
Energy Efficient Multiple Clock Domain Array Processors
by the Adaptive Tuning of Processor Clock Frequency

ABSTRACT
This paper investigates techniques which adaptively tune the
processor frequency in a multiple-clock-domain array processor
to achieve energy efficiency. The investigated clock tuning
techniques include static clock configuration, runtime clock
programming, and FIFO-based dynamic clock control. Several
DSP applications are implemented on an array processor using
different clock control methods as case studies. Simulation results
show that, combined with optimistic voltage scaling methods, an
average of about 40% power can be saved using adaptive clock
tuning techniques, without degrading system performance.

Categories and Subject Descriptors
C.1.4 [Parallel Architectures]: Distributed architecture.

General Terms
Design

Keywords
Energy and Power Efficiency, Array Processor, Multiple Clock
Domains, Adaptive Clock Frequency Tuning.

1. INTRODUCTION
Power and energy efficiency has become one of the most
important parameters of the VLSI system and will be one of the
key bottlenecks in future designs. Portable systems need low
power implementations to increase battery life. Traditional non-
portable systems are also concerned with power because their
power consumption and power density are increasing dramatically
[1]. Until now, the dynamic power has dominated the total power
consumption which can be expressed as P f= aCV 2 [2]. Here a
is the circuit state transition probability, C is the capacitance, V is
the supply voltage, and f is the clock frequency. Recently, leakage
is becoming another important power consumption source [3].

An array processor is a promising architecture which has the
potential to provide a good balance of performance and energy
consumption. Its basic idea is putting multiple processors into one
chip to increase its parallelism and provide high performance.

Research in array processor was active more than twenty years
ago[4], but it has never been used widely commercially. Currently,
increasing the clock frequency meets its bottleneck because of the
design difficulty and huge power consumption [5]. On the other
hand, submicron technology enables putting millions or even
billions [9] of transistors into a single chip. Multiple-processor-
chip shows a promising future. Not only much academic research
[6 - 8], but also some commercial products such as the 2-core
Itanium processor [9] and 8-core CELL processor [10] are
appearing. An array processor also can provide energy efficiency
because its parallel computing improves performance and gives
the potential to decrease clock frequency and/or voltage.

Each processor in the array can use a global clock as in a systolic
system [4], or use its own local clock as in a wavefront system [4].
Traditional systems use a single global synchronous clock
because it is easy to design. As chip size and clock frequency
increase dramatically, clock design has become one of the most
difficult issues. At the same time, the high speed global clock
consumes a huge amount of power. Globally asynchronous
locally synchronous systems have become an active research
topic, which potentially can provide high speed and low power.

Adaptively tuning the clock frequency and voltage is popularly
used to get power and energy savings [11 - 17]. Most work
focuses on a single-processor single-clock-domain system [11 –
14]. T. Kuroda et al. [11] created an optimal supply voltage
generation scheme for specific fixed frequency at power-up time.
T. Burd et al. [12] and K. Nowka et al. [13] use software to
control the processor frequency and voltage at the runtime. S.
Akui et al. [14] use hardware to control the processor frequency
and voltage automatically at the runtime. G. Magklis et al. [15]
analyzed the performance and energy efficiency for single-
processor multiple-clock-domain systems. T. Fujiyoshi et al. [16]
built one chip using adaptive frequency and voltage techniques
with functional modules. The latest Intel 2-core Itanium [17] uses
hardware to automatically control processor voltage and
frequency by monitoring system power and temperature, but it
does not maintain the same performance when decreasing the
clock and voltage.

Little detailed analysis is available for chips using a multiple-
processor multiple-adaptive-clock-domain design style. Very few
multiple-processor chips use hardware to automatically change
the processor clock and voltage, while maintaining the same
performance. We use adaptive clock frequency tuning techniques
as a low power solution for the multiple-clock-domain array
processor. In particular, our proposed FIFO based dynamic clock
control method can automatically tune the clock frequency
according to the computation load, without degrading system
performance.

2. IMPLEMENTATION OF AN ARRAY
PROCESSOR
2.1 Processor Architecture
An asynchronous array of simple processors [18] containing
uniform processor units is used as the example platform in this
paper, but these methods are widely suitable to any multiple-
clock-domain array processor. Fig. 1 shows a chip diagram with
3×3 processors. The hardware related to the multiple-clock
system are the local configurable oscillator and the 32-word depth
asynchronous dual-clock FIFO [19].

