
Energy Efficient Multiple Clock Domain Array Processors 
by the Adaptive Tuning of Processor Clock Frequency   

 
 
 

  
 
 
 
 

ABSTRACT 
This paper investigates techniques which adaptively tune the 
processor frequency in a multiple-clock-domain array processor 
to achieve energy efficiency. The investigated clock tuning 
techniques include static clock configuration, runtime clock 
programming, and FIFO-based dynamic clock control. Several 
DSP applications are implemented on an array processor using 
different clock control methods as case studies. Simulation results 
show that, combined with optimistic voltage scaling methods, an 
average of about 40% power can be saved using adaptive clock 
tuning techniques, without degrading system performance.  

Categories and Subject Descriptors 
C.1.4 [Parallel Architectures]: Distributed architecture. 

General Terms 
Design 

Keywords 
Energy and Power Efficiency, Array Processor, Multiple Clock 
Domains, Adaptive Clock Frequency Tuning. 

1. INTRODUCTION 
Power and energy efficiency has become one of the most 
important parameters of the VLSI system and will be one of the 
key bottlenecks in future designs. Portable systems need low 
power implementations to increase battery life. Traditional non-
portable systems are also concerned with power because their 
power consumption and power density are increasing dramatically 
[1]. Until now, the dynamic power has dominated the total power 
consumption which can be expressed as P f= aCV 2 [2]. Here a  
is the circuit state transition probability, C is the capacitance, V is 
the supply voltage, and f is the clock frequency. Recently, leakage 
is becoming another important power consumption source [3].  

An array processor is a promising architecture which has the 
potential to provide a good balance of performance and energy 
consumption. Its basic idea is putting multiple processors into one 
chip to increase its parallelism and provide high performance. 

Research in array processor was active more than twenty years 
ago[4], but it has never been used widely commercially. Currently, 
increasing the clock frequency meets its bottleneck because of the 
design difficulty and huge power consumption [5]. On the other 
hand, submicron technology enables putting millions or even 
billions [9] of transistors into a single chip. Multiple-processor-
chip shows a promising future. Not only much academic research 
[6 - 8], but also some commercial products such as the 2-core 
Itanium processor [9] and 8-core CELL processor [10] are 
appearing. An array processor also can provide energy efficiency 
because its parallel computing improves performance and gives 
the potential to decrease clock frequency and/or voltage.  

Each processor in the array can use a global clock as in a systolic 
system [4], or use its own local clock as in a wavefront system [4]. 
Traditional systems use a single global synchronous clock 
because it is easy to design. As chip size and clock frequency 
increase dramatically, clock design has become one of the most 
difficult issues. At the same time, the high speed global clock 
consumes a huge amount of power. Globally asynchronous 
locally synchronous systems have become an active research 
topic, which potentially can provide high speed and low power. 

Adaptively tuning the clock frequency and voltage is popularly 
used to get power and energy savings [11 - 17]. Most work 
focuses on a single-processor single-clock-domain system [11 – 
14]. T. Kuroda et al. [11] created an optimal supply voltage 
generation scheme for specific fixed frequency at power-up time. 
T. Burd et al. [12] and K. Nowka et al. [13] use software to 
control the processor frequency and voltage at the runtime. S. 
Akui et al. [14] use hardware to control the processor frequency 
and voltage automatically at the runtime. G. Magklis et al. [15] 
analyzed the performance and energy efficiency for single-
processor multiple-clock-domain systems. T. Fujiyoshi et al. [16] 
built one chip using adaptive frequency and voltage techniques 
with functional modules. The latest Intel 2-core Itanium [17] uses 
hardware to automatically control processor voltage and 
frequency by monitoring system power and temperature, but it 
does not maintain the same performance when decreasing the 
clock and voltage. 

