
Bounds on Power Savings Using Runtime Dynamic Voltage/Frequency Scaling:
An Exact Algorithm and A Linear-time Heuristic Approximation

ABSTRACT
Dynamic voltage/frequency scaling (DVFS) has been shown to be
an efficient power/energy reduction technique. Various runtime
DVFS policies have been proposed to utilize runtime DVFS oppor-
tunities. However, it is hard to know if runtime DVFS opportuni-
ties have been fully exploited by a DVFS policy without knowing
the upper bounds of possible energy savings. We propose an ex-
act but exponential algorithm to determine the upper bound of en-
ergy savings. The algorithm takes into consideration the switching
costs, discrete voltage/frequency voltage levels and different pro-
gram states. We then show a fast linear time heuristic can provide
a very close approximate to this bound.

1. INTRODUCTION
With CMOS technology scaling down, high power/energy con-

sumption has become a limiting factor in our ability to develop
designs not only for battery-operated mobile systems but also for
server and desktop systems due to exorbitant cooling, packaging
and power costs.

In CMOS systems, dynamic power dissipation varies linearly
with frequency and quadratically with supply voltage as shown by
the equation Power ∝ αCLV 2

DDf , where α is the switching ac-
tivity factor, CL is the load capacitance, VDDis the supply voltage
and f is the clock frequency. Considering that most applications do
not need to continuously maintain peak performance, dynamic volt-
age/frequency scaling (DVFS) trades off performance for energy
savings by scaling down the voltage/frequency when peak perfor-
mance is not required. As an efficient energy reduction technique,
DVFS has been implemented in several contemporary micropro-
cessors such as Intel Xscale [4] and Transmeta Crusoe [12].

Various policies have been proposed to use DVFS technique to
reduce energy consumption. These policies can be classified as
compile-time policies [15] and runtime policies [8, 6, 9, 13, 11,
14, 2] based on when the decisions to switch voltage/frequency are
made. Runtime DVFS policies have drawn more research atten-
tions because of the ability to reduce energy assumption in response
to variations in workload. Hence, the study of theoretical bounds
for energy savings by runtime DVFS is important in the sense of
guiding the development of an efficient runtime DVFS policy or
assessing a particular policy.

In this paper, we are interested in providing the upper bounds on
energy savings (or lower bounds on energy consumption) given a
DVFS-enabled processor and a particular workload. Several mod-
els have been studied in the past to provide the upper bounds of en-
ergy savings by runtime DVFS. Unfortunately, those models either
are based on infeasible assumptions such as no voltage/frequency
switching costs [5], continuous voltage scaling [16], or assuming
linear scalability with CPU speed ignoring non-scalable factors such
as off-chip memory accesses and I/O service [10, 5]. Our work
overcomes these limitations and takes into consideration switching
costs, non-scalable program behaviors and discrete voltage levels
to provide accurate upper bounds of energy savings.

The primary contributions of this paper are:

• We propose a realistic model to study the upper bounds on
energy savings of runtime DVFS. The model includes a re-
alistic DVFS-enabled processor with discrete voltage levels
and the switching overheads due to voltage/frequency scal-
ing. The model also takes into consideration the non-scalable

program behaviors including off-chip memory accesses and
I/O service.

• We propose an optimal algorithm to provide the exact upper
bound, which works efficiently for problems with up to thou-
sands of computation segments that can be independently
scaled (referred to as scaling units).

• We provide a linear-time heuristic algorithm to very closely
approximate the upper bound, which makes our model work
for large problems. For example, we can get an approximate
bound for a 3 ∗ 105 scaling unit problem in seven minutes.

The rest of paper is organized as follows: Section 2 describes the
model including model assumptions and notation. Section 3 intro-
duces an exact algorithm and discuss the complexity of the algo-
rithm. Section 4 presents the linear-time heuristic algorithm and
compares the results with the exact algorithm. Section 5 compares
energy bounds predicted by an optimistic analytical model and en-
ergy bounds by runtime DVFS with the energy results using an
optimal compile-time DVFS policy. Finally, Section 6 summarizes
the contributions of our work.

