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Hierarchical Dynamic Power Management with Application Scheduling 

Abstract - This paper proposes a hierarchical power management 
architecture which aims to facilitate power-awareness in an 
Energy-Managed Computer (EMC) system with multiple (potentially 
self-power-managed) components. Given a performance constraint for 
the system, this architecture improves both component-level and 
system-wide power savings by using information about service request 
rates obtained from the operating system by dynamically guiding/tuning 
the local power management policies of the components. The proposed 
architecture divides power management function into two layers: 
system-level and component-level. The system-level power management 
will be formulated as a service request flow regulation problem. In 
addition, application scheduling will be integrated with system-level 
power management to achieve higher power savings. The overall system 
model is constructed as a stochastic controllable process based on the 
theory of continuous-time Markovian decision processes (CTMDP). 
Experimental results demonstrate that the system-level power 
management approach can result in significant extra energy savings 
compared to energy savings that can be achieved by the 
component-level power management. 
1 Introduction 
Dynamic power management (DPM), which refers to a selective 
shut-off or slow-down components that are idle or underutilized, has 
proven to be a particularly effective technique for reducing power 
dissipation in such systems. In the literature, various DPM techniques 
have been proposed, from heuristic methods presented in early works 
[1][2] to stochastic optimization approaches [3][4]. Among the heuristic 
DPM methods, the time-out policy is the most widely used approach 
and has been implemented in many operating systems. The time-out 
policy is simple and easy to implement, but it has many shortcomings, 
such as not making use of the statistical information about the service 
request rates, and having a limited ability to trade-off performance and 
energy dissipation. Stochastic approaches are mathematically rigorous 
approaches which are based on stochastic models of service requests 
and are thus able to derive provably optimal DPM policies.  
Previous work on stochastic DPM techniques has focused on developing 
component level policies, where the power-managed component is 
assumed to be operating independently of the other components of the 
system. For example, these techniques cannot account for a 
mutual-exclusion relationship that will exist between the working states 
of two components if their operations require the same non-sharable 
resource. In addition, the previous work has not differentiated between 
the service request characteristics of different software applications, and 
therefore, it has effectively ignored the potential benefit of performing 
application-level scheduling as part of the power management process.  
Reference [5] considered job scheduling as part of a power management 
policy and proposed an on-line scheme that groups jobs based on their 
device usage requirements and then checks every possible execution 
sequence of the job groups to find out the one with minimal power 
consumption. This work is quite valuable because it demonstrates the 
potential for additional power saving by doing job scheduling. However, 
this work also has a few shortcomings. First, each time a new job is 
generated, the search procedure to find the minimal-power execution 
sequence has to be repeated. Second, this scheme does not explore the 
possibility of reducing the system energy by changing the working state 
of devices that have multiple functional states. Third, exact knowledge 
of the device usage of a job is required before the job can be scheduled. 
It is also assumed that this device usage profile does not change during 
the lifetime of a job. It is not clear how this scheme can capture the 
dependence between two parts of the same job, if the two parts exhibit 
very different device usage behavior. Finally, this scheme does not 