Little detailed analysis is available for chips using a multiple-
processor multiple-adaptive-clock-domain design style. Very few 
multiple-processor chips use hardware to automatically change 
the processor clock and voltage, while maintaining the same 
performance. We use adaptive clock frequency tuning techniques 
as a low power solution for the multiple-clock-domain array 
processor. In particular, our proposed FIFO based dynamic clock 
control method can automatically tune the clock frequency 
according to the computation load, without degrading system 
performance. 

 

 



2. IMPLEMENTATION OF AN ARRAY 
PROCESSOR 
2.1 Processor Architecture 
An asynchronous array of simple processors [18] containing 
uniform processor units is used as the example platform in this 
paper, but these methods are widely suitable to any multiple-
clock-domain array processor. Fig. 1 shows a chip diagram with 
3×3 processors. The hardware related to the multiple-clock 
system are the local configurable oscillator and the 32-word depth 
asynchronous dual-clock FIFO [19].  
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Fig. 1: Diagram of array processor with 3×3 processors 

 
The main characteristics of our array processor include: small 
memory (64 32-bit word instruction memory and 128 16-bit word 
data memory), globally asynchronous locally synchronous system 
(GALS), and simple architecture and simple instruction set.  

2.2 Mapping Applications on Array Processor 
An 8-point DCT, an 8×8 DCT, a 64 point FFT and a JPEG 
encoder are implemented on the array processor to show some 
application mapping. 

Eq. 1 is the 1-dimensional DCT algorithm and Eq. 2 is one 

efficient implementation [20] where C i
i = cos π

16
. Fig. 2 shows 

using two processors to do an 8-point DCT. The first processor 
deals with addition and subtraction, and the second processor 
deals with multiplication. The execution time (throughput) is 
410ns when using a 100MHz clock frequency for both processors. 
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Fig. 2: 8-point DCT implementation using two processors 

Eq. 3 shows the 2-dimensional DCT algorithm where α( )0 1
=

N
 

and α( )m
N

=
2  for 1 ≤ ≤m N . It can be processed using two 1-

dimensional DCT steps as in Eq. 4. Fig. 3 shows using four 
processors to do an 8×8 DCT. The 1st and 3rd processors do an 8-
point DCT, the 2nd and 4th processors do data transitions between 
rows and columns. The execution time (throughput) is 5060 ns 
when using a 100MHz clock frequency for all processors. 
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Fig. 3: 8×8 DCT implementation using four processors 

 
A 64-point complex FFT algorithm is implemented using 8 
processors [21] shown in Fig. 4. Here the bit-reverse processor 
transposes the order of input data, butterfly processors do FFT 
butterfly calculations, memory processors store intermediate data, 
and the shuffle processor reorders the output data. The execution 
time (throughput) is 117us when all processors use 100MHz. 
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Fig. 4: 64 point FFT Implementation using eight processors 

 
A JPEG encoder is implemented using 9 processors as shown in 
Fig. 5. The main functional blocks include level shifter, an 8×8 
DCT, quantization, Zig-Zag reordering, and a varying length 
Huffman encoder. The execution time (throughput) is 14us per 
8×8 block when using 100MHz clock frequency for all processors. 

 
Fig. 5: JPEG encode implementation using nine processors 
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3. ADAPTIVE MULTIPLE CLOCK LOW 
POWER DESIGN 
Three adaptive clock tuning techniques are investigated. The 
static clock configuration method configures the clock frequency 
at configuration time according to processor computation load and 
processor position in the array. The runtime clock programming 
method uses software to program the clock frequency at runtime 
according to sub-algorithm characteristics. The FIFO based 
dynamic clock control method uses hardware to change the clock 
frequency automatically according to FIFO fill information. 

3.1 Static Clock Configuration 
Statically deciding the processor clock frequency according to its 
computation load at power-up time and then adaptively tuning the 
processor voltage is the first adaptive clock/voltage method [11]. 