2. PROBLEM STATEMENT
We define scaling points to be a series of events such as timer

interrupts and cache misses where voltage/frequency scaling can
occur. Consider a run of a program on a given data input. The trace
of instructions is sliced into M units labelled 1,2,...M by scaling
points. These M units are referred to as scaling units, each of which
can be scheduled to a specific V/f level. Considering this sequence
of scaling units running on a DVFS-enabled microprocessor with
N discrete voltage/frequency levels. Our goal is to find a set of V/f
assignments (x1, x2, ... ,xM) such that the energy consumption us-
ing this set of V/f assignments is minimized while meeting the per-
formance requirements expressed in the form of a deadline. If the
scaling units can be made arbitrarily fine, then this method deter-
mines the upper bound on energy savings over any possible DVFS
policy that can be applied for this program trace. It can be shown
that this problem is a NP-hard combinatorial optimization problem
(an instance of multiple-dimensional knapsack problem) and can
be solved by searching feasible solutions in the solution space. In
this paper, we present the exact upper bounds of possible energy
savings by an optimal assignment and then introduce a linear-time
heuristic algorithm to approximate the exact upper bounds. We first
introduce the assumptions and notation used in the paper.

2.1 Assumptions and Notations

2.1.1 System assumptions
There are N voltage/frequency scaling levels, namely V1/F1,

V2/F2 , ... and VN/FN where VN/FN denotes the highest volt-
age/frequency level. The energy and time overheads for one volt-
age/frequency scaling from Vi/Fi to Vj/Fj are denoted by SE and
ST . In this paper, we use equations taken from [1] to calculate the
overheads:

SE = (1− u) ∗ c ∗ |V 2
i − V 2

j | (1)

ST =
2 ∗ c

IMAX

|Vi − Vj | (2)

1

Unit (t,e) at V1/F1 (t,e) at V2/F2
1 (2,1) (1,4)
2 (2,1) (1,5)
3 (2,1) (1,4)
4 (2,1) (1,4)

Table 1: An simple example with four scaling units and two
scaling levels.

where c is the capacitance of the voltage regulator, u is the energy
efficiency of the power regulator and IMAX is the maximum al-
lowed current.

2.1.2 Notation
Let Tij and Eij denote the execution time and energy consump-

tion of the ith scaling unit ui running at the jth V/f level. Tupper

refers to the total execution time of all scaling units running at the
highest frequency VN/FN .

xi is the V/f level assigned to the ith scaling unit. We use the
tuple (x1,x2,...,xi) to represent a set of V/f assignments for the first
i scaling units and define SET (x1,x2,...,xi) to be the sets of V/f
assignments for the the first i scaling units. Tuples are referred to
as partial solutions when i is less than M . t(x1,x2,...,xi) refers
to the execution time using the partial solution for the first i scal-
ing unit, which includes time overheads if switching occurs (i.e. if
xj 6= xj+1). Similarly, e(x1,x2,...,xi) refers to the total energy
consumption using the partial solution for the first i scaling unit
including energy overheads for switchings.

Tuples of length M (x1,x2,...,xM) represent the complete schedul-
ing solutions. Feasible solutions refer to a subset of solutions that
satisfy the deadline requirements.

3. OPTIMAL ALGORITHM
The standard way to solve the optimal DVFS problem is to search

the solution space until an optimal solution has been found and
confirmed. Considering the succession of scaling units, we use
breadth-first search that generates partial solutions along with the
input sequence. The algorithm enumerates all possible V/f levels
for the first scaling unit and generates partial solution set (x1) after
considering the first scaling unit. Then for each (x1), it enumerates
all possible V/f levels for the second scaling unit and generates all
partial solutions (x1,x2) after considering the second scaling unit.
This process repeats until complete solutions have been generated
(x1,x2,...,xM) after considering the last scaling unit.