make use of any prediction or expectation of the future behavior of the 
system, and thus, can only make a greedy online decision.  
To capture dependencies between different system components, a power 
manager must have a global view of the system architecture, connection 
among components, system resources that are shared among these 
components, and any possible functional dependency between the 
components. In addition, application-level scheduling requires the 
power manager to work closely with the operating system scheduler. 
Both of these tasks are beyond the capabilities of the existing 
component-level power management solutions.  
A number of power saving mechanisms have been already incorporated 
into various standards and protocols. Examples are the power 
management function defined in USB bus standard and the power 
saving mode in the IEEE 802.11 protocol. A USB device will 
automatically enter a suspend state if there is no bus activity for three 
milliseconds. A Wireless Local Area Network (WLAN) card operating 
in the power saving mode, needs to wake up periodically at the 
beginning of a beacon interval and listen for traffic identification 
message. In most cases, these built-in power-management solutions 
cannot be changed because they ensure the correct functionality of a 
device running the related protocol. In this sense, we consider such a 
device as an uncontrollable or self power-managed component. Even 
beyond protocol considerations, vendors have already begun to develop 
power management software specifically designed for their products. 
An example is the enhanced adaptive battery life extender (EABLE) for 
Hitachi (IBM Storage Systems, originally) disk drive, which is 
self-managed and is incorporated into the device driver [6]. EABLE 
dynamically determines the appropriate mode based on the actual disk 
access pattern and the internal level of drive activity. Finally, 
implementation of the device power manager by the designers and 
manufacturers of the device itself, may relieve the system integrators of 
the burden of mastering detailed hardware and device driver expertise, 
and thus facilitate power-awareness in system integration with multiple 
components.  
The component designer does not know the global characteristics and 
performance requirements of the system in which the component will be 
incorporated. Therefore, the best that she can do is to provide a generic 
local power management policy for the component but make some 
tuning parameters of the local policy controllable by the system 
designer and the system-level power manager. On the other hand, a 
system engineer, who devises the architecture of an EMC system and 
takes care of interfacing and synchronization issues among the selected 
components, can devise a global power management policy that may 
help local power manager to improve power efficiency of the 
component. 
Based on the above considerations, we define the problem of 
hierarchical power management for an EMC system with self 
power-managed components. The problem is then formulated as a 
mathematical program with the aid of CTMDP models and solved 
accordingly. Key contributions of this paper may be summarized as 
follows. (1) A hierarchical DPM architecture is proposed, where the 
power management function is divided into system and component 
levels. At the system level, flow control on the service request traffic is 
employed to improve the effectiveness of built-in component-level 
power management solutions. Note that the proposed power 
management architecture can easily handle service providers with or 
without built-in local power managers. (2) CTMDP-based 
application-level scheduling is incorporated into system-level power 
management to achieve further power reduction. This scheduling is 
based on states of the individual components, the number of waiting 
tasks, and application stochastic characteristics, which makes it very 
different from [5]. (3) The proposed system-level power management 
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handles component state dependencies, whereby the state of a service 
provider is affected by states of the other service providers. 
In the literature, some works related to the hierarchical power 
management have been reported. Reference [7] proposes a DPM 
methodology for networks-on-chips, which combines node and network 
centric DPM decisions. More specifically, the node centric DPM uses 
Time-indexed Semi-Markovian decision processes whereas the network 
centric DPM allows a source node to use network sleep/wakeup 
requests to force sink nodes to enter specified states. Our proposed work 
differs from this paper by providing a more general and mathematically 
rigorous framework for defining and solving hierarchical DPM problem 
in an EMC system. In particular, application-level scheduling is 
exploited and component state dependency is considered by the 
system-level power manager. In addition, by using a globally-controlled 
service request flow regulation process, our framework can handle 
self-power-managed service providers and dynamically adjust their 
local power management policies. Reference [8] proposes a hierarchical 
scheme for adaptive DPM under non-stationary service requests, where 
the term “hierarchical” refers to the manner by which the authors 
construct a DPM policy. This is different from what is proposed in the 
present paper.  More precisely, in their work, the authors formulate 
policy optimization as a problem of seeking an optimal rule that 
switches policies among a set of pre-computed ones. However, this 
work assumes that the service providers are fully controllable and have 
not built-in power management policy. This work differentiates service 
request generation between “modes” (applications), but 
application-level scheduling is not considered. In addition, it focuses on 
developing power management policies for a single device. 
The remainder of this paper is organized as follows. CTMDP theory 
background is provided in Section 2. In Section 3, details of the 
proposed hierarchical DPM framework are described. In Section 4, 
stochastic model of the system-level power management is provided. In 
Section 5, the energy optimization problem is formulated and solved as 
a mathematical program. Experimental results and conclusions are 
provided in Sections 6 and 7, respectively.  

2 Background  
The continuous-time Markovian decision processes (CTMDP) based 
DPM approach was proposed in [4]. CTMDP-based approach makes 
policy changes in an asynchronous and event-driven manner and thus 
surmounts the shortcoming of the earlier work based on discrete-time 
Markovian decision processes [3], which relied on periodical policy 
evaluation. We believe CTMDP is more suitable for implementation as 
part of a real-time operating system environment because of its 
even-driven nature. A CTMDP model is defined with a discrete state 
space; a generator matrix, where an entry represents the transition rate 
from one state to another; an action set; and a reward function. In 
CTMDP, the generator matrix is a parameterized matrix that depends on 
the selected action. A complete system may comprise of several 
components, each modeled by a CTMDP. The state set of the complete 
system is obtained as the Cartesian product of the state set of each 
component minus the set of invalid states. The generator matrix of the 
whole system can be generated from the generator matrices of its 
components by using the tensor sum and/or product operations. Due to 
space limitation, the details of CTMDP modeling technique cannot be 
presented here. Interested readers may refer to [4]. 