In the processor array, the computation and characteristics of each 
processor is different. Some processors can be configured using a 
slow clock frequency at configuration time, without degrading 
system performance. Not like in the single processor chip where 
its clock frequency only depends on its computation load, the 
optimal processor clock frequency in an array processor also 
depends on its position and relationship with other processors. 

3.1.1 Relating optimal clock to computational load 
The basic idea is using a slow clock frequency for processors with 
light computational load.  

When using two processors to do an 8-point DCT as in Fig. 2, Fig. 
6 shows that the system throughput changes with the scaling of 
the processor clock frequency. The throughput stays the same for 
a long period of time when scaling down the clock of the 1st 
processor. Minimal power consumption is achieved when 
choosing 46MHz and 100MHz for the two processors, with the 
same performance as using 100MHz for the two processors.  Here 
the optimal processor clock relationship is exactly the same as the 
processor computation load relationship: 46MHz/100MHz = 19 
cycles / 41 cycles, as shown in Fig. 7. 

Fig. 6: Throughput changes with a statically
configured processor clock for an 8-point DCT
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computation load:  19 cycles     :   41 cycles = 0.46:1
    optimal clock:    46 MHz      :   100 MHz = 0.46:1  

Fig. 7: Optimal clock frequency ratio is the same as 
computational load in 8-point DCT 

3.1.2 Relating optimal clock to processor position 
The optimal processor clock frequency is also related to its 
position in the array processor. 

When using four processors to do an 8×8 DCT as shown in Fig.3, 
Fig. 8 shows that the system throughput changes with the scaling 
of the processor clock frequency. The throughput changes with 
the scaling of the 2nd and 4th processor much slower than the 
scaling of 1st and 3rd processor, which shows the effect of 
computation load. In addition, although the 2nd and 4th processor 
have the same light computation load, their behavior is very 
different and the throughput changes with the 4th processor 
scaling much slower than the 2nd processor. Minimal power 
consumption is achieved when choosing 100MHz, 95MHz, 
100MHz, 57MHz for four processors, with the same performance 
as with 100MHz for all processors. So here the optimal processor 
clock frequency not only depends on the processor computation 
load, but also depends on its position, as shown in Fig. 9 again. 

Fig. 8: Throughput changes with the statically
configured processor clock for an 8×8 DCT
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Fig. 9: Optimal clock frequency is related to processor 
position in an 8×8 DCT 

 

3.1.3 Combining with static voltage configuration 
The processor voltage can be statically configured according to 
the static clock frequency to get further power saving. We simply 
assume that voltage is decreased linearly with the clock frequency. 

3.2 Runtime Clock Programming 
In the static configuration method, the processor frequency is 
decided at configuration time and will not be changed at run time. 
Looking into the algorithm of one processor, normally we can 
find different characteristics varying with the computing time. 
More energy can be saved if we use software to change the clock 
frequency at runtime for different parts of the program. Software 
based runtime clock programming is already commonly used in 
the single processor chip [12, 13, 16]. 

In the array processor, the characteristics of each processor should 
be checked and different methods should be applied to each of 
them. 



3.2.1 Characteristics of sub-algorithm 
In the 8×8 DCT implementation as shown in Fig. 4, each 
processor has a different behavior during executing time. Fig. 10 
shows the stall probability of the 1st processor and 2nd processor 
along with time. The 1st processor has low stall probability most 
of the time, so we can not scale its frequency down without 
degrading system performance. The 2nd processor has high stall 
probability most of the time. Further more, an obvious difference 
exists between the first half and second half of execution. It 
always has high stall probability during the first half time and has 
a little less stall probability during the second half. This reality 
allows us to lower clock frequency for the first part of the 
program.  
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Fig. 10: Stall probability of (a) the 1st processor and (b) the 2nd 

processor changes along with computing time in 8×8 DCT 

 
We can also see the behavior of the 2nd processor from table 1. 
Here the stall-input is the stall when reading empty FIFOs. The 
stall-output is the stall when writing full FIFOs. The first part 
reads the input data, and the second part reorders the data then 
outputs the result. The reading sub-algorithm is much simpler 
than the reordering algorithm, but their total time is similar 
because the reading sub-algorithm wastes many cycles on the 
input-stall.  