We can visualize the process as building a state space tree such
as the one shown in Figure 1. Each node in the tree represents a
problem state and the path from the root node to a level i node rep-
resents a solution state that defines a partial solution (x1,x2,...,xi).
Starting from a root node, the algorithm branches on possible V/f
levels for the first scaling unit and generates level 1 nodes, each of
which represents a partial solution (x1). Then for each node at level
1, it branches on all possible V/f levels for the second scaling unit
and generates level 2 nodes representing partial solutions (x1,x2).
It continues branching from higher level nodes until reaching level
M nodes. The naive algorithm would result in N i+1 nodes at level
i for the general case of N choices per level.

Due to the deadline and the optimality requirements, branching
from unpromising nodes that generate infeasible solutions or non-
optimal solutions should be avoided. There are two circumstances,
referred to as pruning conditions, in which branching from a certain
node will be discontinued.

Suppose the partial solution defined by node k is (x1,x2,...,xi).
We define t(x1,x2,...,xi) and e(x1,x2,...,xi) as the execution time
and energy consumption of the node. The shortest remaining time
(SRT) of node k is defined as the execution time running the re-
maining scaling units at the highest frequency, i.e. t(xi+1 = N ,...,

0,01 2

1 2

3,2

5,8

2

5,3

7,87,4

1 2

6,128,10

1 2

1,4

2,9

1 2

4,6

6,116,7

1 2

3,135,11

x1

x2

x3

0

1 2

3 4 5 6

Level
0

1

2

3

7 8 9 10

11 12 13 14

11

1 2

8,128,9

1 2

7,159,13

1 2

4,176,157,167,12

x42 1

15 16 17 18 19 20 21 22

4

Figure 1: The state space tree constructed from the four scaling
unit example.

xM = N).
If node k satisfies one of the following conditions, the branching

from node k will be discontinued:

1. The sum of the execution time and the shortest remaining
time of node k is greater than the deadline, i.e.

t(x1, x2, ..., xi) + t(xi+1 = N, ..., xM = N) > deadline

The inequality means the partial solution will not meet the
deadline by running the remaining scaling units at the high-
est frequency. Thus any solutions generated from this node
are infeasible solutions. Nodes satisfying this condition are
called infeasible nodes because they generate infeasible so-
lutions.

2. There exists a level i node l (b1,b2,...,bi) such that:

bi ==xi

t(b1, b2, ..., bi) ≤ t(x1, x2, ..., xi)

e(b1, b2, ..., bi) ≤ e(x1, x2, ..., xi)

In this case node l uses both less energy and less time than
node k and can always be used instead of node k to generate
a better solution without additional switching of V/f levels.

Since our goal is to find a feasible solution with the low-
est energy consumption, if a node is confirmed to generate
non-optimal solutions, branching from this node should be
stopped to reduce unnecessary node generation. The exis-
tence of node l declares that node k will not generate the op-
timal solution since the best feasible solution generated from
node l will always consume less energy consumption than
the best feasible solution generated from node k. Node l is
referred to as the dominating node.

Nodes satisfying either condition 1 or 2 are referred to as dead
nodes. We use the function PRUNE to check the status of nodes.
If PRUNE (x1,x2,...,xi) returns true, the node is a dead node and
there is no need to branch from that node. Otherwise, the node is
live and further branching is possible.

Let us look at a simple example. Suppose there are four scaling
units running on a processor with two voltage/frequency levels as
shown in Table 1. We assume the initial V/f level is V2/F2 and
deadline is 7. We also assume the switching time overhead is 1 and
energy overhead is 1. The generated state space tree is shown in
Figure 1. We start from a root node and branch on the first scaling
unit x1. Since there are 2 V/f levels, x1 can be either 1 or 2. Thus
root node generates two level 1 nodes: node 1 and node 2. Both
nodes are live nodes. We pick node 1 to branch on x2 and gener-
ate node 3 and node 4. Then we pick node 2 to branch on x2 and

2

1GHz 800MHz 600MHz 400MHz 200MHz

deadline1 deadline2 deadline3 deadline5 deadline6deadline4

Figure 2: The positions of deadlines with respect to the execu-
tion times using single frequency.

generate another two level 2 nodes: node 5 and node 6. All four
nodes are live nodes, so we continue branching on x3 and generate
nodes 7-14. Node 7 satisfies pruning condition 1 since the deadline
is 7 and the execution time of node 7 plus the SRT is 7 + 1 = 8
exceeding the deadline. Thus node 7 is a dead node. For the same
reason, node 8 and node 9 are dead nodes. Node 10 is dead be-
cause node 10 consumes more energy than node 12 while having
the same execution time and assignment for x3. We branch on x4

from node 11 to node 14, which are live nodes, and generate node
15 to node 22 where solid-lined nodes (node 18 to node 22) repre-
sent feasible solutions and dot-lined nodes (node 15, node 16 and
node 17) are infeasible solutions. Node 19 represents the optimal
solution (2,2,1,1) with the minimum energy consumption 12.