Inst
Mem

ALU
MAC

Control

Data
Mem

Clock
In-

FIFO0

In-
FIFO1

Output

Fig. 1: Diagram of array processor with 3×3 processors

The main characteristics of our array processor include: small
memory (64 32-bit word instruction memory and 128 16-bit word
data memory), globally asynchronous locally synchronous system
(GALS), and simple architecture and simple instruction set.

2.2 Mapping Applications on Array Processor
An 8-point DCT, an 8×8 DCT, a 64 point FFT and a JPEG
encoder are implemented on the array processor to show some
application mapping.

Eq. 1 is the 1-dimensional DCT algorithm and Eq. 2 is one

efficient implementation [20] where C i
i = cos π

16
. Fig. 2 shows

using two processors to do an 8-point DCT. The first processor
deals with addition and subtraction, and the second processor
deals with multiplication. The execution time (throughput) is
410ns when using a 100MHz clock frequency for both processors.

X n x m
m np

Nm

N

() () cos(
()

)=
+

=

−

∑ 2 1
20

1
 (1)

X
X
X
X

C C C C
C C C C
C C C C
C C C C

x x
x x
x x
x x

()
()
()
()

() ()
() ()
() ()
() ()

0
2
4
6

1
2

4 4 4 4
2 6 6 2
4 4 4 4
6 2 2 6

0 7
1 6
2 5
3 4

=
− −

− −
− −

+
+
+
+

(2a)

X
X
X
X

C C C C
C C C C
C C C C
C C C C

x x
x x
x x
x x

()
()
()
()

() ()
() ()
() ()
() ()

1
3
5
7

1
2

1 3 5 7
3 7 1 5
5 1 7 3
7 5 3 1

0 7
1 6
2 5
3 4

=
− − −
−
− −

−
−
−
−

(2b)

DCT
A

DCT
B

Fig. 2: 8-point DCT implementation using two processors

Eq. 3 shows the 2-dimensional DCT algorithm where α()0 1
=

N

and α()m
N

=
2 for 1 ≤ ≤m N . It can be processed using two 1-

dimensional DCT steps as in Eq. 4. Fig. 3 shows using four
processors to do an 8×8 DCT. The 1st and 3rd processors do an 8-
point DCT, the 2nd and 4th processors do data transitions between
rows and columns. The execution time (throughput) is 5060 ns
when using a 100MHz clock frequency for all processors.

G m n m n g i k
i m

N

k n

N
c

k

N

i

N

(,) () () (,) cos[
()

]cos[
()

]=
+ +

=

−

=

−

∑∑α α π π

0

1

0

1 2 1

2

2 1

2
 (3)

G m n m n g i k k n
N

i m
Nc

k

N

i

N

(,) () [() (,) cos ()]cos ()= + +

=

−

=

−

∑∑α α π π

0

1

0

1 2 1
2

2 1
2

 (4)

1-
DCT

Trans 1-
DCT

Trans

Fig. 3: 8×8 DCT implementation using four processors

A 64-point complex FFT algorithm is implemented using 8
processors [21] shown in Fig. 4. Here the bit-reverse processor
transposes the order of input data, butterfly processors do FFT
butterfly calculations, memory processors store intermediate data,
and the shuffle processor reorders the output data. The execution
time (throughput) is 117us when all processors use 100MHz.

Bit
Reverse

Memory Butterfly Shuffle

Memory MemoryButterfly Butterfly

Input Output

Fig. 4: 64 point FFT Implementation using eight processors

A JPEG encoder is implemented using 9 processors as shown in
Fig. 5. The main functional blocks include level shifter, an 8×8
DCT, quantization, Zig-Zag reordering, and a varying length
Huffman encoder. The execution time (throughput) is 14us per
8×8 block when using 100MHz clock frequency for all processors.

