mixed clock FIFO and the pausible
clock circuits in ST Microelectronics 130 nm technology. We
performed SPECTRE simulations in order to verify our SystemC
simulation results and also to abstract the delay parameters for the
asynchronous logic in the pausible clock circuit. Experimental
results for the synthetic models are shown in Figures 4-10.

Figures 4 and 5 show the impact of the clock ratio and FIFO
size on the average throughput with the rates and burst size kept
constant, in case of mixed clock FIFO and pausible clock based
interfaces. We see an almost linear increase in throughput as the
clock ratio increases, since this corresponds to an increase in the
clock frequency of the consumer clock frequency, which translates
to more data being read in the same period of time. Also we see
that the curves saturate when the clock ratio reaches one. This
happens because, after the consumer module operates at a faster
clock frequency than the producer, there is no additional increase
in throughput. There is a marginal increase in throughput due to
increase in FIFO size when the producer and consumer operate at
the same clock frequency. By analyzing the curves closely, we can
see that the maximum impact of FIFO size on throughput occurs at
a clock ratio of 0.9 to 1. For smaller values of clock ratio, the
consumer module operates at a much slower rate than the producer
and thus after an initial period of instability, the system reaches a
steady state when the reads and writes occur according to the
consumer clock frequency. For large values of clock ratio, the
consumer is always much faster than the producer and thus the
FIFO never gets full.

Figure 6 shows the impact of clock ratio and FIFO size on the
number of stalls in the producer due to synchronization of the full
signal. As expected, the number of stalls is maximized when the
consumer module runs at a much slower frequency than the
producer, since the FIFO fills up quickly. Also, it is seen that the
number of such stalls becomes higher with increasing producer
clock frequency. Again, when the producer and consumer clock
frequencies are nearly equal, an increase in FIFO size reduces the
number of stalls since we have less instances of the FIFO filling
up.

Figure 7 shows the average duration of synchronizing the full
signal of the producer with varying phase differences between the
producer and consumer clocks (clock ratio). It can be seen that the
number of synchronization cycles lies between 1 and 2, and is
completely arbitrary depending on the phase difference between
the producer and the consumer clocks. The phase difference
between the clocks is dependent on the clock ratio between the
producer and consumer clocks.

Figures 8 and 9 show the distribution of the number of clock
pauses and the total latency due to clock pauses in the producer
with varying phase differences (clock ratios) between the producer
and consumer clocks for different values of producer rate,
consumer rate, burst sizes and FIFO sizes. We can see that the
maximum number of pauses occurs between clock ratios of 0.5 and
1. This kind of information may be very useful to decide which
ratios of clock frequencies to avoid at an early stage of the GALS
based design.

Finally, Figure 10 shows the average power consumption for
an eight bit four stage FIFO implementation, with varying clock
ratios. As the clock ratio increases, the consumer operates at a
faster rate and the throughput starts increasing. Due to increasing
throughput and increasing consumer frequency, power
consumption increases. It can be seen that the pausible clock
consumes more power than the mixed clock FIFO because of its

F ull La te nc y M ixed C lo ck (N UM _ F E _LA T E N C Y)

-2000
0

2000
4000
6000
8000

10000

0 0.5 1 1.5 2 2.5 3 3.5

clock ratio

nu
m

be
r o

f w
rit

e
fu

lls

fsize=4,wclk=210 fsize=4,wclk=300
fsize=8,wclk=210 fsize=8,wclk=300

Pow er Consum ption

0

500

1000

1500

2000

2500

0 1 2 3 4
clock rat io

Av
er

ag
e

po
w

er
 (m

ic
ro

w

at
ts

)

mixed clock pausible clock

S ynthe t ic - thro ughput -paus ible c lo c k

0

50

100

150

0 1 2 3 4

clock ratio

th
ro

ug
hp

ut
 (M

B/
se

c)

