
 1

Hierarchical Dynamic Power Management with Application Scheduling

Abstract - This paper proposes a hierarchical power management
architecture which aims to facilitate power-awareness in an
Energy-Managed Computer (EMC) system with multiple (potentially
self-power-managed) components. Given a performance constraint for
the system, this architecture improves both component-level and
system-wide power savings by using information about service request
rates obtained from the operating system by dynamically guiding/tuning
the local power management policies of the components. The proposed
architecture divides power management function into two layers:
system-level and component-level. The system-level power management
will be formulated as a service request flow regulation problem. In
addition, application scheduling will be integrated with system-level
power management to achieve higher power savings. The overall system
model is constructed as a stochastic controllable process based on the
theory of continuous-time Markovian decision processes (CTMDP).
Experimental results demonstrate that the system-level power
management approach can result in significant extra energy savings
compared to energy savings that can be achieved by the
component-level power management.
1 Introduction
Dynamic power management (DPM), which refers to a selective
shut-off or slow-down components that are idle or underutilized, has
proven to be a particularly effective technique for reducing power
dissipation in such systems. In the literature, various DPM techniques
have been proposed, from heuristic methods presented in early works
[1][2] to stochastic optimization approaches [3][4]. Among the heuristic
DPM methods, the time-out policy is the most widely used approach
and has been implemented in many operating systems. The time-out
policy is simple and easy to implement, but it has many shortcomings,
such as not making use of the statistical information about the service
request rates, and having a limited ability to trade-off performance and
energy dissipation. Stochastic approaches are mathematically rigorous
approaches which are based on stochastic models of service requests
and are thus able to derive provably optimal DPM policies.
Previous work on stochastic DPM techniques has focused on developing
component level policies, where the power-managed component is
assumed to be operating independently of the other components of the
system. For example, these techniques cannot account for a
mutual-exclusion relationship that will exist between the working states
of two components if their operations require the same non-sharable
resource. In addition, the previous work has not differentiated between
the service request characteristics of different software applications, and
therefore, it has effectively ignored the potential benefit of performing
application-level scheduling as part of the power management process.
Reference [5] considered job scheduling as part of a power management
policy and proposed an on-line scheme that groups jobs based on their
device usage requirements and then checks every possible execution
sequence of the job groups to find out the one with minimal power
consumption. This work is quite valuable because it demonstrates the
potential for additional power saving by doing job scheduling. However,
this work also has a few shortcomings. First, each time a new job is
generated, the search procedure to find the minimal-power execution
sequence has to be repeated. Second, this scheme does not explore the
possibility of reducing the system energy by changing the working state
of devices that have multiple functional states. Third, exact knowledge
of the device usage of a job is required before the job can be scheduled.
It is also assumed that this device usage profile does not change during
the lifetime of a job. It is not clear how this scheme can capture the
dependence between two parts of the same job, if the two parts exhibit
very different device usage behavior. Finally, this scheme does not

make use of any prediction or expectation of the future behavior of the
system, and thus, can only make a greedy online decision.
To capture dependencies between different system components, a power
manager must have a global view of the system architecture, connection
among components, system resources that are shared among these
components, and any possible functional dependency between the
components. In addition, application-level scheduling requires the
power manager to work closely with the operating system scheduler.
Both of these tasks are beyond the capabilities of the existing
component-level power management solutions.
A number of power saving mechanisms have been already incorporated
into various standards and protocols. Examples are the power
management function defined in USB bus standard and the power
saving mode in the IEEE 802.11 protocol. A USB device will
automatically enter a suspend state if there is no bus activity for three
milliseconds. A Wireless Local Area Network (WLAN) card operating
in the power saving mode, needs to wake up periodically at the
beginning of a beacon interval and listen for traffic identification
message. In most cases, these built-in power-management solutions
cannot be changed because they ensure the correct functionality of a
device running the related protocol. In this sense, we consider such a
device as an uncontrollable or self power-managed component. Even
beyond protocol considerations, vendors have already begun to develop
power management software specifically designed for their products.
An example is the enhanced adaptive battery life extender (EABLE) for
Hitachi (IBM Storage Systems, originally) disk drive, which is
self-managed and is incorporated into the device driver [6]. EABLE
dynamically determines the appropriate mode based on the actual disk
access pattern and the internal level of drive activity. Finally,
implementation of the device power manager by the designers and
manufacturers of the device itself, may relieve the system integrators of
the burden of mastering detailed hardware and device driver expertise,
and thus facilitate power-awareness in system integration with multiple
components.
The component designer does not know the global characteristics and
performance requirements of the system in which the component will be
incorporated. Therefore, the best that she can do is to provide a generic
local power management policy for the component but make some
tuning parameters of the local policy controllable by the system
designer and the system-level power manager. On the other hand, a
system engineer, who devises the architecture of an EMC system and
takes care of interfacing and synchronization issues among the selected
components, can devise a global power management policy that may
help local power manager to improve power efficiency of the
component.
Based on the above considerations, we define the problem of
hierarchical power management for an EMC system with self
power-managed components. The problem is then formulated as a
mathematical program with the aid of CTMDP models and solved
accordingly. Key contributions of this paper may be summarized as
follows. (1) A hierarchical DPM architecture is proposed, where the
power management function is divided into system and component
levels. At the system level, flow control on the service request traffic is
employed to improve the effectiveness of built-in component-level
power management solutions. Note that the proposed power
management architecture can easily handle service providers with or
without built-in local power managers. (2) CTMDP-based
application-level scheduling is incorporated into system-level power
management to achieve further power reduction. This scheduling is
based on states of the individual components, the number of waiting
tasks, and application stochastic characteristics, which makes it very
different from [5]. (3) The proposed system-level power management

