
COMB: COmbined Memory and Bus partitioning for SoC architectures.

Abstract

There has been a continued proliferation in the demand
for application specific System on Chip Cores in the
recent years. Meeting the power budget constraint
continues to be a major challenge for the designers
architecting such systems. In this work, we demonstrate
that simultaneous partitioning of the bus and memory
subsystem into smaller segments can be an effective
mechanism for reducing the energy consumption of a
SoC. We present a genetic algorithm based search
mechanism to determine a system configuration that is
energy-efficient and validate the effectiveness of the
configuration using a cycle-accurate virtual platform for
a multiprocessor SoC. Our results using various
applications shows that the proposed approach gives
significant energy savings and accentuates the benefits
of previously proposed bus and memory partitioning
schemes applied individually or in combination.

1. Introduction

There is a continued demand for small form-factor
devices that incorporate an increasing number
functionality on a single chip. Consequently, current
system-on-chips (SoC) integrate millions of transistors
and multiple cores on the same chip. Further, they use
high clock speeds to meet the increasing demands of the
applications. These trends have imposed a severe
challenge for SoC system designers in meeting the
power budget permitted for the design. Higher power
consumption is detrimental in multiple ways including
increased package and cooling costs and shorter life-
time between battery charges.

Architectural level design decisions can have a
significant influence on the power consumption
characteristics of a SoC. Due to the need to support
interaction between the multiple cores, the interconnect
structure is a vital component in the SoC design.
Further, current SoC structures support from tens to
hundreds of different memory components.
Consequently, power-efficient design of the memory
and interconnect systems can potentially offer
significant power reduction.

This paper considers the exploration of the bus and
memory configuration for reducing the power
consumption.  We propose a new genetic algorithm
based search technique for simultaneously partitioning
the bus and on-chip memories for generating a power-
efficient configuration based on the application
characteristics. Our approach is primarily targeted
towards application-specific SoCs [LB04, GCF00,
DG04], such as those developed in wireless LAN
baseband processing, xDSL modems, low-level pixel
processing for HDTV, etc.

We have validated the effectiveness of the
configurations generated by our search algorithm

through a cycle-accurate virtual platform [ML04] of a
multiprocessor SoC platform using AMBA AHB fabric
that provides performance and energy results. Our
results reveal that the energy consumption can be
reduced on an average by 20% as compared to a
baseline SoC architecture based on a single shared bus.
Further, we show energy reduction can be reduced by
12% and 18% on an average as compared to using only
either memory or bus partitioning schemes. We also
demonstrate that the proposed algorithm helps explore
new design choices that are missed by just sequentially
applying the bus and memory partitioning algorithms (in
either order).

The rest of this paper is organized as follows. The next
section provides an overview of related work on
memory partitioning and bus partitioning. It also
highlights the advantages of the proposed approach. The
genetic algorithm for the simultaneous bus and memory
partitioning is given in Section 3. Section 4 presents our
implementation details and provides the experimental
results. Conclusions are provided in Section 5.

2. Related Work and Background

2.1. Bus Partitioning

Many shared bus models like the AMBA [AMBA],
CoreConnect [CORE], WishBone [WISH] have been
explored for connecting the various modules in SoC
designs. However, shared buses do not scale well when
taking into account system design with an increasing
number of cores. Bus partitioning is effectively aimed at
countering such scalability issues by providing both
speed and power gains. Performance is achieved by
allowing simultaneous communication on different bus
trunks, thus decreasing congestion and latencies on each
trunk. Parallelism must be exploited as much as possible
by keeping heavily intercommunicating cores clustered.
Energy savings can be gained due to the smaller
capacitive loads to be driven. The power reduction
benefits of partitioned bus architecture depend on the
communication profile of the system [LAH04, SS04].

