
Application-Specific Power-Aware Workload
Allocation for Voltage Scalable MPSoC Platforms

Abstract— In this paper, we address the problem of selecting
the optimal number of processing cores and their operating volt-
age/frequency for a given workload, so to minimize overall sys-
tem power under application-dependent QoS constraints. Select-
ing the optimal system configuration is non-trivial, since it depends
on task characteristics and system-level interaction effects among
the operating cores. For this reason, our QoS-driven methodol-
ogy for power aware partitioning and frequency selection is based
on functional, cycle-accurate simulation on a virtual platform envi-
ronment. The methodology, being application-specific, was demon-
strated on the DES (Data Encryption System) algorithm, represen-
tative of a wider class of streaming applications with independent
input data frames and regular workload.

I. Introduction

Many state-of-the-art or envisioned Multi-Processor Systems-on-
Chip (MPSoCs) adopt the symmetric multi-processing paradigm [15].
This is due to the evolving micro-architecture of integrated cores, to the
extension of their instruction set architecture in the direction of DSPs
and to the increasing levels of integration made available by technol-
ogy scaling. The design and implementation of MPSoCs is charac-
terized by conflicting requirements of the ever increasing demand for
higher performance and stringent power budgets. Circuit-level power
minimization techniques can be used to address the power concern,
including clock gating [18], dynamic voltage and frequency scaling
(DVFS) [20] and low voltage design with variable/multiple Vdd/Vth

control [16]. Furthermore, CMOS technology progressively allows an
increasing number of voltage and clock domains to be specified on the
same chip (see the voltage islands concept in [12]).

Lowering supply voltage reduces power quadratically but also re-
sults in a performance degradation, which translates into a reduction
of the processor operating frequency at which functional correctness is
guaranteed. Therefore, voltage scaling is usually associated with fre-
quency scaling and vice versa.

In the new MPSoC domain, the problem of voltage and frequency
selection cannot be optimally solved if we consider each processor in
isolation. First, tasks running on individual cores are tightly related,
since they are often the result of an application partitioning process,
based on a specific workload allocation policy which creates task inter-
dependencies.

Second, system-level interaction among the variable-
voltage/frequency cores might induce non-trivial effects on global
system performance and energy metrics. As an example, system
performance is a non-additive metric, but strongly depends on the
inter-processor synchronization mechanism and on the interaction on
the system bus of the traffic patterns generated by cores running at
different speeds.

However, in a parallel computing domain like MPSoCs, workload
allocation is another degree of freedom for system power minimiza-
tion. DFVS and extraction of task level parallelism should be jointly ad-
dressed in a global power minimization framework. Here, the trade-off
to span is between the number of concurrent processors and the power
overhead they introduce in the system, which is a function of their clock
speed. For instance, the same application-dependent throughput con-
straint could be met by means of N processors working at speed X or
by sharing the workload among N +M concurrent processors working
at reduced speed X

′

.
In this paper, we take a semi-static approach to the frequency/voltage

selection problem. Processor configuration is statically determined and
set at design time. However, at large granularity idle periods, frequency
settings can be updated as a function of changed system conditions.

This approach can be applied to application domains characterized by
regular and highly predictable workloads, with minimum run-time fluc-
tuations. Baseband processing in wireless modems, encryption en-
gines, digital image filtering and many signal processing functions are
examples thereof.

Although we consider a maximum number of available processors,
we assume that not all of them must be necessarily allocated to the
execution of a given application. We introduce a complete QoS-based
methodology that provides the optimal number of processing cores for a
given scalable workload and their individual frequency/voltage settings
in such a way to minimize system power while meeting application
throughput constraints.

Our methodology for processor allocation and frequency/voltage se-
lection is simulation based. We want to overcome the limitations of
previous works, which proposed theoretical and highly abstract mod-
els without validation on real platforms or on functional, timing ac-
curate MPSoC simulation tools. In contrast, we deployed a virtual
platform [21], enhanced with hardware extensions for variable fre-
quency/voltage cores, for developing the allocation and frequency se-
lection methodology and for validating our approach. As such, our
methodology is strongly related to the specific workload. We therefore
restricted our analysis to the optimization of a parallel, highly scalable
DES encryption algorithm, deriving a methodology and drawing con-
clusions that can be extended to the whole class of applications DES
algorithm belongs to, namely streaming applications with uncorrelated
input data frames.