 2

handles component state dependencies, whereby the state of a service
provider is affected by states of the other service providers.
In the literature, some works related to the hierarchical power
management have been reported. Reference [7] proposes a DPM
methodology for networks-on-chips, which combines node and network
centric DPM decisions. More specifically, the node centric DPM uses
Time-indexed Semi-Markovian decision processes whereas the network
centric DPM allows a source node to use network sleep/wakeup
requests to force sink nodes to enter specified states. Our proposed work
differs from this paper by providing a more general and mathematically
rigorous framework for defining and solving hierarchical DPM problem
in an EMC system. In particular, application-level scheduling is
exploited and component state dependency is considered by the
system-level power manager. In addition, by using a globally-controlled
service request flow regulation process, our framework can handle
self-power-managed service providers and dynamically adjust their
local power management policies. Reference [8] proposes a hierarchical
scheme for adaptive DPM under non-stationary service requests, where
the term “hierarchical” refers to the manner by which the authors
construct a DPM policy. This is different from what is proposed in the
present paper. More precisely, in their work, the authors formulate
policy optimization as a problem of seeking an optimal rule that
switches policies among a set of pre-computed ones. However, this
work assumes that the service providers are fully controllable and have
not built-in power management policy. This work differentiates service
request generation between “modes” (applications), but
application-level scheduling is not considered. In addition, it focuses on
developing power management policies for a single device.
The remainder of this paper is organized as follows. CTMDP theory
background is provided in Section 2. In Section 3, details of the
proposed hierarchical DPM framework are described. In Section 4,
stochastic model of the system-level power management is provided. In
Section 5, the energy optimization problem is formulated and solved as
a mathematical program. Experimental results and conclusions are
provided in Sections 6 and 7, respectively.

2 Background
The continuous-time Markovian decision processes (CTMDP) based
DPM approach was proposed in [4]. CTMDP-based approach makes
policy changes in an asynchronous and event-driven manner and thus
surmounts the shortcoming of the earlier work based on discrete-time
Markovian decision processes [3], which relied on periodical policy
evaluation. We believe CTMDP is more suitable for implementation as
part of a real-time operating system environment because of its
even-driven nature. A CTMDP model is defined with a discrete state
space; a generator matrix, where an entry represents the transition rate
from one state to another; an action set; and a reward function. In
CTMDP, the generator matrix is a parameterized matrix that depends on
the selected action. A complete system may comprise of several
components, each modeled by a CTMDP. The state set of the complete
system is obtained as the Cartesian product of the state set of each
component minus the set of invalid states. The generator matrix of the
whole system can be generated from the generator matrices of its
components by using the tensor sum and/or product operations. Due to
space limitation, the details of CTMDP modeling technique cannot be
presented here. Interested readers may refer to [4].

3 A Hierarchical DPM Architecture
In this paper, we consider a uni-processor computer system which
consists of multiple I/O devices, e.g. hard disk, WLAN card, or USB
devices. Batches of applications keep running on the system. When an
application is running on the CPU, it may send requests to one or more
devices for services. A performance constraint is imposed on the
average throughput of the computer system. The constraint is defined as
a minimum amount of completed application workloads over a fixed

period of time. It is also required that each application gets a fair share
of CPU time over a long period of time. Our objective is to minimize
the energy consumption of the computer system. More precisely, this
paper focuses on reducing energy consumption of the I/O devices.
Saving processor and memory energy is out of the scope of this paper.
Readers interested in these power components can refer to [9] and [10].