Most previous work in the area of bus partitioning
([CTH00], [WBJ99],  [YZ98], [SEC04], [CZ02]) is
focused upon three-state buffer interposition, or
variations of this concept. All of these approaches have
two major disadvantages: they require full custom
design methodologies, and they focus solely on reducing
power consumed by global bus wires. It is well known,
however, that a significant amount of the complexity
and power budget in bus designs is spent in the
decoding, arbitration and multiplexer logic, which is not
affected by wire segmentation. The proposed approach
will instead leverage standard IP components in order to
improve congestion issues, logic complexity and power
consumption on each bus trunk. Additionally, this paper
will show a methodology capable of exploring a huge
variety of alternative topologies and will validate the



results by means of a cycle-true simulation environment
with accurate power models.  Similar approaches to
design space exploration have been reported [SH04,
GV02], but they are either focusing on performance
alone, or aimed at tuning parameters such as bus
bitwidth and encoding, which have a much smaller
impact than bus and memory partitioning.

This work performs bus partitioning based on the
AMBA AHB and makes use of bridges to communicate
between different bus trunks. Fig. 1 shows a typical
AMBA AHB-AHB bridge, which serves as a
unidirectional link between two buses. Each of the ends
of the bridge also called the bus interface units (BUI) are
connected to the master and the slave buses respectively
and may be operated at different frequencies.
Communication across the bridges incurs performance
and power penalties. Every data packet communicated
across the bridge accrues latency delays due to
unavoidable synchronization and communication cycles.
Such overheads can be significantly avoided by
judicious partitioning of the system cores and slaves
over multiple buses which is a goal of our proposed
algorithm.

Fig. 1: AMBA AHB-AHB bridge

The bus segmentation problem comprises of solving a
graph partitioning problem which, given the
communication patterns (fig. 2) splits the architecture
into smaller bus trunks satisfying the constraints
imposed [SS04]. The main criterion behind such
partitioning is to minimize the communication over the
bridges, which are caused by to communication across
buses. However, increasing the number of bus trunks
increases the power and performance penalties, caused
due to the hardware overhead in the form of additional
bridges, which has to be taken care of while solving the
partitioning problem.

2.2 Memory Partitioning

With the integration of tens of memory modules on a
SoC, memory partitioning is an important step in
reducing the architectural power consumption. The
memory partitioning problem is defined as creating
physical partitions of memory banks given the data
access pattern defined by the application. Memory
partitioning can provide both performance and power
benefits. Since most applications do not tend to utilize
their entire address space uniformly, memory
partitioning algorithms attempt to partition the memory
banks such that most accesses are confined a smaller
size memory. Note that a smaller memory has a lower
per-access energy cost. Figure 3 shows an example of
such non-uniform access frequencies across the shared

memory address space when running one of the
benchmarks used in our evaluation. In this case, the
small portion of memory that is frequently used can be
divided into one bank and the remaining memory space
that remains sparsely used maps to another bank. The
key challenge for memory partitioning algorithms is to
balance the benefits of reduced access energy costs
against the penalty due to increased logic for bank
address decoding. This tradeoff imposes limits on how
small the memory partitions can be. Various approaches
have been proposed to perform memory partitioning
balancing these tradeoffs for reducing energy
consumption [LB00, CAT98].

Fig. 2: Communication profile

2.3 Proposed Combined Approach

This paper aims at further strengthening the bus
partitioning benefits by compounding them with
simultaneous memory partitioning. Due to memory
partitioning, the slave memory modules are broken into
smaller chunks providing a finer grain control for
assigning smaller memory chunks to different bus trunks
at the bus partitioning stage. For example, the less
frequently used sections of memory could be ideally
partitioned and assigned to a separate bus trunk while
the most accessed partition could be placed in the same
trunk as the processor core which accesses it.

Exploring different bus and memory-partitioned
structures simultaneously results in configurations that
may have been discarded when applying the individual
partitioning algorithms sequentially. For example,
applying memory partitioning after bus partitioning does
not provide the flexibility of assigning a new partition to
a different bus trunk. However, our approach not only
allows memory splitting but also simultaneously assigns
it to a bus trunk in search of a power-efficient
configuration. Similarly, the simultaneous partitioning
approach is better than applying bus partitioning after
memory partitioning. For example, increasing the
number of memory partitions on a single bus also
increases the control complexity because of the
increased number of slaves. Consequently, the
overheads may balance (or overwhelm) the benefits of
accesses to smaller modules. However, if the partitions
can be assigned to different bus trunks, some of these
partitions may become effective solutions in saving