This paper is structured as follows. Section 2 reports previous work
while the virtual platform environment is described in Section 3. Sec-
tion 4 and 5 present DES algorithm and problem formulation. Section
6 explains our methodology, whose results are reported in Section 7.

II. Related Work

A survey of techniques for system level power optimization is re-
ported in [1], [2]. The issue of voltage/frequency selection for single-
processor systems is a mature research field: many run-time dynamic
techniques have been proposed [3], [4], and validation tools [5] and
hardware [23] are available.

On the contrary, in the multi-processor system domain, many ap-
proaches based on theoretical analysis and abstract simulation have
been proposed, but an accurate validation of the effectiveness of these
techniques is still in its early stage.

In [6] the problem of minimizing power of a multi-processor system
using multiple variable supply voltages is modelled as a mixed integer
non-linear programming optimization problem. The work in [7] points
out that minimizing communication power without considering com-
putation may actually lead to higher energy consumption at the system
level. An analytical approach is taken in [8] to assign single optimal
voltage to each processor present in an application-specific heteroge-
neous multi-processor system after allocation and scheduling have been
performed. A heuristic to address the problem of energy-efficient volt-
age scheduling of a hard real-time task graph with precedence con-
straints for a multi-processor environment is presented in [9], but it
is limited to dual voltage systems. The algorithm introduced in [11]
targets power utilization and performance of multi-processor systems
wherein parameters such as operating voltage, frequency and number
of processors can be tuned. The energy-aware scheduling algorithm
presented in [17] consists of a design-time phase, which results in a set
of Pareto-optimal solutions, and of a run-time phase, that uses them to
find a reasonable cycle budget distribution for all of the running threads.
The effect of discrete voltage/speed levels on the energy savings for
multi-processor systems is investigated in [14], and a new scheme of
slack reservation to incorporate voltage/speed adjustment overhead in



2

the scheduling algorithm is also proposed. The approach to energy min-
imization in variable voltage MPSoCs taken in [13] consists of a two
phase framework that integrates task assignment, ordering and voltage
selection.

With respect to previous work, our contributions are: 1) the joint so-
lution of processor allocation and frequency/voltage setting; 2) a novel
algorithm for efficient construction of the Pareto frontier for selecting
the optimal system operating points based on throughput and utiliza-
tion constraints; 3) validation on a full-system functional and power
simulation for a real application case study.

III. Virtual Platform Environment

We carried out our analysis within the framework of the SystemC-
based MPARM simulation platform [21]. Figure 1 shows a pictorial
overview of the simulated architecture. It consists of a configurable
number of 32-bit ARMv7 processors. Each processor core has its own
private memory, and a shared memory is used for inter-processor com-
munication. Synchronization among the cores is provided by hardware
semaphores implementing the test-and-set operation. The system in-
terconnect is a shared bus instance of the STBus interconnect from
STMicroelectronics. The software architecture consists of an embed-
ded real-time operating system called RTEMS [24], which natively sup-
ports synchronization and inter-task communication primitives.

The virtual platform environment provides power statistics lever-
aging technology-homogeneous power models made available by
STMicroelectronics for a 0.13 µ m technology for ARM cores, caches,
on-chip memories and the STBus.

Support for Variable Frequency Cores. The virtual platform has
been extended to support different working frequencies for each proces-
sor core. For this purpose, additional modules were integrated into the
platform, namely a variable clock tree generator, programmable regis-
ters and a synchronization module.

The clock tree generator feeds the hardware modules of the platform
(processors, buses, memories, etc.) with independent and frequency
scaled clock trees. The frequency scaled clock trees are generated by
means of frequency dividers (shift counters), whose delay can be con-
figured by users at design-time. A set of programmable registers has
been connected to the system bus to let the operating system or a ded-
icated hardware module (monitoring system status) select the working
frequencies. Each one of these registers contains the integer divider of
the baseline frequency for each processor.