3 A Hierarchical DPM Architecture 
In this paper, we consider a uni-processor computer system which 
consists of multiple I/O devices, e.g. hard disk, WLAN card, or USB 
devices. Batches of applications keep running on the system. When an 
application is running on the CPU, it may send requests to one or more 
devices for services. A performance constraint is imposed on the 
average throughput of the computer system. The constraint is defined as 
a minimum amount of completed application workloads over a fixed 

period of time. It is also required that each application gets a fair share 
of CPU time over a long period of time. Our objective is to minimize 
the energy consumption of the computer system. More precisely, this 
paper focuses on reducing energy consumption of the I/O devices. 
Saving processor and memory energy is out of the scope of this paper. 
Readers interested in these power components can refer to [9] and [10]. 

The architecture of our proposed hierarchical DPM framework which 
contains two service providers (SP), i.e. two I/O devices, is presented in 
Figure 1. This architecture has two levels of power management. In the 
component level, each SP is controlled by a local power manager 
(LPM). The LPM performs a conventional power management function, 
i.e.,  it is monitoring the number of service requests (SR) that are 
waiting in the component queue (CQ) and consequently adjusts the state 
of the SP. In the system level, the global power manager (GPM) acts as 
the central controller which attempts to meet a global performance 
constraint while reducing the system power consumption. In particular, 
it performs three separate functions. First, the GPM determines the state 
of the service flow controller (SFC) and regulates the service request 
traffic that is subsequently fed into the component queues. Note that in 
this architecture, the GPM cannot overwrite the LPM policy or directly 
control the state transition of an SP. Thus, regulating service request 
flow is the method that the GPM uses to guide the local power 
management policy and improve the power efficiency of the SPs. 
Second, the GPM works with the CPU scheduler to select the right 
applications to run on the CPU in order to reduce the expected system 
power dissipation. This decision is in turn made based on the current 
state of the power management system, including the states of the SPs 
and the number of SRs waiting in the SQ. Third, the GPM resolves the 
contention for shared resources between different SPs and dynamically 
assigns the resources so as to increase the system power efficiency.  
As a side note, the SFC performs three functions, i.e., SR transfer, SR 
blocking, and fake SR generation, in order to adjust the statistics of the 
service request flow that reaches the SP. The SRs that are blocked by the 
SFC are stored in a service queue (SQ). 

 
Figure 1. Block diagram of a hierarchical DPM structure. 

4 Modeling 
We represent the hierarchical DPM structure by a CTMDP model as 
shown in Figure 2. This model, which is constructed from the point of 
view of the GPM, is utilized to derive a system-level power 
management policy. The CTMDP model contains the following 
components: an application model (APPL), the SQ, the SFC, and a 
simulated service provider (SSP). The SSP is a CTMDP model of the 
LPM-controlled SP as seen by the GPM. More precisely, it is a 
composition of the state-transition diagram of the SP and the 
corresponding LPM policy. Notice that the CQ model is not needed 
because from the viewpoint of the GPM, the CQ and SQ are viewed as 
being identical. In the following subsections, the APPL, SFC and SSP 
models are described in detail followed by modeling of the 
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dependencies between the SPs. Note that the transition diagram of the 
SSP shown in Figure 2 is an example used for illustration purposes. 

 
Figure 2. CTMDP model of the hierarchical DPM structure. 

4.1 Model of the Application Pool 
It is assumed that the applications running on the computer system can 
be classified into different types based on their workload characteristics, 
i.e., their SR generation rates and the target SPs (i.e., service 
destinations.) In reference [8], the authors report that the pattern of SRs 
that are generated by an application and sent to a hard disk may be 
modeled by a Poisson process. Here, we use a more general model, i.e., 
a CTMDP model to describe the complex nature of SR generation of an 
application. When an application that is running on the CPU moves 
from one internal state to next, it generates various types of SRs with 
different rates. For example, as shown in Figure 3 , in state r1a, 
application type 1 generates SR1 with a rate of (1 )

1 aλ and SR2 with a 

rate of ( 2 )
1 aλ . Similarly, in state r1b, the generation rates for these two 

SRs become (1 )
1bλ  and ( 2 )

1 bλ , respectively. In state r1a, application 

type 1 transits to state r1b with a rate of υ1,ab, which also implies that 
the average time for application type 1 to stay in state r1a is 1/υ1,ab.  