Bridge
Slave

Bridge
Master

Read Buffer

Write Buffer

shclk mhclk

T6
10cycle

20

15

25

20 30

2015

T3
10cycles

T2
15cycle

T4
30cycle

T5
25cycle

T1
20cycle



energy. These examples make the advantages of a
combined approach clear, and the section on
experimental results will quantify them.
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Fig. 3: Memory access patterns

3. A genetic algorithm for simultaneous partitioning

We propose a genetic algorithm (GA) [GA] search
technique to explore the memory and bus partition
possibilities to arrive at a power-efficient configuration.
The GA takes as input the applications communication
and memory behavior.  A task graph (see Figure 2) that
provides the duration of each task and the
communication volume between the different tasks
captures the communication information. In addition,
the algorithm takes as input the access information of
the memory elements at the granularity of banks of 128
contiguous bytes. The access information is obtained in
the form of access frequency from each task in the task
graph.

The first step in designing our GA involves finding a
suitable representation for the chromosome to represent
the bus and memory partitioning configuration
employed. The proposed chromosome captures this
conf igura t ion  us ing  an  in tege r  a r ray
A[1...MEM+BANKS+PROCS], where MEM is the
number of memory elements to be allocated to a
maximum of MAX banks and PROCS is the number of
processors.
A chromosome depicts the following:

A[i] = t, for 0<=i < MEM, indicates that the ith memory
element is assigned to the memory bank t.
A[i] = x, for MEM<=i<MEM+BANKS+ PROCS,
means that the ith memory bank/processor is allocated to
bus trunk x.

Note that we assume fixed topologies in the final
proposed configuration by the genetic algorithm. In all
the topologies we have any two bus trunks connected to
each other by two bridges enabling two-way
communication between them.

In order to avoid address-decoding complications, we
prevent the assignment of two different banks that do
not have a contiguous address space.  Consequently, we
also impose the following constraint:

€ 

A[i] ≤ A[ j],∀i < j,∀i, j < MEM
Note that it may be possible to reassign the data
locations or restructure the code appropriately to relax

this constraint using a compiler. We expect that the
power savings of the proposed partitioning scheme to be
enhanced when such techniques are employed.

The GA initially generates a population of N
chromosomes and continues to create new generations
of this original population by modifying the
chromosomes using two operators: crossover and
mutation. The crossover operator produces two new
offspring chromosomes by inheriting partial
characteristics from two parent chromosomes. The cross
over is performed over the first MEM elements of the
chromosome and the rest of the chromosome separately.
Figure 4 shows the basic crossover operation. The
Selection Operator for choosing the chromosomes for
mating or mutation is a random selection operator.
However in case of crossover, to ensure that the
resulting solution is feasible parents A and B are
selected by the selection operator randomly but having
the following characteristics:

(a) A[MEM/2] = B[MEM/2] – This ensures the
contiguous partitions in the offspring. In cases
where the middle element or the point of
crossover has a memory element allocated to
different bank, it will clearly generate the one
resulting offspring having a non-contiguous
memory allocation into the memory banks.

(b) Number of Bus trunks in A = Number of Bus
trunks in B.

Fig. 4: Crossover operator

The mutation operator introduces new characteristics
that may not already be present in the population of
chromosomes. The mutation operator takes in a
chromosome as an input and generates a new
chromosome by randomly modifying the chromosome.
However it does make sure that the newly generated
solution is still a feasible solution by ensuring that the
values in the array are in bounds and satisfy the primary
conditions imposed for feasibility as discussed above.

A fitness function determines the quality of each
chromosome (that represents a possible memory/bus
partitioning configuration) based on the energy required
for executing the given application. The evaluation
requires the access (active and idle cycles) profiles of
the different buses, bridges and memory components
and the per access energy costs for each of these
components.