Fig. 5: JPEG encode implementation using nine processors

1 9 7

2

3

8 6

4 5

Level shift
& DCT

Huffman
encode

Quantization
& Zig-Zag

3. ADAPTIVE MULTIPLE CLOCK LOW
POWER DESIGN
Three adaptive clock tuning techniques are investigated. The
static clock configuration method configures the clock frequency
at configuration time according to processor computation load and
processor position in the array. The runtime clock programming
method uses software to program the clock frequency at runtime
according to sub-algorithm characteristics. The FIFO based
dynamic clock control method uses hardware to change the clock
frequency automatically according to FIFO fill information.

3.1 Static Clock Configuration
Statically deciding the processor clock frequency according to its
computation load at power-up time and then adaptively tuning the
processor voltage is the first adaptive clock/voltage method [11].

In the processor array, the computation and characteristics of each
processor is different. Some processors can be configured using a
slow clock frequency at configuration time, without degrading
system performance. Not like in the single processor chip where
its clock frequency only depends on its computation load, the
optimal processor clock frequency in an array processor also
depends on its position and relationship with other processors.

3.1.1 Relating optimal clock to computational load
The basic idea is using a slow clock frequency for processors with
light computational load.

When using two processors to do an 8-point DCT as in Fig. 2, Fig.
6 shows that the system throughput changes with the scaling of
the processor clock frequency. The throughput stays the same for
a long period of time when scaling down the clock of the 1st
processor. Minimal power consumption is achieved when
choosing 46MHz and 100MHz for the two processors, with the
same performance as using 100MHz for the two processors. Here
the optimal processor clock relationship is exactly the same as the
processor computation load relationship: 46MHz/100MHz = 19
cycles / 41 cycles, as shown in Fig. 7.

Fig. 6: Throughput changes with a statically
configured processor clock for an 8-point DCT

0
0.2
0.4
0.6
0.8

1
1.2

1 0.9 0.8 0.7 0.6 0.5 0.4

relative
clock

R
el

at
iv

e
th

ro
ug

hp
ut

scale 1st processor
scale 2nd processor

DCT
A

DCT
B

computation load: 19 cycles : 41 cycles = 0.46:1
 optimal clock: 46 MHz : 100 MHz = 0.46:1

Fig. 7: Optimal clock frequency ratio is the same as
computational load in 8-point DCT

3.1.2 Relating optimal clock to processor position
The optimal processor clock frequency is also related to its
position in the array processor.

When using four processors to do an 8×8 DCT as shown in Fig.3,
Fig. 8 shows that the system throughput changes with the scaling
of the processor clock frequency. The throughput changes with
the scaling of the 2nd and 4th processor much slower than the
scaling of 1st and 3rd processor, which shows the effect of
computation load. In addition, although the 2nd and 4th processor
have the same light computation load, their behavior is very
different and the throughput changes with the 4th processor
scaling much slower than the 2nd processor. Minimal power
consumption is achieved when choosing 100MHz, 95MHz,
100MHz, 57MHz for four processors, with the same performance
as with 100MHz for all processors. So here the optimal processor
clock frequency not only depends on the processor computation
load, but also depends on its position, as shown in Fig. 9 again.

Fig. 8: Throughput changes with the statically
configured processor clock for an 8×8 DCT

0.55

0.65

0.75

0.85

0.95

1.05

0.9 0.8 0.7 0.6 0.5

relative
clock

R
el

at
iv

e
th

ro
ug

hp
ut

scale 1st processor
scale 2nd processor
scale 3rd processor
scale 4th processor

1-
DCT

Trans 1-
DCT

Trans

computation load (clock cycles): 408 : 204 : 408 : 204
optimal clock frequency (MHz): 100 : 95 : 100 : 57

Fig. 9: Optimal clock frequency is related to processor
position in an 8×8 DCT

3.1.3 Combining with static voltage configuration
The processor voltage can be statically configured according to
the static clock frequency to get further power saving. We simply
assume that voltage is decreased linearly with the clock frequency.

3.2 Runtime Clock Programming
In the static configuration method, the processor frequency is
decided at configuration time and will not be changed at run time.
Looking into the algorithm of one processor, normally we can
find different characteristics varying with the computing time.
More energy can be saved if we use software to change the clock
frequency at runtime for different parts of the program. Software
based runtime clock programming is already commonly used in
the single processor chip [12, 13, 16].

In the array processor, the characteristics of each processor should
be checked and different methods should be applied to each of
them.