The architecture of our proposed hierarchical DPM framework which
contains two service providers (SP), i.e. two I/O devices, is presented in
Figure 1. This architecture has two levels of power management. In the
component level, each SP is controlled by a local power manager
(LPM). The LPM performs a conventional power management function,
i.e., it is monitoring the number of service requests (SR) that are
waiting in the component queue (CQ) and consequently adjusts the state
of the SP. In the system level, the global power manager (GPM) acts as
the central controller which attempts to meet a global performance
constraint while reducing the system power consumption. In particular,
it performs three separate functions. First, the GPM determines the state
of the service flow controller (SFC) and regulates the service request
traffic that is subsequently fed into the component queues. Note that in
this architecture, the GPM cannot overwrite the LPM policy or directly
control the state transition of an SP. Thus, regulating service request
flow is the method that the GPM uses to guide the local power
management policy and improve the power efficiency of the SPs.
Second, the GPM works with the CPU scheduler to select the right
applications to run on the CPU in order to reduce the expected system
power dissipation. This decision is in turn made based on the current
state of the power management system, including the states of the SPs
and the number of SRs waiting in the SQ. Third, the GPM resolves the
contention for shared resources between different SPs and dynamically
assigns the resources so as to increase the system power efficiency.
As a side note, the SFC performs three functions, i.e., SR transfer, SR
blocking, and fake SR generation, in order to adjust the statistics of the
service request flow that reaches the SP. The SRs that are blocked by the
SFC are stored in a service queue (SQ).

Figure 1. Block diagram of a hierarchical DPM structure.

4 Modeling
We represent the hierarchical DPM structure by a CTMDP model as
shown in Figure 2. This model, which is constructed from the point of
view of the GPM, is utilized to derive a system-level power
management policy. The CTMDP model contains the following
components: an application model (APPL), the SQ, the SFC, and a
simulated service provider (SSP). The SSP is a CTMDP model of the
LPM-controlled SP as seen by the GPM. More precisely, it is a
composition of the state-transition diagram of the SP and the
corresponding LPM policy. Notice that the CQ model is not needed
because from the viewpoint of the GPM, the CQ and SQ are viewed as
being identical. In the following subsections, the APPL, SFC and SSP
models are described in detail followed by modeling of the

 3

dependencies between the SPs. Note that the transition diagram of the
SSP shown in Figure 2 is an example used for illustration purposes.

Figure 2. CTMDP model of the hierarchical DPM structure.

4.1 Model of the Application Pool
It is assumed that the applications running on the computer system can
be classified into different types based on their workload characteristics,
i.e., their SR generation rates and the target SPs (i.e., service
destinations.) In reference [8], the authors report that the pattern of SRs
that are generated by an application and sent to a hard disk may be
modeled by a Poisson process. Here, we use a more general model, i.e.,
a CTMDP model to describe the complex nature of SR generation of an
application. When an application that is running on the CPU moves
from one internal state to next, it generates various types of SRs with
different rates. For example, as shown in Figure 3 , in state r1a,
application type 1 generates SR1 with a rate of (1)

1 aλ and SR2 with a

rate of (2)
1 aλ . Similarly, in state r1b, the generation rates for these two

SRs become (1)
1bλ and (2)

1 bλ , respectively. In state r1a, application

type 1 transits to state r1b with a rate of υ1,ab, which also implies that
the average time for application type 1 to stay in state r1a is 1/υ1,ab.

(1)
1bλ
(2)

1bλ

(1)
1aλ
(2)

1aλ

(1)
2aλ
(2)
2aλ

(1)
2bλ
(2)
2bλ

Figure 3. CTMDP models of application types 1 and 2.

By using the CTMDP model for each application type, we can set up the
CTMDP model of an application pool, SAPPL. A state of SAPPL is a tuple
comprising of the corresponding state for every application type plus
information about which application is currently running on the CPU.
The CTMDP model of example SAPPL shown in Figure 4 has eight
global states, (r1x,r2y,flag) where r1x denotes the service generation
state x for application 1 whereas r2y denotes the service generation state
y for application type 2. flag=1 means that the first application is
running while flag=2 means that the second application is running. For
example, (r1a,r2a,1) means that application type 1 is running and it is in
state r1a. Furthermore, the state of application type 2 was r2a just before
it was swapped out. The CTMDP model has a set of autonomous
transitions between state pairs with the same activation flag value. The
transition rates are denoted by υi,xy where x and y denotes the service
generation states of application type i. For example, the transition
between (r1a,r2a,1) and (r1b,r2a,1) is autonomous. Notice that a
transition from (r1a,r2a,1) and (r1b,r2b,1) is disallowed because
application 2 is not running therefore, it cannot possibly change its
service generation state. The model also has a set of action-controlled
transitions between global states with the same r1x,r2y values.