(1)
1bλ
(2)

1bλ

(1)
1aλ
(2)

1aλ

(1)
2aλ
(2)
2aλ

(1)
2bλ
(2)
2bλ

 
Figure 3. CTMDP models of application types 1 and 2. 

By using the CTMDP model for each application type, we can set up the 
CTMDP model of an application pool, SAPPL. A state of SAPPL is a tuple 
comprising of the corresponding state for every application type plus 
information about which application is currently running on the CPU. 
The CTMDP model of example SAPPL shown in Figure 4 has eight 
global states, (r1x,r2y,flag) where r1x denotes the service generation 
state x for application 1 whereas r2y denotes the service generation state 
y for application type 2. flag=1 means that the first application is 
running while flag=2 means that the second application is running. For 
example, (r1a,r2a,1) means that application type 1 is running and it is in 
state r1a. Furthermore, the state of application type 2 was r2a just before 
it was swapped out. The CTMDP model has a set of autonomous 
transitions between state pairs with the same activation flag value. The 
transition rates are denoted by υi,xy where x and y denotes the service 
generation states of application type i. For example, the transition 
between (r1a,r2a,1) and (r1b,r2a,1) is autonomous. Notice that a 
transition from (r1a,r2a,1) and (r1b,r2b,1) is disallowed because 
application 2 is not running therefore, it cannot possibly change its 
service generation state. The model also has a set of action-controlled 
transitions between global states with the same r1x,r2y values.  

 
Figure 4. CTMDP model of an application pool. 

The action set is AAPPL = {run_Appli}, where Appli denotes application 
type i. For example, if the global state of the SAPPL is (r1x,r2y,1) and 
action run_Appl2 is issued then the new global state of the system will 
be (r1x,r2y,2). Note that a transition between (r1a,r2b,1) and (r1a,r2a,2) in 
not allowed because it would imply that during context switch from 
application type 1 to application type 2, the service generate state of 
application 2 changed, an impossibility in our model. 

The reason that application scheduling based on the global system state 
can reduce the total system power consumption can be explained by a 
simple example. Let’s consider a system with only one SP. There are 
two application types A1 and A2. A1 generates SRs at a rate of 1 
request per unit time while A2 generates 3 requests per unit time. The 
SP wakes up as soon as a request is generated and sleeps when all 
requests have been serviced. Two execution sequences will be 
considered. In the first sequence, there is no application scheduling. 
Each application is alternately executed for exactly one unit of time. In 
the second sequence, we perform application scheduling based on the 
number of waiting requests in the SQ. More precisely, during the 
running period of A1, as soon as a request is generated, the scheduler 
switches to A2. After A2 is run for one unit of time, A1 will be brought 
back to continue its execution. This policy ensures that all SRs that are 
targeted to the SP are bundled together and that the SP sleep time is 
maximized. Assuming fixed wakeup and sleep transition times and 
energy dissipation values, the total energy consumption of the SP under 
these two execution sequences is depicted in Figure 5. It is seen that 
application scheduling can maximize the sleep time of the SP. 

 
 Figure 5. An example of the effectiveness of application scheduling. 

We must convert the performance constraint for individual applications 
to those for the individual SPs. The total execution time of an 
application is the sum of the CPU time, the memory stall time, and the 
I/O device access time. The throughput of a computer system may then 
be defined as the ratio of the completed computational workload to the 
total execution time of the application. Although in a 
multi-programming system, the calculation of stall time due to I/O 
devices can be very complicated, it is straight-forward to bound the total 
I/O stall time by constraining the average delay experienced by each I/O 
operation. This is because the total I/O stall time is always less than the 
total I/O operation delay. Based on this observation, in this paper, we 
shall impose constraints on the average service delay of every request 
sent to each SP in order to roughly capture the performance constraint 
on each application. 
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It is also important to allocate a fair share of the CPU time to each 
application. Because the GPM does not intervene in the scheduling of 
applications that have the same workload characteristics, existing fair 
scheduling schemes [11] such as the FCFS or round robin can be used 
for these applications. For applications that exhibit different workload 
characteristics, we must impose a fairness constraint as follows. Let 

ra
rf  denote the frequency that APPL state r is entered and action ar is 

chosen in that state, r∈SAPPL and ar∈AAPPL. Let ra
rτ denote the expected 

duration of time that APPL will stay in state r when action ar is chosen. 
Let flag(r) denote the flag value component of state r. A fairness 
constraint states that application type i cannot, on average, occupy more 
than ci percentage of the CPU time. This can be written as 