Scaling the clock frequency of the processors creates a synchroniza-
tion issue with the system bus, which is assumed to work at the max-
imum frequency. The processing cores and the bus interface commu-
nicate by means of a hand-shaking protocol which assumes the same
working frequency at both sides. Therefore, a sychronization module
was designed, containing two dual-ported FIFOs wherein data and ad-
dresses sent by the bus interface to the processor and vice versa are
stored. This module works with a dual clock: one feeding the core
side and one feeding the bus interface side. Finally, the module also
takes care of properly interfacing processor to bus signals, and a ded-
icated sub-module is implemented for this purpose. In Figure 1, the
hardware extensions for frequency-scaled cores have been shaded. The
Maximum STBus frequency of 200MHz was kept as the maximum pro-
cessing core frequency, to which frequency dividers were applied. The
scaling factor for the power supply was derived from [19].

IV. Workload Allocation

A. DES Dataflow

DES performs two main operations on input data, controlled by the
key: bit shifting and bit substitution. By doing these operations repeat-
edly and in a non-linear way, the final result cannot be used to retrieve
the original data without the key. DES works on chunks of 64 bits of
data at a time. Each 64 bits of data is iterated on from 1 to 16 times
(16 is the DES standard). For each iteration, a subset of the key is fed
into the encryption block, that performs several different transforms
and non-linear substitutions. More details can be found in [22].

Fig. 1. MPSoC platform with hardware support for frequency scaling.

B. Mapping DES on MPSoC Platform

DES algorithm matches the master-slave workload allocation policy.
DES encrypts and decrypts data using a 64-bit key. It splits input data
into 64-bit chunks and outputs a stream of 64-bit ciphered blocks. Since
each input element (called frame) is independently encrypted from all
others, the algorithm can be easily mapped onto a variable number of
cores. Moreover, DES poses a balanced workload to the processors,
since the execution time is almost independent on input data. This con-
sideration will be important when we will address core clock scaling
later in this paper.

In the parallelized version of DES, we define three kinds of tasks. An
initiator task (producer) dispatches 64-bit blocks together with a 64-bit
key to n calculator tasks (referred as working tasks) for encryption.
Initiator task and working tasks are allocated to different processing
elements (PEs). A buffer in shared memory is used to exchange data.
Since frames are uncorrelated from each other, computation of working
tasks can be carried out in parallel by running multiple task instances on
different slave processors. Here slave processors just need to be inde-
pendently synchronized with the producer, which alternatively provides
input data to all of the slave tasks. Finally, a collector tasks (consumer)
does exist, which reconstructs an output stream by concatenating the
ciphered blocks provided by the working tasks. It is allocated onto an-
other PE and communicates with workers by means of output buffers.

Both input and output buffers are located in shared memory. Each
one of them is implemented using two queues, so that one queue can
be write-accessed by the producer while the other one is read-locked
by the worker. The same holds for the output buffer. Moreover, in
case of multiple workers, each one has its own input and output buffer.
In brief, the streaming application is mapped onto the platform as a
three stage pipeline, where the intermediate stage can be made by an
arbitrary number of multiple parallel tasks. The overall system model
is described in Figure 2.

Fig. 2. DES workload allocation policy.

V. Problem Formulation

The ultimate objective of this work is to find the optimal number
of parallel workers (and a corresponding number of slave processors)



3

to achieve a given throughput (in frames/sec), and to set the operating
frequencies of the cores in the system (producer, consumer and work-
ers) so to minimize overall power consumption. We decided to make
producer and consumer work at the same speed, in order to keep the
system stable. Moreover, since the workload of the parallel workers is
self-balanced due to the intrinsic DES characteristics, we assume they
are also running at the same speed.

The optimization problem can be thus formulated as follows. For
a given throughput (T ), we need to find a couple (NWK , S), where
NWK is the number of workers and S is the scaling factor between
producer (or consumer) speed and workers’ speed. If fWK is the
clock frequency of workers and fPR is the clock frequency of pro-
ducer/consumer, we obtain fWK = S · fPR/CN .

Given this formulation, the optimization problem can be solved by
searching for those system configurations that minimize the following
cost function:

P = F (NWK , fWK , fPR, fCN ), (1)

where P is average power consumption of the whole MPSoC, and
the following constraints hold:

fPR = fCN = fWK/S; (2)

NWK ≤ NMAX ; (3)

where NMAX is the maximum number of PEs available in the
system, excluding the PEs allocated to producer and consumer tasks.
In the following we will change this constraint to handle the case in
which not all system PEs can be reserved for DES application.