Figure 4. CTMDP model of an application pool.

The action set is AAPPL = {run_Appli}, where Appli denotes application
type i. For example, if the global state of the SAPPL is (r1x,r2y,1) and
action run_Appl2 is issued then the new global state of the system will
be (r1x,r2y,2). Note that a transition between (r1a,r2b,1) and (r1a,r2a,2) in
not allowed because it would imply that during context switch from
application type 1 to application type 2, the service generate state of
application 2 changed, an impossibility in our model.

The reason that application scheduling based on the global system state
can reduce the total system power consumption can be explained by a
simple example. Let’s consider a system with only one SP. There are
two application types A1 and A2. A1 generates SRs at a rate of 1
request per unit time while A2 generates 3 requests per unit time. The
SP wakes up as soon as a request is generated and sleeps when all
requests have been serviced. Two execution sequences will be
considered. In the first sequence, there is no application scheduling.
Each application is alternately executed for exactly one unit of time. In
the second sequence, we perform application scheduling based on the
number of waiting requests in the SQ. More precisely, during the
running period of A1, as soon as a request is generated, the scheduler
switches to A2. After A2 is run for one unit of time, A1 will be brought
back to continue its execution. This policy ensures that all SRs that are
targeted to the SP are bundled together and that the SP sleep time is
maximized. Assuming fixed wakeup and sleep transition times and
energy dissipation values, the total energy consumption of the SP under
these two execution sequences is depicted in Figure 5. It is seen that
application scheduling can maximize the sleep time of the SP.

 Figure 5. An example of the effectiveness of application scheduling.

We must convert the performance constraint for individual applications
to those for the individual SPs. The total execution time of an
application is the sum of the CPU time, the memory stall time, and the
I/O device access time. The throughput of a computer system may then
be defined as the ratio of the completed computational workload to the
total execution time of the application. Although in a
multi-programming system, the calculation of stall time due to I/O
devices can be very complicated, it is straight-forward to bound the total
I/O stall time by constraining the average delay experienced by each I/O
operation. This is because the total I/O stall time is always less than the
total I/O operation delay. Based on this observation, in this paper, we
shall impose constraints on the average service delay of every request
sent to each SP in order to roughly capture the performance constraint
on each application.

 4

It is also important to allocate a fair share of the CPU time to each
application. Because the GPM does not intervene in the scheduling of
applications that have the same workload characteristics, existing fair
scheduling schemes [11] such as the FCFS or round robin can be used
for these applications. For applications that exhibit different workload
characteristics, we must impose a fairness constraint as follows. Let

ra
rf denote the frequency that APPL state r is entered and action ar is

chosen in that state, r∈SAPPL and ar∈AAPPL. Let ra
rτ denote the expected

duration of time that APPL will stay in state r when action ar is chosen.
Let flag(r) denote the flag value component of state r. A fairness
constraint states that application type i cannot, on average, occupy more
than ci percentage of the CPU time. This can be written as

, ,
,

: ()
100%, where _r i r i

r i i
a a

r r i
r flag r i

a run Applf cτ
=

=≤ ×∑

where , ,r i r ia a
r rf τ is the probability that APPL stays in state r and

chooses action ar,i. One way to determine the value of ci is to make it
proportional to the computation workload of application type i. The
calculation of ra

rf and ra
rτ actually involves variables and states of

other component models in the system, and therefore, it is not
convenient to present here. The actual form of this constraint will be
given in the section on policy optimization.

4.2 Model of the Service Flow Control
As illustrated in Figure 2, the SFC is modeled as a stationary, CTMDP
with a state set SSFC={Block, Xfer, GenF}and an action set
ASFC={Goto_Block, Goto_Xfer, Goto_GenF}. The detailed states and
transitions of the SFC are explained as follows:
GenF: In this state, the SFC generates a fake service request (FSR). An
FSR is treated in the same way as a regular SR by the SP, but requires
no actual service from the SP. FSRs are used to wake up the SP when
the GPM decides it is the right time to do so. The purpose of FSR is
mainly to improve the response time of SP and prevent it from entering
a wrong (deep sleep or off) state when the GPM expects a lot of activity
in the near future. The delay and energy consumption associated with
the transition from Xfer to GenF accounts for the overhead of
generating an FSR. The action Goto_Xfer takes place autonomously
when the SFC is in GenF state.
Block: In this state, the SFC blocks all incoming SRs from entering the
CQ of the SP. This state may be entered from state Xfer only when all
generated SRs have been serviced by the SP. Therefore, when the SFC
remains in the Block state, the SSP sees that there are no pending SRs.
The purpose of blocking SRs is to reduce the wake-up times of the SP
and extends the SP sleep time.
Xfer: In this state, the SFC continuously moves the SRs from the SQ to
the CQ and therefore, the SP will wakes up to provide the requested
services. As explained before, the CQ is not included in the system-level
DPM model, so the function of SFC at Xfer state is slightly different from
its real function, which is describe as follows. In this model, when the
SFC is in the Xfer state, the SSP knows the status of SQ and FQ and acts
the same way that the SP does when the real SRs arrive in the CQ. The
time and energy consumption associated with the transition from state
Block to Xfer accounts for the overhead of moving about the SRs. The
action Goto_Block effects autonomously when and only when the SFC is
in Xfer state and SQ and FQ are both empty.
All other state transitions, which have not been mentioned above, take
effect immediately and consume no energy.
4.3 Model of the Simulated Service Provider
The SSP is a CTMDP model that simulates the behavior of the SP under
the control of the LPM. Since in the proposed hierarchical DPM
architecture, the GPM cannot directly control the state-transition of the
SP, the SSP is modeled as an independent automaton. If the LPM
employs a CTMDP-based power management policy, then the modeling