The pseudo-code of the optimal algorithm is given as the proce-
dure BRANCH-PRUNE in Algorithm 1.

3.1 Practical Complexity
In this section, we will discuss the practical complexity of the

optimal algorithm. We first discuss the impact of deadlines on the
complexity. Then we will show the optimal algorithm needs expo-
nential runtime with respect to the number of scaling units.

We consider a DVFS-enable processor with five voltage/frequency
levels similar to some of the voltage-frequency pairings available
in Intel’s XScale processors [3]: 0.7V/200MHz, 0.99V/400MHz,
1.3V/600MHz, 1.65V/800MHz and 2.05V/1GHz. We use c =
10µf, IMAX = 1A, u = 90% in Equation (1-2) to calculate switch-
ing overheads, which generates switching time of 12 µs and switch-
ing energy of 1.2µJ) for a transition from 600MHz to 200MHz.
Note that those settings are parameters and can be changed eas-
ily. We consider the size of a scaling unit to be 106 instructions.
Four benchmarks from mediabench [7] are used to generate en-
ergy/time profiles using SimpleScalar with Wattch. The number of
scaling units for each benchmark is listed in Table 2 that includes
the execution time and energy consumption using five V/f levels
for each benchmark. Six deadlines for each benchmark are picked
from tight to loose as shown in Figure 2. Deadline1 sits at the mid-
dle of the execution time using 1GHz and the execution time using
800MHz. Deadline2 sits at the middle of 800MHz and 600MHz.
Deadline3 sits at the middle of 600MHz and 400MHz. Deadline4
to deadline6 sit evenly between 400MHz and 200Mhz.

We first examine the impact of different deadlines on the algo-
rithm complexity. Figure 3 shows the the number of nodes gener-
ated at each level for epic using six difference deadlines for epic.
Figures for other benchmarks are similar in shape to Figure 3.

Note that the number of nodes generally increases at first as the
level increases and then decreases when approaching the end. This
is because at the beginning, few nodes satisfy the first deadline
pruning condition. Nodes compete with each other for optimality
and only the second pruning condition is responsible for remov-
ing non-optimal nodes. As the level grows, the execution time of
nodes approach deadlines. Then more nodes are killed by the first
deadline pruning condition.

We notice that the middle deadlines generate more nodes than
tight deadlines (deadline 1 and deadline 2) and loose deadlines
(deadline 5 and 6), which reflects the fact that the solution space
shrinks when the deadline approaches the upper bounds and lower
bounds of execution time. However, the reasons for the reduced
number of nodes are different. For tight deadlines, significant num-
ber of nodes are taken out by the first pruning condition because of
infeasibility. For loose deadlines, most nodes are killed because of

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5
x 10

4

Level of the state space tree

N
um

be
r

of
 n

od
es

deadline1
deadline2
deadline3
deadline4
deadline5
deadline6

Tight

Loose

Figure 3: The number of nodes generated at each level by the
exact algorithm using six deadlines from tight to loose.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

x 10
5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Execution Time (us)

E
ne

rg
y

C
on

su
m

pt
io

n
(u

J)
4.82 4.825 4.83 4.835 4.84 4.845

1.682

1.684

1.686

1.688

1.69
x 10

5

Figure 4: The energy-delay relationship for all nodes at the
same level.

the confirmed non-optimality by the second pruning condition.
Next, we will examine the relationship between the number of

total nodes generated in the state space tree and the number of scal-
ing units. Table 3 shows the total number of nodes for benchmarks
using six deadlines.