, ,
,

: ( )
100%, where _r i r i

r i i
a a

r r i
r flag r i

a run Applf cτ
=

=≤ ×∑  

where , ,r i r ia a
r rf τ  is the probability that APPL stays in state r and 

chooses action ar,i. One way to determine the value of ci is to make it 
proportional to the computation workload of application type i. The 
calculation of ra

rf  and ra
rτ  actually involves variables and states of 

other component models in the system, and therefore, it is not 
convenient to present here. The actual form of this constraint will be 
given in the section on policy optimization.    

4.2 Model of the Service Flow Control 
As illustrated in Figure 2, the SFC is modeled as a stationary, CTMDP 
with a state set SSFC={Block, Xfer, GenF}and an action set 
ASFC={Goto_Block, Goto_Xfer, Goto_GenF}. The detailed states and 
transitions of the SFC are explained as follows: 
GenF: In this state, the SFC generates a fake service request (FSR). An 
FSR is treated in the same way as a regular SR by the SP, but requires 
no actual service from the SP. FSRs are used to wake up the SP when 
the GPM decides it is the right time to do so. The purpose of FSR is 
mainly to improve the response time of SP and prevent it from entering 
a wrong (deep sleep or off) state when the GPM expects a lot of activity 
in the near future. The delay and energy consumption associated with 
the transition from Xfer to GenF accounts for the overhead of 
generating an FSR. The action Goto_Xfer takes place autonomously 
when the SFC is in GenF state. 
Block: In this state, the SFC blocks all incoming SRs from entering the 
CQ of the SP. This state may be entered from state Xfer only when all 
generated SRs have been serviced by the SP. Therefore, when the SFC 
remains in the Block state, the SSP sees that there are no pending SRs. 
The purpose of blocking SRs is to reduce the wake-up times of the SP 
and extends the SP sleep time. 
Xfer: In this state, the SFC continuously moves the SRs from the SQ to 
the CQ and therefore, the SP will wakes up to provide the requested 
services. As explained before, the CQ is not included in the system-level 
DPM model, so the function of SFC at Xfer state is slightly different from 
its real function, which is describe as follows. In this model, when the 
SFC is in the Xfer state, the SSP knows the status of SQ and FQ and acts 
the same way that the SP does when the real SRs arrive in the CQ. The 
time and energy consumption associated with the transition from state 
Block to Xfer accounts for the overhead of moving about the SRs. The 
action Goto_Block effects autonomously when and only when the SFC is 
in Xfer state and SQ and FQ are both empty. 
All other state transitions, which have not been mentioned above, take 
effect immediately and consume no energy.  
4.3 Model of the Simulated Service Provider 
The SSP is a CTMDP model that simulates the behavior of the SP under 
the control of the LPM. Since in the proposed hierarchical DPM 
architecture, the GPM cannot directly control the state-transition of the 
SP, the SSP is modeled as an independent automaton. If the LPM 
employs a CTMDP-based power management policy, then the modeling 

of SSP will be easy i.e., the CTMDP model of SP with the LPM policy 
can be used directly, except that the service requests waiting in the SQ 
and FQ should be considered together when the SSP is making a decision. 
However, if the LPM employs another power management algorithm, a 
question will arise as to how accurate a CTMDP SSP model can simulate 
the behavior of the power-managed SP. Since time-out policy is the most 
widely used power management policy in commercial electronic systems, 
we focus our discussion on building the SSP model for a timeout 
policy-based SP. 
Let’s consider an SP with fixed timeout policy. For example, assume a 
hard disk drive as the SP. It has two power states: active at 2.1W and 
low-power idle at 0.65W. The transition powers and times between the 
two states are 1.4W and 0.4s, respectively. The LPM adopts a 
two-competitive timeout policy, where the timeout value is set to 0.8s. 
The CTMDP model of the corresponding SSP is depicted in Figure 6.  