of SSP will be easy i.e., the CTMDP model of SP with the LPM policy
can be used directly, except that the service requests waiting in the SQ
and FQ should be considered together when the SSP is making a decision.
However, if the LPM employs another power management algorithm, a
question will arise as to how accurate a CTMDP SSP model can simulate
the behavior of the power-managed SP. Since time-out policy is the most
widely used power management policy in commercial electronic systems,
we focus our discussion on building the SSP model for a timeout
policy-based SP.
Let’s consider an SP with fixed timeout policy. For example, assume a
hard disk drive as the SP. It has two power states: active at 2.1W and
low-power idle at 0.65W. The transition powers and times between the
two states are 1.4W and 0.4s, respectively. The LPM adopts a
two-competitive timeout policy, where the timeout value is set to 0.8s.
The CTMDP model of the corresponding SSP is depicted in Figure 6.

Figure 6. CTMDP SSP model of HDD with fixed Timeout policy.

The detailed states and transitions of the SSP are explained next.
Sleep: A low-power deep-sleep state. The SSP goes to Idle state when
the SFC is in Xfer or GenF state, and the SQ (or FQ) is non-empty.
Work: A functional state, where the SSP provides service to the SR that
is waiting in the SQ or FQ.
Idle: A non-functional state. If the SFC is in either Xfer or GenF states
and the SQ (or FQ) is non-empty, the SSP goes to the Work state;
otherwise, it goes to TO1 state.
TOi: i=1,2,…, n: One of n full-power but non-functional time-out states.
These states are used to simulate the timeout policy. When the SFC is in
Xfer or GenF state and the SQ (or FQ) is non-empty, the SSP goes back
to the Idle state; otherwise, the SSP goes to TOi+1 state or Sleep state if
the SSP is currently in the TOn state. Since the time for the SSP
transferring from Idle to TOn state is a random variable, while in the
timeout policy, the timeout value is fixed, multiple TO states are used to
improve the simulation accuracy.
The reason for using multiple TOi states (instead of just one) is
explained as follows. Assume a chain with n TO states is used to
approximate a timeout policy whose timeout value is set to t. Let τ
denote the time for the SSP transferring from Idle to TOn state. Let τ0
and τ1,…,τn−1 respectively denote the time periods that the SSP stays in
Idle and TO1,…, TOn-1 states when there are no incoming SRs. As
required by the CTMDP model, τ0 and τ1,…,τn−1 are independent
random variables, each following an exponential distributions with
mean 1/λ and variance 1/λ2. It is obvious that 1

0

n

i
i

τ τ
−

=

= ∑ . To make the

expected value of τ equal to the desired timeout value t, it is required
that ()E n tτ λ= = . Thus, variance of τ is 1

2 2

0

() ()
n

i
i

D D n t nτ τ λ
−

=

= = =∑ .

From this equation, we can see that for a given t, as n increases, D(τ) is
reduced. In other words, the accuracy of the CTMDP model of a fixed
timeout policy increases.
We performed a simulation study to evaluate how the approximation
accuracy is related to the number of TO states in the SSP model in terms
of energy and service delay for the abovementioned hard disk example.
The results of the hard disk under timeout policy and its SSP models
with respect to different SR average intervals are reported in Figure 7. It
is seen that with three TO states, the behavior of the SSP becomes
indistinguishable from that of the hard disk with a fixed timeout policy.