fsize=4,wclk=210 fsize=4,wclk=300
fsize=8,wclk=210 fsize=8,wclk=300

fsize=16,wclk=210 fsize=16,wclk=300

 5

complex asynchronous circuitry. However, it must be noted that
the power number for the pausible clock circuitry includes the
current drawn by the local ring oscillator clock.
6.2 Real Application Case Study
 The real life application under consideration is software defined
radio [13], which is partitioned into five components - source, low
pass filter (LPF), demodulator (DEMOD), equalizer (EQ). Each
component is assumed to be implemented as a stand-alone
application executing on a single processor as shown in Figure 11.
The source module generates samples at a fixed rate (1 KHz), that
are sent to the LPF node through a GALS based communication
interface, which may be either a mixed clock FIFO, or a pausible
clock interface.
 We performed static profiling of each module on an in-house
multi-core simulator Myrmigki [14], to obtain the computation
cycles and power consumption using instruction level models of
the Hitachi SH core. Figure 12 shows the impact of FIFO sizing on
the communication cycles in each module. It is seen that there is
some improvement in the equalizer node when the FIFO size is
increased from 4 to 16, while the other modules do not show much

improvement in terms communication latency. Table 1 shows the
ratio of communication to computation cycles in each module of
the software radio system-on-chip for processing one sample. The
number of communication cycles is negligible compared to the
computation workload in this particular application. Table 1 also

shows the breakdown of NUM_FE_LATENCY and
NUM_RW_PAUSES by each module of the software radio
application. The majority of the full empty stalls and read-write
pauses occur in the LPF and EQ modules since these operate at a
larger frequency than the other modules of the application.

Figure 5. Average throughput for pausible clock circuit

M ixed Clock F IFO latency (AVG_FE_LATENCY)

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5

clo ck ratio
av

er
ag

e
w

rit
e

cl
oc

k
cy

cl
es

(la

te
nc

y)

S ynthe t ic -T hro ughput -M ixed C lo c k F IF O

0

50

100

150

0 1 2 3 4

clock ratio

th
ro

ug
hp

ut
 (M

B/
se

c)

fsize=4,wclk=210 fsize=4,wclk=300
fsize=8,wclk=210 fsize=8,wclk=300

fsize=16,wclk=210 fsize=16,wclk=300

Figure 4. Average throughput for mixed clock FIFO

Figure 7. Average duration of synchronization stall in producer

P ausible Clock write pauses
(NUM _RW_P AUSES)

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4
clock ratio

nu
m

be
r o

f w
rit

e
pa

us
es

Pausib le C lo ck wr i t e p ause t ime
(T OT _ R W _ LA T EN C Y)

0

5

10

15

20

25

30

35

0 1 2 3 4

clo ck ratio

w
rit

e
pa

us
e

la
te

nc
y

(n
s)

Figure 6. Number of synchronization stalls in producer

Figure 8. Number of clock pauses in producer Figure 9. Total clock pause time in producer Figure 10. Power consumption in interfaces

Figure 11. Software radio application

Sw radio-com m unication cycles

0

500

1000

1500

2000

2500

3000

3500

4000

lpf demod eq sink

nu
m

be
r o

f c
yc

le
s

f size=4 fsize=8
fsize=16

Com putation energy/sam ple

0
100
200
300
400
500
600
700
800
900

lpf demod eq sink

E
ne

rg
y

(m
ic

ro
J)

Com m unication energy/sam ple

0

200

400

600

800

1000

1200

1400

lpf-demo d demo d-eq eq-sink

E
ne

rg
y

(p
ic

o
J)

m ixed-clo ck pausible clo ck

Figure 13. Computation and Communication energy in software radio Figure 12. Impact of FIFO size on cycles

 Figure 13 shows the energy consumption per sample in the
communication interfaces between the components as well as the
computational IPs in the system-on-chip. 1 The pausible clock
circuit consumes more average power than the mixed clock FIFO
interfaces as can be seen in the figure. The energy consumption in
the interfaces between the computational elements depends on the
clock ratio of the computational IPs and the time for sending and
receiving one sample, which corresponds to 500ns at a source
frequency of 1 KHz. The energy consumption in the computational
elements which are Hitachi SH3 cores in this case is much larger
compared to the communication energy consumption. The
computation energy is measured using instruction level power
estimation in Myrmigki [14]. The power numbers for the
communication elements is obtained from SPECTRE simulations
of the mixed clock FIFO and pausible clock circuits.