The adpcm benchmark has 8 scaling units and requires 630 nodes
for deadline3. The epic benchmark has 64 scaling units and re-
quired nodes increase to 6.3 × 105, which is 1000 times larger.
For the mpeg benchmark, which has 250 scaling units, the number
rises to 3.3 ∗ 107 , which is 5 ∗ 104 times larger than adpcm. The
results demonstrate that the number of nodes grows exponentially
as the number of scaling units gets larger. Table 3 also shows the
runtime using the exact algorithm. The algorithm works efficiently
for small scaling unit sets. epic and gsm take seconds while mpeg
takes around 1 minute. However, the runtime increases quickly as
the number of scaling units increases. In fact, it takes hours to find
the optimal solution when the number of the scaling units rises to
thousands. Thus the exact algorithm is impractical for analyzing
large problems with tens of thousands scaling units. This motivates
our linear-time heuristic algorithm to approximate the bounds pro-
vided by the optimal algorithm.

4. LINEAR-TIME HEURISTIC ALGORITHM
The pruning function in the optimal algorithm does a good job

of removing unpromising nodes and thus significantly shrinking
the search paths. However, a vast majority of solutions (partial
solutions) must be enumerated before optimality can be confirmed
in the worst case for the optimal algorithm. We are looking for a
mechanism to further shrink the search scope in the solution space

3

(t,e)@200Mhz (t,e)@400Mhz (t,e)@600Mhz (t,e)@800Mhz (t,e)@1000Mhz M scaling units
adpcm 55.9, 10.3 28.0, 15.5 18.6, 24.2 14.0, 37.3 11.2, 56.3 9
epic 422.0, 82.5 212.8, 126.3 142.0, 199.1 106.6, 308.0 85.3, 465.4 64
gsm 1064.2, 183.4 532.2, 276.1 354.8, 433.0 266.1, 668.0 212.9,1007.6 138

mpeg 1525.8, 285.0 763.2, 430.4 509.1, 676.0 382.0, 1043.8 305.7,1575.3 250

Table 2: Basic information for benchmarks.

number of nodes runtime (s)
adpcm epic gsm mpeg adpcm epic gsm mpeg

deadline1 122 0.8 × 105 0.6 × 106 0.6 × 107 0 0.05 0.84 11
deadline2 462 3.3 × 105 1.4 × 106 2.0 × 107 0 0.48 2.52 44
deadline3 630 6.3 × 105 1.5 × 106 3.3 × 107 0.1 1.12 2.67 74
deadline4 484 4.4 × 105 0.7 × 106 2.8 × 107 0 0.75 0.96 62
deadline5 319 3.2 × 105 0.5 × 106 2.1 × 107 0 0.45 0.67 47
deadline6 81 1.4 × 105 0.2 × 106 0.8 × 107 0 0.12 0.2 16

Table 3: The number of nodes and runtimes for benchmarks using six deadlines

by removing unpromising nodes.
Figure 4 shows the energy consumption and execution time of

nodes at the same level in the state space tree using the same V/f
assignment where each dot represents a node. First, we notice that
the trend of the dots is monotonically decreasing. This is due to
the second pruning condition. Second, we notice that instead of
scattering randomly, nodes are clustered. This is due to the dis-
crete voltage/frequency levels. Those clustered nodes have close
energy consumption and execution time as shown in the embed-
ded figure window. Thus the best solutions generated from these
clustered nodes also have close energy consumptions. Suppose one
of them leads to the optimal solution, then the solutions generated
from other nodes produce near-optimal results. If we choose one
of them and remove the others, we might remove the optimal node
but we can still get a near-optimal solution. If none of the nodes
leads to the optimal solution, then there is no harm to keep one
and remove others. This way, we can reduce the number of nodes
greatly.

We create bins by dividing the energy axis (y axis) evenly into
nbins number of ranges. Suppose the the energy consumption of
the leftmost node is Emax and the rightmost node is Emin. Then
the energy difference between nodes within the same bin is less
than (Emax − Emin)/nbins. We keep one node in each bin and
remove the others. Hence the number of nodes at each level is
controlled to be at most nbins.