3.2.1 Characteristics of sub-algorithm
In the 8×8 DCT implementation as shown in Fig. 4, each
processor has a different behavior during executing time. Fig. 10
shows the stall probability of the 1st processor and 2nd processor
along with time. The 1st processor has low stall probability most
of the time, so we can not scale its frequency down without
degrading system performance. The 2nd processor has high stall
probability most of the time. Further more, an obvious difference
exists between the first half and second half of execution. It
always has high stall probability during the first half time and has
a little less stall probability during the second half. This reality
allows us to lower clock frequency for the first part of the
program.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

First processor in Fig. 9

S
ta

ll
pr

ob
ab

ili
ty

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Second processor in Fig. 9

S
ta

ll
pr

ob
ab

ili
ty

Fig. 10: Stall probability of (a) the 1st processor and (b) the 2nd

processor changes along with computing time in 8×8 DCT

We can also see the behavior of the 2nd processor from table 1.
Here the stall-input is the stall when reading empty FIFOs. The
stall-output is the stall when writing full FIFOs. The first part
reads the input data, and the second part reorders the data then
outputs the result. The reading sub-algorithm is much simpler
than the reordering algorithm, but their total time is similar
because the reading sub-algorithm wastes many cycles on the
input-stall.

Table 1: Sub-algorithm characteristics for 2nd processor

Sub
-algorithm

Execution
Time
(# cycles)

Stall-
input
(#cycles)

Stall-
output
(#cycles)

Total
Time
(#cycles)

Reading 73 191 0 264
Reordering 133 0 108 241

3.2.2 Program clock frequency using instructions
Fig. 11 shows an example pseudo assembly code with runtime
clock programming for the 2nd processor in an 8×8 DCT. Two
extra instructions are used to program the clock frequency.

Fig. 12 shows the system throughput for different runtime clock
programming schemes for the 2nd processor. Minimal power
consumption is achieved when choosing a clock frequency around
70MHz and 100MHz respectively for the two program parts, with
the same performance as using a static 100MHz.

main:
MOVE start=0, end=63
MOVI stride = 1
MOVI osc 82 // Programming Clk1
RPT #64
MOVE [addr+] Input

MOVI osc 50 // Programming Clk2
MOV start=0, end=56
MOV stride = 8
RPT #8
MOVE output [addr+]
MOV start=1, end=57
RPT #8
MOVE output [addr+]
MOV start=2, end=58
RPT #8
……
Fig. 11: Assembly code for Transposing DCT processor with

runtime clock programming

Fig. 12: Throughput changes with different
runtime clock programming for an 8×8 DCT

0.94
0.95
0.96
0.97
0.98
0.99

1
1.01

1 0.9 0.8 0.7

relative
clock

re
la

tiv
e

th
ro

ug
hp

ut

scale first part
scale second part

3.2.3 Combining with runtime voltage programming
Runtime clock programming can be combined with runtime
voltage programming to get further power saving. Using DC-DC
converters to change the voltage is too slow. Another possible
method called voltage dithering [22] is using a multiple voltage
supply and choosing a low or high voltage using program
instructions. Potentially the voltage can be changed almost
simultaneously with the clock frequency.

3.3 FIFO based Dynamic Clock Control
Previously discussed methods both use software methods to
decide the processor frequency. One of the difficulties in using
these methods is that the programmer needs to calculate the
optimal clock frequency complicating programming. Hardware
based methods have been used to automatically and dynamically
change the clock frequency at the runtime [14, 17].
Implementation in [14] only focuses on a single processor, while
the 2-core Itanium [17] does not keep the same system
performance when decreasing the clock and voltage.

In an array processor, different processors transfer the processed
data through the FIFO, which give us a chance to monitor each
processor’s computational load according to the FIFO fill rate and
automatically adjust the clock frequency for each processor at run
time, and maintain system performance.

3.3.1 Hardware implementation
The basic function of the circuit is to increase the clock frequency
when the input FIFO is too full (processing is too slow), and
decreasing the clock frequency when the FIFO is too empty
(processing is too fast).