Module computation/

comm. cycles
NUM_RW_PAUSES NUM_FE_LATENCY

LPF 61194/583 102 338
DEMOD 33086/254 0 3
EQ 463190/3501 145 255
SINK 32736/127 0 1

 6

 Table 1. Metrics for Software Radio application

 From a performance perspective, both the mixed clock FIFO
and pausible clock circuits show similar throughput characteristics.
However, the designer must keep in mind that while the pausible
clock design eliminates metastability, it introduces undesirable
circuit level characteristics like clock jitter due to pauses in the
local ring oscillator. From a power perspective, the extra logic in
the asynchronous circuit elements in the pausible clock circuit burn
more power compared to the relatively simple decoder and full
empty logic in the mixed clock FIFO.

7 Conclusion
This paper describes a system level methodology to evaluate the
power and performance of GALS based interconnect systems. We
evaluate two main interconnect architectures namely a mixed clock
FIFO and a pausible clock based scheme. A system level model of
these interconnect architectures allows the system level designer to
design an application at the transaction or RTL level using system
level models of such point to point asynchronous interconnect
structures. Such system level characterization of GALS based
interconnect reduces simulation time of an application by orders of

1 Figure 13 (communication energy) shows energy in picoJoules, while Figure 10 shows
power in microWatts. For energy, multiplying power with time in nanoseconds gives us
picoJoules.

magnitude compared to a Verilog or SPICE simulation. Further, for
asynchronous circuits, circuit level delay parameters can be
abstracted and plugged into re-usable SystemC models, thereby
providing a vertical integration from the circuit to the system level.
Future direction includes developing system level models of GALS
based bus interconnects and building a library of such interconnect
structures for easy use of the system level developer.

8 References
 [1] D.M. Chapiro, “Globally Asynchronous Locally Synchronous Systems”,

PhD Thesis, Stanford University, 1984.
[2] T. Chelcea, S.M. Nowick, “Robust Interfaces for Mixed Timing Systems

with Application to Latency Insensitive Protocols”, Proceedings of IEEE
Design Automation Conference, June 2001,” Las Vegas, Nevada.

[3] C.E. Cummings, “Simulation and Synthesis Techniques for Asynchronous
FIFO design,” SNUG 2002, San Jose, CA.

[4] K. Yun, R..P. Donhue, “Pausible Clocking: A First Step Toward
Heterogeneous Systems”, Proceedings of International Conference on
Computer Design, October 1996, Austin, TX.

 [5] J. Muttersbach, T. Villiger, and W. Fichtner., “Practical Design of Globally
Asynchronous Locally Synchronous Systems,” Proceedings of International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
April 2000.

 [6] L. Cai, D. Gajski, “Transactional Level Modeling: An Overview,”
Proceedings of IEEE/ACM International Conference on Hardware/Software
Codesign and System Synthesis, October 2003, Newport Beach, CA.

 [7] D.D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao, “SpecC:
Specification Language and Methodology,” Kluwer Academic Publishers,
March 2000.

 [8] T. Groker et al., “System Design with SystemC,” Kluwer Academic
Publishers, 2002.

 [9] W. Dally, B. Towles, “Route Packets, not wires: On chip interconnection
networks,” in Proceedings of ACM/IEEE Design Automation Conference,
June 2001.

 [10] T. Dumitras, S. Kerner, R. Marculescu, “Enabling On-chip Diversity
through Architectural Communication Design,” Proceedings of ACM/IEEE
Asia-Pacific Design Automation Conference,” Tokyo, Japan, January 2004.

 [11] R. Ginosar, “Fourteen Ways to Fool your synchronizer,” Proceedings of
International Symposium on Advanced Research in Asynchronous Circuits
and Systems, April 2003.

 [12] K.Niyogi, D. Marculescu, “Speed and Voltage Selection for GALS Systems
based on Voltage Frequency Islands,”, Proceedings of the ACM/IEEE
Asia-Pacific Design Automation Conference,” China, January 2005.

 [13] B. D. Van Veen and K. M. Buckley, “ Beamforming: a versatile approach
to spatial filtering,” IEEE ASSP Magazine, vol.5, no.2, pp.4-24, April
1988.

 [14] P. Stanley-Marbell, M. Hsiao, “Fast Flexible Cycle Accurate Energy
Estimation,” ACM/IEEE International Symposium of Low Power
Electronics and Design, August 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