Now we need to decide which node to keep. Considering hard-
ware complications from voltage/frequency scaling such as pipeline
flushing, fewer switches are usually preferred. Thus we pick the
node with the lowest switching count. If there are multiple nodes
with the lowest switching count, we choose the one with the lowest
energy-delay product since using energy (or delay) as the metric
alone will favor solutions with low frequency (or high frequency).

As shown in Algorithm 1, The heuristic algorithm is built on
the exact algorithm. After generating all nodes by the BRANCH-
PRUNE procedure, instead of proceeding to the next level, the
heuristic traverses the nodes and keeps one node for each bin. This
screening procedure is described in Procedure SELECT that selects
one node with the lowest energy-delay product from the nodes with
the lowest switching count and removes other nodes in each bin.

4.1 Algorithm Complexity
Suppose the major costs of statements are C1,C2,C3 and C4 as

shown in Algorithm 1. There are at most b nodes at each level. For
procedure BRANCH-PRUNE, the first FOR loop needs b ∗N ∗C1

steps in the worst case. The second FOR loop needs b ∗ N ∗ C2

steps in total. Thus the total cost for procedure BRANCH-PRUNE

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

deadlines

N
or

m
al

iz
ed

 N
od

e
C

ou
nt

s

adpcm
epic
gsm
mpeg

Figure 5: The number of total nodes generated by the heuris-
tic. The numbers are normalized to the nodes generated by the
optimal algorithm.

is b ∗ N ∗ (C1 + C2). Procedure SELECT needs b ∗ N ∗ C3 +
b ∗ N ∗ C4. Therefore, the total cost for building nodes for one
level is b ∗N ∗ (C1 + C2 + C3 + C4) in worst case. Let Clevel =
C1 + C2 + C3 + C4. Since there are M scaling units in total, the
total runtime cost is bounded by M ∗ b∗N ∗Clevel, which is linear
in M when b and N are fixed.

Figure 5 shows the number of generated nodes for four bench-
marks using 6 different deadlines for 1000 bins. The node number
is normalized to the number of nodes generated by optimal algo-
rithm. For small programs such as the adpcm benchmark, the node
reduction is not effective. As the number of scaling units increases
such as for the mpeg benchmark, the number of nodes is reduced
significantly.

4.2 Discussion
In this section, we will compare the energy results using the

heuristic algorithm with the results using the exact algorithm de-
scribed in Section 3.

The energy results generated by the exact algorithm and the heuris-
tic are shown in Figure 6. Energy consumption is normalized to the
energy consumption using the exact algorithm. As shown in the
figure, the heuristic generates higher ”minimum energy”. However,
the energy difference is very small especially when the number of
bins is big. When using 1000 bins, i.e. at most 1000 nodes at
each depth, the results from the heuristic algorithm are very close
to the optimal results for adpcm, gsm and mpeg. Only when using

4

Algorithm 1 the Heuristic Algorithm

91: procedure BRANCH-PRUNE(SET (x1, .., xi−1), , E(i), T (i))
92: for each (x1, .., xi−1) ∈ SET do
93: for j ← 1 to N do . Worse-case cost for one iteration C1

94: SRT [i]← SRT [i− 1] − T [i, N]
95: t(x1, .., xi) = t(x1, .., xi−1) + T (i, j)
96: e(x1, .., xi) = e(x1, .., xi−1) + E(i, j)
97: if PRUNEDEADLINE(x1, .., xi) == False then . Pruning Condition 1
98: Insert (x1, .., xi) in SET (x1, .., xi) based on energy
99: end if
910: end for
911: end for
912: for each (x1, .., xi) ∈ SET (x1, .., xi) do . Worse-case cost for each iteration C2

913: if PRUNEOPTIMALITY (x1, .., xi) == TRUE then . Pruning Condition 2
914: Remove (x1, .., xi) from SET (x1, .., xi)
915: end if
916: end for
917: end procedure
918:
919: procedure SELECT(SET,b)
920: distribute nodes (x1, .., xi) ∈ SET into nbins bins . Cost Length(SET) ∗ C3