 
Figure 6. CTMDP SSP model of HDD with fixed Timeout policy. 

The detailed states and transitions of the SSP are explained next. 
Sleep: A low-power deep-sleep state. The SSP goes to Idle state when 
the SFC is in Xfer or GenF state, and the SQ (or FQ) is non-empty. 
Work: A functional state, where the SSP provides service to the SR that 
is waiting in the SQ or FQ.  
Idle: A non-functional state. If the SFC is in either Xfer or GenF states 
and the SQ (or FQ) is non-empty, the SSP goes to the Work state; 
otherwise, it goes to TO1 state. 
TOi: i=1,2,…, n: One of n full-power but non-functional time-out states. 
These states are used to simulate the timeout policy. When the SFC is in 
Xfer or GenF state and the SQ (or FQ) is non-empty, the SSP goes back 
to the Idle state; otherwise, the SSP goes to TOi+1 state or Sleep state if 
the SSP is currently in the TOn state. Since the time for the SSP 
transferring from Idle to TOn state is a random variable, while in the 
timeout policy, the timeout value is fixed, multiple TO states are used to 
improve the simulation accuracy.  
The reason for using multiple TOi states (instead of just one) is 
explained as follows. Assume a chain with n TO states is used to 
approximate a timeout policy whose timeout value is set to t. Let τ 
denote the time for the SSP transferring from Idle to TOn state. Let τ0 
and τ1,…,τn−1 respectively denote the time periods that the SSP stays in 
Idle and TO1,…, TOn-1 states when there are no incoming SRs. As 
required by the CTMDP model, τ0 and τ1,…,τn−1 are independent 
random variables, each following an exponential distributions with 
mean 1/λ and variance 1/λ2. It is obvious that 1

0

n

i
i

τ τ
−

=

= ∑ . To make the 

expected value of τ equal to the desired timeout value t, it is required 
that ( )E n tτ λ= = . Thus, variance of τ is 1

2 2

0

( ) ( )
n

i
i

D D n t nτ τ λ
−

=

= = =∑ . 

From this equation, we can see that for a given t, as n increases, D(τ) is 
reduced. In other words, the accuracy of the CTMDP model of a fixed 
timeout policy increases.  
We performed a simulation study to evaluate how the approximation 
accuracy is related to the number of TO states in the SSP model in terms 
of energy and service delay for the abovementioned hard disk example. 
The results of the hard disk under timeout policy and its SSP models 
with respect to different SR average intervals are reported in Figure 7. It 
is seen that with three TO states, the behavior of the SSP becomes 
indistinguishable from that of the hard disk with a fixed timeout policy. 

(4-1)
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Figure 7. Comparison between the CTMDP model of the SSP and the fixed 

timeout policy for the hard disk. 

4.4 Modeling Dependencies between SPs 
There are different types of dependency between SPs. The first type is 
mutual exclusion. Mutual exclusion arises for example, when two SPs 
contend for the same non-sharable resource, e.g., a low speed I/O bus. 
Consequently, at any time, only one SP can be in its working state. 
When constructing the CTMDP model of the system, one can account 
for this type of hard dependency constraint by marking any system state 
that violates the mutual exclusion as invalid and by forbidding all 
state-action pairs that cause the system to transit to an invalid state. 
The second type is shared resource constraint, where two SPs indirectly 
influence one another’s behavior because of their utilization of a shared 
resource. For example, both SPs may want to buffer their SRs in a 
shared buffering area with a finite size. Consequently, when the number 
of SRs for one SP goes up, the probability that the SRs for the other SP 
will be blocked increases. In this case, the first SP may have to work 
harder to ensure that it is not over-utilizing the shared buffer area. This 
type of soft dependency constraint is handled by adding appropriate 
constraints to the system-level power optimization problem formulation. 
5 Policy Optimization 
As discussed in section 4.1, the system-level optimal policy is solved 
under constraints on the expected SR service time, the SR blocking rate, 
and the CPU utilization time constraint. We formulate the policy 
optimization problem as a linear program as described next. 
Let I denote the number of SPs in the power-managed system. Let x 
represent the global state of this system, which is a vector whose 
elements are the states of the APPL, SQi, SFCi and SSPi models, with 
i=1,2,…I. Let ax denote an action enabled in state x, which is a tuple 
composed of the actions of the APPL and SFCi models. The constrained 
energy optimization problem is formulated as a linear program as 
follows: 