Intuitively, configurations that minimize the cost function are the
ones that minimize system idleness. As a consequence, the optimum
scaling factor S, that is a function of NWK , will be the one that
balances the execution time of workers and producer/consumer. In
general, since the computational effort required by each worker to
produce an output frame is much larger than that required by the
producer and consumer, S will be larger than one for low NWK

and lower than one for high NWK . This is because producer and
consumer tasks are essentially memory-bound, while working tasks
are CPU-bound. For a memory-bound task, throughput is less sensitive
to frequency scaling, since this latter does not affect memory access
times, that stay constant. Once S has been found, the absolute speed
values are determined by the required throughput. As showed in the
experimental result section, the solution to this problem is not trivial.
Simple solutions that tune either NWK or core frequencies in isolation
are sub-optimal.

Handling Bus Effects. In general, we cannot assume that all system
resources are available for the target application. This fact has a double
effect on the previously defined optimization problem. First of all, not
all of the PEs are available, so that equation 3 changes as follows:

NWK ≤ NFREE ; (4)

where NFREE is the number of free PEs. Note that our methodol-
ogy will indicate whether it is power efficient to use all of the NFREE

PEs or a lower number of them, together with the proper frequency
settings, for the considered workload. Since the bus is partially occu-
pied by interfering traffic generated by applications running on the busy
PEs, this will affect the performance of the communication among DES
tasks. As a results, the cost function depends on traffic conditions. We
can characterize bus traffic by means of two parameters: ρ is the avail-
able bus bandwidth, while σ is the average burst size of the interfering
traffic. We can then rebuild equation 5 as follows:

P = F (NWK , fWK , fPR, fCN , σ, ρ). (5)

VI. QoS-Driven Optimization Strategy

Our power optimization framework consists of a two step process.
First, we statically perform a smart exploration to find Pareto-optimal
configurations that minimize the cost function in a power/throughput
design space. We perform this exploration by varying traffic parame-
ters (σ, ρ) in a discrete range of possible values. Then, we store these
configurations in a three-dimensional look-up table indicized by σ, ρ
and NFREE that will be used at run-time in a semi-static way to main-
tain QoS under varied traffic conditions.

A. Design-time Smart Design Space Exploration

We explore the throughput/power design space from higher to lower
throughput configurations, in an attempt to find the Pareto curve. The
smart exploration algorithm has to be repeated for an increasing num-
bers of workers. The method tries to find the optimal scaling factor
between producer/consumer and workers frequency (a configuration)
that leads to minimum idleness in processing cores operation. This
is achieved through successive frequency scaling steps. For each ex-
plored configuration in the design space, a simulation run is performed
to compute the corresponding level of power dissipation of the system.

The methodology starts by simulating the configuration where all
of the PEs (both workers and producer/consumer) run at the maxi-
mum speed, then derives two other configurations by scaling PR/CN
or WK frequency. From these new configurations, we generate other
configurations using the same scaling rule. Clearly, since we scale the
frequency of PEs, at each step we move to lower throughput regions.
However, in order to reduce the number of simulation runs, we defined
an optimized version of the algorithm that allows to reduce the number
of design points to be explored.

The smart exploration is based on the following intuitions. First, a
configuration is said to be ”dominated” if there is at least another con-
figuration that provides a higher or equal throughput with lower power.
Configurations that turn out to be non-dominated once the smart search
procedure completes are those belonging to the Pareto curve. In prac-
tice, a higher throughput with respect to the one provided by a dom-
inated configuration can be provided at a lower power cost. Second,
it is worth observing that dominated configurations cannot generate
(using the scaling rule explained before) non-dominated configurations
that cannot be obtained by other non-dominated configurations already
found. Hence, when we generate two new configurations, we always
check if one of them is dominated. If this is true, the dominated con-
figuration is discarded and thus all other configurations derived from it
are not explored.

C(1,1)

C(2,1)
C(3,1)

C(1,2)

C(1,3)C(2,2)

increasing idleness

decreasing
idleness

dominance
region

not evaluated
point

dominated
point

Fig. 3. Example of smart exploration.