921: for i← 1 to nbins do . Worst-case cost for one iteration C4

922: tran← the nodes with the lowest transition counts in the bin
923: min← the node with the lowest energy-delay product in tran
924: Remove nodes other than min, the first node and the last node in the bin
925: end for
926: end procedure

Deadlines 1 2 3 4 5 6

exact 10.9 43.7 62 46 16 8
1000 bins 1.1 2.1 2.2 1.8 1.7 1.4
100 bins 0.18 0.2 0.19 0.16 0.15 0.14
10 bins 0.03 0.03 0.03 0.03 0.03 0.01

Table 4: Runtime (in seconds) for mpeg using the exact algo-
rithm and the heuristic with different number of bins.

10 bins, the energy increases by a significant amount for certain
deadlines.

The heuristic algorithm takes significantly less time than the op-
timal algorithm. We show the runtime of mpeg using exact and
heuristic algorithm in Table 4. The speedup is up to 300X while
the energy difference is less than 0.1% using 100 bins. Also the
runtime differences between different deadlines are not as dramatic
as the exact case.

Now we can use the heuristic to approximate the lower bounds
of energy consumptions on large problems. For example, we can
use the heuristic to decide the granularity of scaling points. We
consider four granularities: 104 instructions, 105 instructions, 106

instructions and 107 instructions. For the finest granularity 104 in-
structions, gsm has 1.4 ∗ 104 scaling units and mpeg has 2.5 ∗ 104

scaling units. The exact algorithm cannot be used here due to the
long runtime (days) and extremely large space required. How-
ever, the heuristic can get the approximate bounds in 7 mins for
mpeg using 1000 bins. Figure 7 shows the approximate lower
bounds of energy consumptions for benchmarks using four gran-
ularities. As shown in the figure, the energy consumptions do not
vary much from fine granularity to coarse granularity. Thus we can-
not achieve more energy savings by using fine granularity, which
has been proved in [2] by experiments.

5. COMPARISON OF BOUNDS
In this section, we compare the lower bounds of energy con-

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
ne

rg
y

(t
o

th
e

ex
ac

t a
lg

or
ith

m
)

adpcm
1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

epic

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

gsm
1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

mpeg

1000 bins
100 bins
10 bins

Figure 6: The energy consumption by the heuristic using dif-
ferent number of bins. Energy consumption is normalized to
energy using the the exact algorithm.

sumptions using the optimistic analytical model from [15] that con-
siders the ideal case where the V/f may be switched at no cost af-
ter every instruction, the possible minimum energy consumption
for runtime DVFS using the exact algorithm presented in the pa-
per with the actual energy consumption using an optimal compile-
time DVFS policy [15]. Six different deadlines are used from tight
(deadline1) to loose (deadline6). The energy results are shown in 8.
The energy is normalized to the energy using the best single fre-
quency (the lowest frequency that can meet the deadline).

As expected, the analytical model predicts more energy savings
than runtime DVFS and compile-time DVFS can possibly achieve.
This is because the analytical model assumes no switching costs.
Note also that the DVFS method comes quite close to the optimistic

5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

adpcm epic gsm mpeg

N
o

rm
al

iz
ed

 E
n

er
g

y

10 4̂

10 5̂

10 6̂

10 7̂

Figure 7: The approximate lower bounds on energy consump-
tion using different granularities. Energy consumption is nor-
malized to energy using the the highest frequency.

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
adpcm

deadlines

N
or

m
al

iz
ed

 E
ne

rg
y

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
epic

deadlines
1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
gsm

deadlines
1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
mpeg

deadlines

Analytical
Runtime
Compile−time

Figure 8: The minimum energy consumption predicted by an
ideal analytical model, the lower bounds of energy consump-
tion from runtime DVFS and the actual energy consumption
achieved by a compile-time DVFS policy for six deadlines. En-
ergy consumption is normalized to the best single frequency.

analytical model, indicating the usefulness of that model despite its
simplicity.