 
Table 1: Sub-algorithm characteristics for 2nd processor 

Sub 
-algorithm 

Execution  
Time 
(# cycles) 

Stall-
input 
(#cycles) 

Stall-
output 
(#cycles) 

Total 
Time 
(#cycles)

Reading 73 191 0 264 
Reordering 133 0 108 241 
 

3.2.2 Program clock frequency using instructions 
Fig. 11 shows an example pseudo assembly code with runtime 
clock programming for the 2nd processor in an 8×8 DCT. Two 
extra instructions are used to program the clock frequency.  

Fig. 12 shows the system throughput for different runtime clock 
programming schemes for the 2nd processor. Minimal power 
consumption is achieved when choosing a clock frequency around 
70MHz and 100MHz respectively for the two program parts, with 
the same performance as using a static 100MHz.  

main: 
MOVE start=0, end=63 
MOVI stride = 1 
MOVI osc   82   //                    Programming Clk1 
RPT #64 
MOVE [addr+] Input 
 
MOVI osc   50   //                    Programming Clk2 
MOV start=0, end=56  
MOV stride = 8 
RPT #8 
MOVE output [addr+] 
MOV start=1, end=57 
RPT #8 
MOVE output [addr+] 
MOV start=2, end=58 
RPT #8 
…… 
Fig. 11: Assembly code for Transposing DCT processor with 

runtime clock programming 
 

Fig. 12: Throughput changes with  different
runtime clock programming for an 8×8 DCT

0.94
0.95
0.96
0.97
0.98
0.99

1
1.01

1 0.9 0.8 0.7

relative
clock

re
la

tiv
e

th
ro

ug
hp

ut

scale first part
scale second part

 

3.2.3 Combining with runtime voltage programming 
Runtime clock programming can be combined with runtime 
voltage programming to get further power saving. Using DC-DC 
converters to change the voltage is too slow. Another possible 
method called voltage dithering [22] is using a multiple voltage 
supply and choosing a low or high voltage using program 
instructions.  Potentially the voltage can be changed almost 
simultaneously with the clock frequency. 

3.3 FIFO based Dynamic Clock Control 
Previously discussed methods both use software methods to 
decide the processor frequency. One of the difficulties in using 
these methods is that the programmer needs to calculate the 
optimal clock frequency complicating programming. Hardware 
based methods have been used to automatically and dynamically 
change the clock frequency at the runtime [14, 17]. 
Implementation in [14] only focuses on a single processor, while 
the 2-core Itanium [17] does not keep the same system 
performance when decreasing the clock and voltage. 

In an array processor, different processors transfer the processed 
data through the FIFO, which give us a chance to monitor each 
processor’s computational load according to the FIFO fill rate and 
automatically adjust the clock frequency for each processor at run 
time, and maintain system performance. 



3.3.1 Hardware implementation 
The basic function of the circuit is to increase the clock frequency 
when the input FIFO is too full (processing is too slow), and 
decreasing the clock frequency when the FIFO is too empty 
(processing is too fast). 

Fig. 13 shows the circuit diagram which automatically tunes the 
oscillator frequency according to the FIFO fill rate. Four signals 
are extracted from the FIFO. Signal total_full indicates the FIFO 
is full and no further data can be written in, signal too_full 
indicates the FIFO is nearing full (we define too_full is 1 when 
FIFO is filled with more than 16 data units), signal total_empty 
indicates the FIFO is empty, signal too_empty indicates the FIFO 
is nearing empty (we define too_empty is 1 when FIFO is filled 
with less than 8 data units). The reason to separate signals 
total_full and total_empty from too_full and too_empty is because 
they should have higher priority. 