First, we require a technique for providing a fast
estimate of the number of communication cycles over
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the each of the buses, namely the intra-cluster cycles
and across the bridges, the inter-cluster cycles. The intra
cluster cycles are simply computed based on the number
of communication cycles within a bus trunk between the
master and slaves attached to the bus. The inter-cluster
cycles capture the latencies due to the crossing of the
bridge and handshaking across the buses. Our model
uses the numbers provided by AMBA Designware
Datatbook [AMBA], for estimating the inter cluster
latencies. We take a pessimistic approach in estimating
the number of cycles, specifically the inter-cluster
communication. The actual numbers of inter-cluster
communication cycles are usually optimized in presence
of split bus transactions, which is not captured in the
estimation by the GA. Consequently, the number of
cycles required for completing an application is typically
over-estimated by our GA fitness function.

The per-cycle energy cost for the different components
such as ARM core, caches, bus-attached memories and
bridges is derived from STMicroelectronics foundry
datasheets for a 0.13 µm process. The bridge energy cost
was derived from an actual design and the switching
capacitance was extracted for cycles in which the bridge
was used and not used. Consequently, our energy model
combines the number of cycles of activity in the bridge,
the switching capacitance and the operating frequency,
to derive the energy consumed in the bridge. In cycles,
where there is no communication, there is still a small
amount of power consumed in the bridges due to the
switching of some gates in each of the bus interface
units. The on-chip memory module power numbers are
obtained directly from the datasheets for the different
memory configurations. It also includes the leakage
power in idle state. The bus power is modeled based on
the numbers from [AB04], and scales proportional to the
number of masters and slaves connected to the bus and
their sizes.

The GA combines the estimated number of cycles and
the per-cycle energy numbers to obtain the energy
consumed by the configuration represented by a
chromosome. The fitness value associated with a
chromosome is therefore computed as:

Fitness = (1/Energy Consumed)
The fitness function rates a chromosome with higher
energy consumption lower than the one that consumes
lesser energy. The selection mechanism generates a new
population from the current generation based on the
fitness value assigned to each of the chromosome based
on the survival of the fittest scheme [GA].
Chromosomes with a higher fitness value are more
likely to survive while those with low fitness values are
weeded out from the population.

4. Experimental Framework

The genetic algorithm was implemented in C language
using the Genetic Algorithm Utility Library
(GAUL)[GAUL].  The algorithm is operated with a
crossover rate of 0.8 and a mutation rate of 0.2. The
algorithm was let to run for 10000 generations. It is

important to stress that the task graph input to the
genetic algorithm was not created artificially (e.g. with a
randomized task graph generator) or from abstract
specification.  Graphs and their annotation where
created from functionally accurate execution traces of
benchmark applications on single shared bus
architecture. We obtained traces for a set of parallelized
data-intensive benchmarks when executed on a shared
bus system with 4 processor cores and 7 slaves
simulated on the cycle-accurate virtual platform
simulator. Four of the slaves act as the private
memories, one as a shared memory, and the other two as
semaphore and interrupt devices respectively.

Fig. 5: Implementation Flow

The resultant topologies produced by the GA were used
to configure the cycle-accurate simulator to execute the
benchmarks and obtain the energy and performance
numbers. While the per-cycle energy models used by the
cycle-accurate virtual platform simulator are similar to
that of the GA, the simulator accurately models the
access behavior of the various components unlike the
coarse grain estimate of the GA.  The cycle estimate of
the simulator itself has been validated in prior work in
comparison to real designs. Consequently, we validate
the energy benefits of the configurations determined by
the GA using the simulator results. The implementation
flow of our experimental methodology is illustrated in
figure 5.

4.1 Enhancement of the Simulation platform

To validate the proposed scheme in this paper, we had to
enable the instantiation of custom interconnection
topologies in the existing virtual platform simulator
based upon a configuration file given by the user as a
boot-time input. The configuration file specifies the
amount and placement of system components, thus
allowing flexible design space exploration. The
configuration file is in plain text format, and can
therefore be easily generated by an external program.
This feature is exploited in the present paper to link the
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existing virtual platform developed in prior work to the
genetic mapping algorithm, thus providing a fully
automated way of validating the effectiveness of the
configurations proposed by the GA. The configuration
file also includes details about the memory mapping of
slaves in the architecture. By means of this input, it is
possible to choose how many physical slaves to use to
implement a function. For example, a shared memory
space can be implemented as a single memory bank, or
by means of multiple devices contiguously mapped but
attached to different buses.