The possible minimum energy for runtime DVFS provided by
the exact algorithm is lower than the actual energy consumption
using an optimal compile-time policy. For adpcm, there is no en-
ergy saving using compile-time DVFS while the savings might be
up to 18% using runtime DVFS. Except for certain deadlines, epic,
gsm and mpeg also show runtime DVFS possibly can achieve more
energy savings than compile-time DVFS. This motivates the need
for runtime DVFS even in cases of complete program knowledge.
The reason is that runtime DVFS can assign different V/f levels to
the same piece of static code at different runs while compile-time
DVFS is usually confined to static code structure where the piece
of static code is assigned to run using same frequency at different
runs.

6. CONCLUSIONS
We have demonstrated the ability of the algorithm to provide ex-

act upper bounds of energy savings for small to medium problems
given a DVFS-enabled processor. We also proposed a linear-time
heuristic to approximate the upper bounds for large problem where

exact bounds are computationally expensive to get. This model can
be used widely to analyze the energy savings from runtime DVFS.

We believe that the model is a powerful tool to guide the devel-
opment of runtime DVFS policies. We have successfully investi-
gated the impact of scaling granularity, program behavior variation
and memory system on the energy savings from runtime DVFS us-
ing this model. The development of this model leads to our current
work: developing a fast runtime DVFS policy to achieve the energy
savings corresponding to upper bounds.

7. REFERENCES
[1] T. Burd and R. Brodersen. Design issues for dynamic voltage

scaling. In Proceedings of International Symposium on Low
Power Electronics and Design (ISLPED-00), June 2000.

[2] K. Choi, R. Soma, and M. Pedram. Fine-grained dynamic
voltage and frequency scaling for precise energy and
performance tradeoff based on the ratio of off-chip access to
on-chip computation times. pages 18–28, Jan 2005.

[3] L. Clark. Circuit Design of XScale (tm) Microprocessors,
2001. In 2001 Symposium on VLSI Circuits, Short Course
on Physical Design for Low-Power and High-Performance
Microprocessor Circuits.

[4] Intel Corp. Intel XScale (tm) Core Developer’s Manual,
2003. http://developer.intel.com/design/intelxscale/.

[5] T. Ishihara and H. Yasuura. Voltage scheduling problem for
dynamically variable voltage processors. In International
Symposium on Low Power Electronics and Design
(ISLPED-98), pages 197–202, August 1998.

[6] R. Jejurikar and R. Gupta. Energy aware task scheduling
with task synchronization for embedded real time systems. In
Proceedings of the international conference on Compilers,
architecture, and synthesis for embedded systems, pages
164–169, 2002.

[7] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communication Systems. In Proceedings of
the 30th International Symp. on Microarchitecture, Dec.
1997.

[8] J. Lorch and A. Smith. Improving dynamic voltage
algorithms with PACE. In Proceedings of the International
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS 2001), June 2001.

[9] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling
for low-power embedded operating systems. In Proceedings
of the 18th ACM Symp. on Operating Systems Principles,
2001.

[10] G. Qu. What is the limit of energy saving by dynamic
voltage scaling? In Proceedings of the International
Conference on Computer Aided Design, 2001.

[11] A. Sinha and A. Chandrakasan. Dynamic voltage scheduling
using adpative filtering of workload traces. In Proceedings of
the 14th International Conference on VLSI Design, Jan 2001.

[12] Transmeta Corporation. Crusoe processor documentation,
2002. http://www.transmeta.com.

[13] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced cpu energy. In the 1st Symposuim on
Operating Systems Design and Implementation (OSDI-94),
pages 13–23, 1994.

[14] A. Weissel and F. Bellosa. Process cruise control:
event-driven clock scaling for dynamic power management.
In CASES ’02: Proceedings of the 2002 international
conference on Compilers, architecture, and synthesis for
embedded systems, pages 238–246, 2002.

[15] F. Xie, M. Martonosi, and S. Malik. Compile-time dynamic
voltage scaling settings: Opportunities and limits. In
Proceedings of ACM SIGPLAN Conference on Programming
Languages, Design, and Implementation (PLDI’03), June
2003.

[16] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced cpu energy. In FOCS ’95: Proceedings of the 36th
Annual Symposium on Foundations of Computer Science
(FOCS’95), page 374. IEEE Computer Society, 1995.

6