(4-1)

 5

10
0

10
1

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

SR average interval (s)

A
ve

ra
ge

 P
ow

er
 (W

)

Timeout
SSP, n=1
SSP, n=2
SSP, n=3

10
0

10
1

10
-3

10
-2

10
-1

10
0

10
1

SR average interval (s)

D
el
ay

 (s
)

Timeout
SSP, n=1
SSP, n=2
SSP, n=3

Figure 7. Comparison between the CTMDP model of the SSP and the fixed

timeout policy for the hard disk.

4.4 Modeling Dependencies between SPs
There are different types of dependency between SPs. The first type is
mutual exclusion. Mutual exclusion arises for example, when two SPs
contend for the same non-sharable resource, e.g., a low speed I/O bus.
Consequently, at any time, only one SP can be in its working state.
When constructing the CTMDP model of the system, one can account
for this type of hard dependency constraint by marking any system state
that violates the mutual exclusion as invalid and by forbidding all
state-action pairs that cause the system to transit to an invalid state.
The second type is shared resource constraint, where two SPs indirectly
influence one another’s behavior because of their utilization of a shared
resource. For example, both SPs may want to buffer their SRs in a
shared buffering area with a finite size. Consequently, when the number
of SRs for one SP goes up, the probability that the SRs for the other SP
will be blocked increases. In this case, the first SP may have to work
harder to ensure that it is not over-utilizing the shared buffer area. This
type of soft dependency constraint is handled by adding appropriate
constraints to the system-level power optimization problem formulation.
5 Policy Optimization
As discussed in section 4.1, the system-level optimal policy is solved
under constraints on the expected SR service time, the SR blocking rate,
and the CPU utilization time constraint. We formulate the policy
optimization problem as a linear program as described next.
Let I denote the number of SPs in the power-managed system. Let x
represent the global state of this system, which is a vector whose
elements are the states of the APPL, SQi, SFCi and SSPi models, with
i=1,2,…I. Let ax denote an action enabled in state x, which is a tuple
composed of the actions of the APPL and SFCi models. The constrained
energy optimization problem is formulated as a linear program as
follows:

{ }
x x

a x
x

x

a a
x xf

x a
f γ

 
  
 
∑ ∑M in im ize

where xa
xf is the frequency that global state x is entered in and action

xa is chosen in that state. xa
xγ is the expected cost, which represents

the expected energy consumed when the system is in state x and action
xa is chosen, is calculated as:

∑
≠′

′ ′+=
xx

a
xxx

a
x

a
x xxenepaxpow xxx),(),(,τγ

where
,1x xa a

x x x
x x

τ σ ′
′≠

= ∑ denotes the expected duration of time that the

system will stay in state x when action ax is chosen and
,
xa

x xσ ′
 is the rate

of the transition from state x to state x’ when action ax is chosen. In
addition,

, , ,
x x xa a a

x x x x x x
x x

p σ σ′ ′ ′′
′′≠

= ∑ denotes the probability that the system

will next come to state x’ if it is in state x and action ax is chosen. This
linear program is solved for variables xa

xf while satisfying the
constraints given below.

' '
' ',

' '

x x x

x x

a a a
x x x x

a x x a
x Xf f p

≠

∀ ∈=∑ ∑∑

1x x

x

a a
x x

x a
f τ =∑∑

0xa
xf ≥

, , 1, 2,...,() 0,x x

x

a a
x x i x i i x

x a
i If q Dτ λ =− ≤∑∑

,: ()

100% 1, 2,...,,x x

x r j x

a a
x x j

x flag r i a a

j Jf cτ
= ∈

× =≤∑ ∑

where rx denotes state of APPL in global state x and
, _r j ja run Appl= .

, , 1, 2,...,(,)x x

x

a a
x x i x i i b

x a

i If q Q Pτ δ =≤∑∑

or
, with a shared Q(,)x x

x

a a
x x i x b

x a i
f q Q Pτ δ ≤∑∑ ∑

where


 =

=
otherwise.,0

;if,1
),(

yx
yxδ .

In the above inequalities, equations (5-3) through (5-5) capture the
properties of a CTMDP. Inequalities (5-6), which are based on the
Little’s theorem [12], impose constraints on the expected task delay of
SPi, where qi,x represents the number of waiting tasks in the queue SQi
when the system is in state x, Di is the expected service delay
experienced by SRi, and λi,x is the generation rate of the SRi at system
state x. Inequalities (5-7) are the same as (4-1) and state that in average
application type j should not use more than cj percent of the CPU time. J
is the number of application types in APPL. Constraint (5-8a) and
(5-8b) ensure that the probability that the SQ becomes full is less than a
preset threshold. It is our way of controlling the request blockage rate in
the system. Constraint (5-8a) is imposed when each type of SR utilizes
its own non-sharable SQ, whereas constraint (5-8b) is applied when a
shared SQ is used for all types of SRs. This linear program is solved by
using a standard mathematical program solver, i.e., MOSEK [13].
6 Experimental Results
For this experiment, we recorded a one-hour trace of device requests
generated by four concurrently running applications on a Linux PC
machine. The applications have two different types. Three of them are
file manipulation programs, which read some data file, edit it and write
back to the disk. The fourth application is a program which periodically
reads data from another machine through a WLAN card, searches for
relevant information, and saves this information onto the disk. The
request generation pattern of the first type of application is modeled
very well with a Poisson process with an average rate of 0.208 requests
per second. The request generation statistics of the second program type
may be characterized by a two-state CTMDP model, of which the state
transition rate and the generation rates of SR to hard disk λhd and to
WLAN card λwlan are ()10 0.0415