4.2. Experimental Results

Table 1 shows the bus and memory system energy
savings obtained by the new partitioned configuration
determined by the GA as compared to the default shared
bus architecture. The table provides energy savings
determined by both our genetic algorithm estimation and
the cycle-accurate virtual platform simulator. The
percentage improvements determined by the GA and the
cycle-accurate simulation results are different due to the
pessimistic estimates of the GA as stated in Section 3.
However, it is important to note that both the GA
estimates and simulation numbers show similar trends.
Note that there is an average improvement of 21% in
bus and memory energy consumption in the new
partitioned configuration found by our GA search
algorithm as compared to the default shared bus
configuration. For all our experiments we generated the
configurations using a sample dataset and verified the
effectiveness of the resulting solution for 30 randomly
generated input sets.
Benchmark GA

estimate
Cycle-accurate
simulation

DES 8.4 12.89
FFT 13.22 16.22
FILTER 11.28 14.89
LU 26.53 38.59
Image Smoother 11.04 18.4
PIL filter 8.16 14.51
Table. 1. Percentage reduction in bus and memory
system energy using our GA proposed configuration
as compared to using a shared bus configuration.

To show that the combined approach presented in this
paper out performs the sequential approach or the
individual bus partitioning and memory partitioning
schemes we implemented each of the schemes using
genetic algorithms. Table 2 provides the percentage
improvement obtained by our approach over applying
bus partitioning alone and memory partitioning alone. It
is clear from these results that our approach accentuates
the benefits of either approach. Finally, we compared
the proposed approach to the sequential approach of
implementing bus partitioning followed by memory
partitioning and vice-versa. Due to the advantages of the
simultaneous memory and bus partitioning, our
approach provides 5% more energy savings on the
average.

As an added advantage of our approach the total energy
consumed by the processor cores goes down due to the
reduction in the number of cycles required for the
complete execution of any application. Figure 6 shows a
plot of the percentage improvement in the energy
consumed by the ARM cores attached to the bus using
our proposed configurations as compared to single
shared bus architecture. We observe an average 10%
percent reduction in the energy consumed by the
processor core energy.

Benchmark BP only MP only

DES 3.3 10.6
FFT 16.2 15.5
FILTER 28.2 14.4
LU 22.1 5.50
Image Smoother 19.64 3.31
PIL Filter 26.45 5.92

Table 2. Percentage reduction in total energy
consumption of configuration determined by our
approach as compared to configurations returned by
Bus partitioning (BP) and Memory Partitioning
(MP).
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Fig. 6: Energy reduction in processor cores.
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Fig. 7: Total system energy reduction.

The savings in the total energy consumption including
the energy consumed by the caches is plotted in figure 7.
We observe that our algorithm provides and average
improvement of 7% over the single shared bus
architecture.

Figure 8 shows the resultant configuration generated
from our algorithm for the LU benchmark. The solution



demonstrates the effectiveness of our approach in
splitting the memory in a way that complements the bus
partitioning in an extremely constructive manner. The
banks heavily accessed by processor 0 are placed in bus
trunk 1 and the other banks are placed in bus trunk 0.
The private memories are connected to the same bus
trunks as their respective processors.

P1 P2 P3 P0

PM1 PM2 PM3

0x19000280

0x19000000

0x19001801

0x19000281

0x19001882

0x19001802

0x19001984

0x19001904

0x19080106

0x19080086

PM0

0x19001903

0x19001883

0x19080085

0x19001985

Fig. 8: Configuration provided by our algorithm for
the LU benchmark. (PM denote the private
memories)

5. Conclusion

This paper presents an approach to simultaneous bus and
memory partitioning to reduce the energy consumption
in an application specific SoC. This problem was
formulated as a genetic search algorithm and the
resulting partitioned configurations were validated to be
effective using a cycle-accurate virtual platform
simulator for a multiprocessor SoC. Our results reveal
that there are significant energy savings to be gained by
combining both memory and bus partitioning strategies.
We also demonstrated that our approach is superior to
sequential application of memory and bus partitioning
algorithms. Our future work will consider the influence
of voltage and frequency assignments to the different
clusters in conjunction with the partitioning.
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