{ }
x x

a x
x

x

a a
x xf

x a
f γ

 
  
 
∑ ∑M in im ize  

where xa
xf  is the frequency that global state x is entered in and action 

xa  is chosen in that state. xa
xγ  is the expected cost, which represents 

the expected energy consumed when the system is in state x and action 
xa  is chosen, is calculated as:  

∑
≠′

′ ′+=
xx

a
xxx

a
x

a
x xxenepaxpow xxx ),(),( ,τγ  

where 
,1x xa a

x x x
x x

τ σ ′
′≠
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,
xa
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 is the rate 

of the transition from state x to state x’ when action ax is chosen. In 
addition, 
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x x x x x x
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p σ σ′ ′ ′′
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= ∑  denotes the probability that the system 

will next come to state x’ if it is in state x and action ax is chosen. This 
linear program is solved for variables xa

xf  while satisfying the 
constraints given below. 
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In the above inequalities, equations (5-3) through (5-5) capture the 
properties of a CTMDP. Inequalities (5-6), which are based on the 
Little’s theorem [12], impose constraints on the expected task delay of 
SPi, where qi,x represents the number of waiting tasks in the queue SQi 
when the system is in state x, Di is the expected service delay 
experienced by SRi, and λi,x is the generation rate of the SRi at system 
state x. Inequalities (5-7) are the same as (4-1) and state that in average 
application type j should not use more than cj percent of the CPU time. J 
is the number of application types in APPL.  Constraint (5-8a) and 
(5-8b) ensure that the probability that the SQ becomes full is less than a 
preset threshold. It is our way of controlling the request blockage rate in 
the system. Constraint (5-8a) is imposed when each type of SR utilizes 
its own non-sharable SQ, whereas constraint (5-8b) is applied when a 
shared SQ is used for all types of SRs. This linear program is solved by 
using a standard mathematical program solver, i.e., MOSEK [13]. 
6 Experimental Results 
For this experiment, we recorded a one-hour trace of device requests 
generated by four concurrently running applications on a Linux PC 
machine. The applications have two different types. Three of them are 
file manipulation programs, which read some data file, edit it and write 
back to the disk. The fourth application is a program which periodically 
reads data from another machine through a WLAN card, searches for 
relevant information, and saves this information onto the disk. The 
request generation pattern of the first type of application is modeled 
very well with a Poisson process with an average rate of 0.208 requests 
per second. The request generation statistics of the second program type 
may be characterized by a two-state CTMDP model, of which the state 
transition rate and the generation rates of SR to hard disk λhd and to 
WLAN card λwlan are ( )10 0.0415

0.0063 0
s− 

 
 

, 1[0.0826,0.0187]
( )

 = [0.1124,0.1124]
hd

wlan

s
λ
λ

−= . 

The CPU usage ratio for these two groups of applications (i.e., two 
application types) is 53:47. For our experiments, we used the hard disk 
drive Hitachi Travelstar 7K60 and Orinoco WLAN card as the service 
providers. The power dissipation and start-up energy and latency of the 
disk drive and the WLAN card are reported in Table 1. 

(5-1)

(5-2)

(5-3)

(5-4)
(5-5)

(5-6)

(5-7)

(5-8a)

(5-8b)
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Table 1. Energy and transition data of hard disk driver and WLAN card 
State Power 

(w) 
Start-up 
energy (J)  

Wake-up 
time (s) 

Active  2.5  -- -- 
Performance idle 2.0 0 0 
Low power idle 0.85 1.86 0.4 

Hitachi 
7K60 

Stand-by 0.25 10.5 2 
Transfer 1.4 -- -- 
Receive 0.9 -- -- 

Orinoco 
WLAN 

Sleep 0.05 0.15 0.12 
For the first set of simulations, we only consider the hard disk driver. 
The average service time for a disk request is 67ms. In this case, with 
the help of the operating system, fake service request (FSR) can be 
designed as a disk read operation that accesses the latest data read from 
the hard disk. Since this data must have been stored in the data cache of 
the hard disk, it does not have to be really read out from the disk, so the 
service time of an FSR is only the sum of disk controller’s overhead and 
the data transfer time, which is within 3ms.  
We used the lower envelope algorithm [14] as the timeout policy for the 
LPM, which was proven to be a 2-competitive policy for a device with 
multiple low power states. The LPM policy has 2 timeout values, each 
corresponding to one low power state. They are 1.7 s and 14.4s, 
respectively. Under this policy (named TO1), the SP starts in the highest 
power state (“Active”=”Performance idle”.) If there are no new requests, 
after 1.7s elapses, it enters “Low power idle” state. Again, if no requests 
arrive, after 14.4s, it enters into its “Stand-by” state. We also 
experimented with a different set of timeout values, i.e., 0.34s and 14.4s. 
This version is denoted by TO2. Results are presented in Table 2. 