Signals too_full and too_empty are fed into counters (we choose 
4-bit counter). When the FIFO is near full for several consecutive 
cycles (16 in our case), or is totally full, the clock frequency will 
be increased by 1.25. When the FIFO is nearing empty for several 
consecutive cycles (16 in our case), or is totally empty, the clock 
frequency will be decreased by 1.25. Otherwise the clock 
frequency keeps the same. The clock frequency range we choose 
is between 20MHz and 625MHz. 

Different clock steps are evaluated as shown in Fig. 14. Here 2 
means the clock frequency is multiplied or divided by 2 each time, 
1.25 means the clock frequency is multiplied or divided by 1.25 
each time. The 1.25 case performs a little better in these studied 
cases and is the reason why we change the clock 25% each time. 
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Fig. 13: FIFO based dynamic clock control circuit diagram 

 

Fig. 14: Relative power of several
applications using  different clock change step
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3.3.2 Self-adaptivity 
The FIFO based dynamic clock control method has self-adaptivity 
characteristics which can be observed in two situations.  

First, self-adaptivity exists in the FIFO fill status: the circuit will 
adjust the processing speed according to the FIFO fill status to 
avoid always being in the too full or too empty state. Fig. 15 
shows the 4th processor’s FIFO fill status in an 8×8 DCT before 
and after using the dynamic clock control method. The FIFO is 
always near empty if using a static 100MHz clock, while the 
FIFO is less near empty status after using dynamic clock control 
method. 

Second, self-adaptivity exists in the clock speed: it will not only 
be in a very fast or very slow state. The clock speed is increased 
during heavy computation and decreased during light computation. 
Fig. 16 shows the clock frequency of the 4th processor in an 8×8 
DCT with the dynamic clock control method. The average clock 
frequency becomes 50.8MHz, having the same performance as 
when using a static 100MHz clock frequency. 
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Fig. 15:  Processor FIFO fill status before and after using the 

dynamic clock control method 
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Fig. 16:  Processor clock frequency changes with time when 

using the dynamic clock control method 
 

3.3.3 Combining with voltage selection 
Similar to the idea of multiple voltage selections in the runtime 
clock programming, we can select a high or low voltage together 
along with clock frequency, to get further power saving. 



4. METHODS COMPARISON 
Table 2 and Fig. 17 compare the power consumption using three 
adaptive clock control methods together with optimistic voltage 
scaling. Single processor power is assumed as 1 for normal speed.  

 
Table 2: Power comparison of adaptive clock control methods 

Application Initial 
method 

Static 
config 

Runtime 
program 

Dynamic 
control 

8-pt. DCT 2 1.09 1.09 1.04 
8×8 DCT 4 3.03 2.77 4 
64 FFT 8 5.63 5.21 4.08 
JPEG 9 2.59 2.43 3.6 

Fig. 17: Relative power of several applications
using  clock frequency control methods
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Table 3 compares the characteristics of three clock frequency 
control methods. The power savings data comes from the average 
power saving of the example applications. The runtime 
programming method has a small advantage on the power savings. 
The static configuration method has simple hardware and not 
difficult programming. The advantage of the dynamic control is 
its easy programming and self-adaptivity. 

 
Table 3: Characteristics of three clock control methods 

Method Hardware Program Power 
Saving 

Others 

Static 
configure 

Simple Middle ~43% -- 

Runtime 
program 

Middle Complex ~46% -- 

Dynamic 
control 

Complex Simple ~38% Self-
adaptivity

 

5. SUMMARY 
This paper investigates techniques which adaptively tune the 
clock frequency of an array processor to get a low power 
implementation. Simple static clock configuration can achieve 
around 40% power saving without degrading system performance. 
Programming the frequency at the runtime can increase power 
savings with the cost of more difficult programming. Hardware 
based dynamic clock control method can automatically tune its 
clock frequency according to processor hardware state.  
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