0.0063 0
s− 

 
 

, 1[0.0826,0.0187]
()

 = [0.1124,0.1124]
hd

wlan

s
λ
λ

−= .

The CPU usage ratio for these two groups of applications (i.e., two
application types) is 53:47. For our experiments, we used the hard disk
drive Hitachi Travelstar 7K60 and Orinoco WLAN card as the service
providers. The power dissipation and start-up energy and latency of the
disk drive and the WLAN card are reported in Table 1.

(5-1)

(5-2)

(5-3)

(5-4)
(5-5)

(5-6)

(5-7)

(5-8a)

(5-8b)

 6

Table 1. Energy and transition data of hard disk driver and WLAN card
State Power

(w)
Start-up
energy (J)

Wake-up
time (s)

Active 2.5 -- --
Performance idle 2.0 0 0
Low power idle 0.85 1.86 0.4

Hitachi
7K60

Stand-by 0.25 10.5 2
Transfer 1.4 -- --
Receive 0.9 -- --

Orinoco
WLAN

Sleep 0.05 0.15 0.12
For the first set of simulations, we only consider the hard disk driver.
The average service time for a disk request is 67ms. In this case, with
the help of the operating system, fake service request (FSR) can be
designed as a disk read operation that accesses the latest data read from
the hard disk. Since this data must have been stored in the data cache of
the hard disk, it does not have to be really read out from the disk, so the
service time of an FSR is only the sum of disk controller’s overhead and
the data transfer time, which is within 3ms.
We used the lower envelope algorithm [14] as the timeout policy for the
LPM, which was proven to be a 2-competitive policy for a device with
multiple low power states. The LPM policy has 2 timeout values, each
corresponding to one low power state. They are 1.7 s and 14.4s,
respectively. Under this policy (named TO1), the SP starts in the highest
power state (“Active”=”Performance idle”.) If there are no new requests,
after 1.7s elapses, it enters “Low power idle” state. Again, if no requests
arrive, after 14.4s, it enters into its “Stand-by” state. We also
experimented with a different set of timeout values, i.e., 0.34s and 14.4s.
This version is denoted by TO2. Results are presented in Table 2.

Table 2. Simulation results of Hierarchal Power Management for single SP
CPU
usage

LPM
policy

Perf.
Cons.

1PM-TO
(W)

1PM-CT
MDP (W)

HPM
(W)

HPM-S
(W)

0.0765 1.2728 1.0467 1.2591 0.9505 TO1 0.5 1.2728 0.9309 1.0943 0.788
0.0882 1.1582 1.0414 1.1436 0.8651 0.53:0.47

TO2 0.5 1.1582 0.9309 1.0106 0.7274
0.078 1.3805 1.1152 1.342 0.9951 TO1 0.5 1.3805 0.9956 1.1047 0.8302
0.0903 1.2559 1.1107 1.2032 1.0594 0.7:0.3

TO2 0.5 1.2559 0.9956 1.0966 0.8734
0.0685 1.19 0.9647 1.1058 0.957 TO1 0.5 1.19 0.7922 0.9276 0.788
0.076 1.0162 0.9451 1.012 0.7373 0.3:0.7

TO2 0.5 1.0162 0.7922 0.8422 0.6015

In the above table, the first column gives the CPU usage ratio between
the two types of applications. The type of the built-in LPM policy is
reported in the second column. For each LPM policy, we simulate twice
for different performance constraints in terms of the bound on the
average number of waiting SRs in the SQ. This bound is reported in the
third column. In each case, the smaller bound corresponds to the actual
SR delay in the timeout policy simulation. The second one is a looser
constraint given for the purpose of examining the ability of our
proposed hierarchical DPM approach to trade off latency for lower
energy consumption. Four policies are compared in this table, they are
one-level timeout policy (1PM-TO), one-level CTMDP policy
(1PM-CTMDP), Hierarchical Power Management (HPM) and HPM
with application scheduling (HPM-S). For the stochastic policies, the
SR generation statistics is assumed to be known. The average power
consumptions of the SP under different policies are reported in the last
four columns of the table. It can be seen that HPM improves the energy
efficiency of LPM controlled service provider, especially when there is
a large positive slack with respect to the total delay constraint. HPM-S
even outperforms the optimal component-level CTMDP policy.
In the second set of simulations, we considered two service providers: a
hard disk and a WLAN card. The average service time for a wireless