Table 2. Simulation results of Hierarchal Power Management for single SP 
CPU 
usage 

LPM 
policy 

Perf. 
Cons. 

1PM-TO 
(W) 

1PM-CT
MDP (W) 

HPM 
(W) 

HPM-S
(W) 

0.0765 1.2728 1.0467 1.2591 0.9505 TO1 0.5 1.2728 0.9309 1.0943 0.788 
0.0882 1.1582 1.0414 1.1436 0.8651 0.53:0.47 

TO2 0.5 1.1582 0.9309 1.0106 0.7274 
0.078 1.3805 1.1152 1.342 0.9951 TO1 0.5 1.3805 0.9956 1.1047 0.8302 
0.0903 1.2559 1.1107 1.2032 1.0594 0.7:0.3 

TO2 0.5 1.2559 0.9956 1.0966 0.8734 
0.0685 1.19 0.9647 1.1058 0.957 TO1 0.5 1.19 0.7922 0.9276 0.788 
0.076 1.0162 0.9451 1.012 0.7373 0.3:0.7 

TO2 0.5 1.0162 0.7922 0.8422 0.6015 
 
In the above table, the first column gives the CPU usage ratio between 
the two types of applications. The type of the built-in LPM policy is 
reported in the second column. For each LPM policy, we simulate twice 
for different performance constraints in terms of the bound on the 
average number of waiting SRs in the SQ. This bound is reported in the 
third column. In each case, the smaller bound corresponds to the actual 
SR delay in the timeout policy simulation. The second one is a looser 
constraint given for the purpose of examining the ability of our 
proposed hierarchical DPM approach to trade off latency for lower 
energy consumption. Four policies are compared in this table, they are 
one-level timeout policy (1PM-TO), one-level CTMDP policy 
(1PM-CTMDP), Hierarchical Power Management (HPM) and HPM 
with application scheduling (HPM-S). For the stochastic policies, the 
SR generation statistics is assumed to be known. The average power 
consumptions of the SP under different policies are reported in the last 
four columns of the table. It can be seen that HPM improves the energy 
efficiency of LPM controlled service provider, especially when there is 
a large positive slack with respect to the total delay constraint. HPM-S 
even outperforms the optimal component-level CTMDP policy. 
In the second set of simulations, we considered two service providers: a 
hard disk and a WLAN card. The average service time for a wireless 

request is 830ms. In this simulation, policy TO2 is used for the LPM of 
the hard disk driver and a 2-competitive policy with a timeout value of 
200ms is set for the WLAN card. The WLAN card also wakes up every 
second to listen for traffic identification message. We used the SR trace 
with a CPU usage ratio 53:47 in this simulation. The results of the 
power consumption of each component are presented in Table 3. 

Table 3. Simulation results of Hierarchal Power Management for two SPs 
 Perf. Cons. for 

different SPs 
1PM - 
TO2 
(W) 

1PM - 
CTMDP 

(W) 

HPM 
(W) 

HPM-S
(W) 

HD 0.09 1.157 1.045 1.142 0.881 Sim1

WLAN 0.05 0.384 0.343 0.378 0.310 
HD 0.2 1.157 1.01 1.066 0.788 Sim2

WLAN 0.2 0.384 0.322 0.331 0.282 
Experiment results demonstrate that the HPM-S algorithm can jointly 
schedule applications for different SPs to achieve minimal total energy. 
7 Conclusion 
This paper presented a hierarchical power management architecture 
which aims to facilitate power-awareness in an EMC system with 
multiple components. The proposed architecture divides power 
management function into two layers: system-level and 
component-level. The system-level power management was formulated 
as a concurrent service request flow regulation and application 
scheduling problem. Experimental results showed that a 25% reduction 
in the total system energy can be achieved compared to the optimal 
component-level DPM policy. 
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