Fig. 13 shows the circuit diagram which automatically tunes the
oscillator frequency according to the FIFO fill rate. Four signals
are extracted from the FIFO. Signal total_full indicates the FIFO
is full and no further data can be written in, signal too_full
indicates the FIFO is nearing full (we define too_full is 1 when
FIFO is filled with more than 16 data units), signal total_empty
indicates the FIFO is empty, signal too_empty indicates the FIFO
is nearing empty (we define too_empty is 1 when FIFO is filled
with less than 8 data units). The reason to separate signals
total_full and total_empty from too_full and too_empty is because
they should have higher priority.

Signals too_full and too_empty are fed into counters (we choose
4-bit counter). When the FIFO is near full for several consecutive
cycles (16 in our case), or is totally full, the clock frequency will
be increased by 1.25. When the FIFO is nearing empty for several
consecutive cycles (16 in our case), or is totally empty, the clock
frequency will be decreased by 1.25. Otherwise the clock
frequency keeps the same. The clock frequency range we choose
is between 20MHz and 625MHz.

Different clock steps are evaluated as shown in Fig. 14. Here 2
means the clock frequency is multiplied or divided by 2 each time,
1.25 means the clock frequency is multiplied or divided by 1.25
each time. The 1.25 case performs a little better in these studied
cases and is the reason why we change the clock 25% each time.

Clk_out

freq_ctr_c*1.25

/1.25

freq_conf

clk_out

clk_out

too_full

too_empty

FIFO

total_full

total_empty

4-bit-Counter

ENB

out1
|

out4

4-bit-Counter

ENB

out1
|

out4

D Q

Fig. 13: FIFO based dynamic clock control circuit diagram

Fig. 14: Relative power of several
applications using different clock change step

0

0.5

1

1.5

1-D DCT 2-D DCT 64 FFT JPEG

R
el

at
iv

e
po

w
er

clock step factor:2 clock step factor:1.75
clock step factor:1.5 clock step factor:1.25

3.3.2 Self-adaptivity
The FIFO based dynamic clock control method has self-adaptivity
characteristics which can be observed in two situations.

First, self-adaptivity exists in the FIFO fill status: the circuit will
adjust the processing speed according to the FIFO fill status to
avoid always being in the too full or too empty state. Fig. 15
shows the 4th processor’s FIFO fill status in an 8×8 DCT before
and after using the dynamic clock control method. The FIFO is
always near empty if using a static 100MHz clock, while the
FIFO is less near empty status after using dynamic clock control
method.

Second, self-adaptivity exists in the clock speed: it will not only
be in a very fast or very slow state. The clock speed is increased
during heavy computation and decreased during light computation.
Fig. 16 shows the clock frequency of the 4th processor in an 8×8
DCT with the dynamic clock control method. The average clock
frequency becomes 50.8MHz, having the same performance as
when using a static 100MHz clock frequency.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

Using fixed clock

F
IF

O
 fi

ll
st

at
us

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

Using dynamic clock control

F
IF

O
 fi

ll
st

at
us

Fig. 15: Processor FIFO fill status before and after using the

dynamic clock control method

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350

400

C
lo

ck
 fr

eq
ue

nc
y

(M
H

z)

Fig. 16: Processor clock frequency changes with time when

using the dynamic clock control method

3.3.3 Combining with voltage selection
Similar to the idea of multiple voltage selections in the runtime
clock programming, we can select a high or low voltage together
along with clock frequency, to get further power saving.

4. METHODS COMPARISON
Table 2 and Fig. 17 compare the power consumption using three
adaptive clock control methods together with optimistic voltage
scaling. Single processor power is assumed as 1 for normal speed.

Table 2: Power comparison of adaptive clock control methods

Application Initial
method

Static
config

Runtime
program

Dynamic
control

8-pt. DCT 2 1.09 1.09 1.04
8×8 DCT 4 3.03 2.77 4
64 FFT 8 5.63 5.21 4.08
JPEG 9 2.59 2.43 3.6

Fig. 17: Relative power of several applications
using clock frequency control methods

0
0.2
0.4
0.6
0.8

1
1.2

1-D DCT 2-D DCT 64 FFT JPEG

initial static config runtime program dynamic control

Table 3 compares the characteristics of three clock frequency
control methods. The power savings data comes from the average
power saving of the example applications. The runtime
programming method has a small advantage on the power savings.
The static configuration method has simple hardware and not
difficult programming. The advantage of the dynamic control is
its easy programming and self-adaptivity.