request is 830ms. In this simulation, policy TO2 is used for the LPM of
the hard disk driver and a 2-competitive policy with a timeout value of
200ms is set for the WLAN card. The WLAN card also wakes up every
second to listen for traffic identification message. We used the SR trace
with a CPU usage ratio 53:47 in this simulation. The results of the
power consumption of each component are presented in Table 3.

Table 3. Simulation results of Hierarchal Power Management for two SPs
 Perf. Cons. for

different SPs
1PM -
TO2
(W)

1PM -
CTMDP

(W)

HPM
(W)

HPM-S
(W)

HD 0.09 1.157 1.045 1.142 0.881 Sim1

WLAN 0.05 0.384 0.343 0.378 0.310
HD 0.2 1.157 1.01 1.066 0.788 Sim2

WLAN 0.2 0.384 0.322 0.331 0.282
Experiment results demonstrate that the HPM-S algorithm can jointly
schedule applications for different SPs to achieve minimal total energy.
7 Conclusion
This paper presented a hierarchical power management architecture
which aims to facilitate power-awareness in an EMC system with
multiple components. The proposed architecture divides power
management function into two layers: system-level and
component-level. The system-level power management was formulated
as a concurrent service request flow regulation and application
scheduling problem. Experimental results showed that a 25% reduction
in the total system energy can be achieved compared to the optimal
component-level DPM policy.
8 References
[1] M. Srivastava, A. Chandrakasan, and R. Brodersen, "Predictive system

shutdown and other architectural techniques for energy efficient
programmable computation," IEEE Trans. VLSI Systems, Vol. 4, pp.
42–55, Mar. 1996.

[2] C-H. Hwang and A. Wu, “A predictive system shutdown method for
energy saving of event-driven computation,” Int. Conf. Computer-Aided
Design, pp. 28–32, Nov. 1997.

[3] L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli, “Policy
optimization for dynamic power management,” IEEE Trans.
Computer-Aided Design, Vol. 18, pp. 813–33, Jun. 1999.

[4] Q. Qiu, Q Wu and M. Pedram, “Stochastic modeling of a power-managed
system-construction and optimization,” IEEE Trans. Computer-Aided
Design, Vol. 20, pp. 1200-1217, Oct. 2001.

[5] Y-H. Lu, L. Benini and G. De Micheli, “Power-aware operating systems
for interactive systems,” IEEE Trans. VLSI System, Vol.10, pp.
119-134, Apr. 2002.

[6] Storage Systems Division, IBM Corp., APM for Mobile Hard Disks,
www.almaden.ibm.com/almaden/mobile_hard_drives.html, 1999.

[7] T. Simunic, S. Boyd, and P. Glynn, “Managing Power in Networks on
Chips”, IEEE Trans. VLSI System, Vol.12, pp. 96-107, Jan. 2004.

[8] Z. Ren, B.H. Krogh, and R. Marculescu, “Hierarchical adaptive dynamic
power management,” Proc. of DATE, pp. 136-41, Feb. 2003.

[9] K. Choi, K. Soma, and M. Pedram, “Fine-grained DVFS for precise
energy and performance trade-off based on the ratio of off-chip access to
on-chip computation times,” Proc. DATE, pp. 4–9., Feb. 2004.

[10] V. Delaluz, A. Sivasubramaniam, M. andemir, N. Vijaykrishnan and M. J.
Irwin, “Scheduler-based DRAM energy management,” Proc. of DAC, pp.
697–702, Jun. 2002.

[11] A. Silberschatz, P.B. Galvin, G. Gagne, Operating System Concepts,
John Wiley & Sons, 2004.

[12] E. A. Feinberg, A. Shwartz, Handbook of Markov decision processes:
methods and applications, Kluwer Academic, 2002.

[13] E. D. Andersen and K. D. Andersen, “The MOSEK interior point
optimizer for linear programming: an implementation of the
homogeneous algorithm”, in High Performance Optimization, pp.
197-232. Kluwer Academic, 2000.

[14] S. Irani and S. Shukla and R. Gupta. “Competitive analysis of dynamic
power management strategies for systems with multiple power saving
states,” Proc. of DATE, pp.117-23, Feb. 2002.