Table 3: Characteristics of three clock control methods

Method Hardware Program Power
Saving

Others

Static
configure

Simple Middle ~43% --

Runtime
program

Middle Complex ~46% --

Dynamic
control

Complex Simple ~38% Self-
adaptivity

5. SUMMARY
This paper investigates techniques which adaptively tune the
clock frequency of an array processor to get a low power
implementation. Simple static clock configuration can achieve
around 40% power saving without degrading system performance.
Programming the frequency at the runtime can increase power
savings with the cost of more difficult programming. Hardware
based dynamic clock control method can automatically tune its
clock frequency according to processor hardware state.

6. ACKNOWLEDGEMENTS
The authors acknowledge the other processor co-designers and
support from Intel, NSF and a Faculty Research Grant.

7. REFERENCE
[1] S. Borkar, “Obeying Moore’s Law beyond 0.18 micron,” 13th
IEEE International ASIC/SOC Conference, Sep. 2000, pp:26-31.
[2] A. P. Chandrakasna et al., “Low-Power CMOS Digital
Design,” JSSC, April 1992, pp: 473-484.
[3] K. Roy et al., “Leakage Current Mechanisms and Leakage
Reduction Techniques in Deep-Submicrometer CMOS Circuits,”
IEEE Proceedings, Feb. 2003, pp:305-327.
[4] S. Y. Kung, “VLSI Array Processors,” IEEE ASSP Magazine,
July 1985, pp: 4-22.
[5] K. Krewell, “Intel Cancels 4GHz P4, Focus Shifts to System
Features,” www.MPRonline.com, Nov. 1, 2004.
[6] K. Mai et al., “Smart Memories: A Modular Reconfigurable
Architecture,” ISCA, 2000, pp: 161-171.
[7] H. Zhang et al., “A 1-V Heterogeneous Reconfigurable DSP
IC for Wireless Baseband Digital Signal Processing,” JSSC, Nov.
2000, pp: 1697-1704.
[8] M. B. Taylor et al., “The Raw Microprocessor: A
Computational Fabric For Software Circuits And General-Purpose
Programs,” IEEE Micro, 2002, pp. 25-35.
[9] S. Naffziger et al., “The Implementation of a 2-core Multi-
Threaded Itanium Family Processor,” ISSCC, 2005, pp. 182-183.
[10] D. Pham et al., “The Design and Implementation of a First-
Generation CELL Processor,” ISSCC, 2005, pp. 184-185.
[11] T. Kuroda et al., “Variable Supply-Voltage Scheme for Low-
Power High-Speed CMOS Digital Design”, JSSC, Mar. 1998, pp:
454-462.
[12] T. Burd et al. “A Dynamic Voltage Scaled Microprocessor
System,” ISSCC, 2000, pp: 294-295.
[13] K. Nowka et al., “A 0.9v to 1.95v Dynamic Voltage-Scalable
and Frequency-Scalable 32b PowerPC Processor”, ISSCC, 2002,
pp:340-341.
[14] S. Akui et al., “Dynamic Voltage and Frequency
Management for a Low-Power Embedded Microprocessor,”
ISSCC 2004, pp: 64-65.
[15] G. Magklis et al., “Dynamic Frequency and Voltage Scaling
for A multiple-Clock-Domain Microprocessor,” IEEE Micro,
2003, pp: 62-68.
[16] T. Fujiyoshi et al., “An H.264/MPEG-4 Audio/Visual Codec
LSI with Module-Wise Dynamic Voltage/Frequency Scaling,”
ISSCC 2005, pp: 132-133.
[17] T. Fischer et al., “A 90nm Variable-Frequency Clock System
for a Power-Managed Itanium-Family Processor,” ISSCC, 2005,
pp: 294-295.
[18] Omitted for reviewer
[19] Omitted for reviewer
[20] K. K. Parhi, “VLSI Digital Signal Processing Systems”, John
Wiley & Sons, 1999, pp275-285.
[21] Omitted for reviewer
[22] B. H. Calhoun et al., “Ultra-Dynamic Voltage Scaling Using
Sub-threshould Operation and Local Voltage Dithering in 90nm
CMOS,” ISSCC, 2005, pp:300-301