The observation can be justified as follows (refer to Figure 3). Let
us first point out that derived configurations can have lower or equal
throughput w.r.t. their parent configurations, being obtained through
frequency scaling. Then, let us indicate with (i, j) the scaling factor



4

of PR/CN and WK respectively with respect to maximum system fre-
quency. Assume now to generate two new configurations C(1,2) and
C(2,1) from the starting one C(1,1). If a configuration is dominated,
for example C(2,1), this means that its power consumption is higher
and the throughput is lower than another one already explored, namely
C(1,2). In practice, C(2,1) corresponds to a less efficient operating
point in which the amount of power wasted in idle cycles is increased
w.r.t. C(1,1). Since in C(2,1) we have scaled the PR/CN frequency,
we deduce that the performance bottleneck in C(1,1) was represented
by the producer/consumer, and that by moving to C(2,1) we have made
the pipeline even more unbalanced. In contrast, C(1,2) reduces workers
frequency, and goes in the direction of balancing the pipeline and min-
imizing idleness. Suppose now to generate two additional configura-
tions from the dominated point C(2,1). Since we are further decreasing
PR/CN frequency, we are moving away from the optimal ratio between
PR/CN and WK speed, increasing the power wasted by WKs in idle
cycles.

These considerations led to the smart exploration algorithm de-
scribed in Figure 4. A ”Pareto list” stores configurations that pass the
dominance check and are therefore Pareto points. A generic loop of this
algorithm works as follows. From each configuration C(i,j) we generate
two new configurations C(i+1,j) and C(i,j+1), and select the one with
highest throughput, which we call CCURR (current configuration). The
other one is stored into a temporary list sorted for decreasing through-
put only if it passes a dominance check against CCURR, against all
previously stored configurations in the temporary list and the ones that
are already in the Pareto list. Even though it passes the dominance
check, this point cannot be put in the Pareto list since there could be
other dominating configurations with intermediate throughput values
generated by CCURR.

C(i+1,j)/C(i,j+1)

i=1;j=1

T(C(i+1,j))>T(C(i,j+1))
C(i+1,j)=CCURR

C(i,j+1)=C’

C(i,j+1)=CCURR

C(i+1,j)=C’
discard

dom(C’)Y

N

Y

add_tmp_list(C’)

N

dom(CCURR)discard

add_tmp_list(CCURR)

N

Y

C’ in tmp_list
| T(C’)>TCURR

Y
dom(C’)

discard

Y

N
add_Pareto_list(C’)

N

find C(i,j) with max T

Fig. 4. Flow diagram of the smart exploration algorithm.

Before examining CCURR, the temporary list is searched in order
to find if there are stored configurations C ′ that need to be examined
first because they have a higher throughput than CCURR. For each one
of them, we perform a dominance check and eventually add them in
the Pareto list. Finally, we perform the dominance test on CCURR. If
two configurations in the Pareto list have the same throughput, the one
with the lowest power replaces the other one. New configurations are
generated starting from the last one added to the Pareto list.

At the end of this step, we obtain a Pareto curve, and the procedure
has to be repeated for a different number of workers. Finally, we ob-
tain an overall Pareto curve showing the optimal number of workers
and the operating frequency of the cores for a given throughput. In
general, the overall Pareto curve (PARO) is obtained by the composi-
tion of all Pareto curves with NWK ≤ NFREE . Smart exploration is
also performed for different traffic conditions, thus allowing semi-static
resource allocation based on the levels of bus traffic.

Fig. 5. Pareto curve with one worker.

B. QoS-Oriented Semi-Static Workload Allocation

Once Pareto-optimal configurations have been statically determined
in the previous step, they will be stored in a three-dimensional look-up
table having traffic parameters and NFREE as indexes. The table re-
turns the overall Pareto curve for NFREE maximum processors, which
gives the optimal configuration for a given throughput constraint.

At run-time, system conditions might change as an effect of events
occurring at a large time granularity, such as freed PEs or newly ad-
mitted applications in the system or abrupt changes of bus traffic. In
this case, the amount of resources allocated for our application must be
recomputed by looking at the table. Traffic parameters and number of
free cores might be retrieved from the environment (i.e. an operating
system) or through monitoring. Since we do not store in the table all
possible values of σ, ρ but only a discrete set, it is possible that run-
time values of traffic parameters do not belong to this set. In this case,
Pareto-optimal points must be obtained through interpolation of stored
configurations.

Fig. 6. Pareto curve with five workers.

VII. Results

In this section we first show power/performance Pareto curves ob-
tained through smart design space exploration that are used to fill in the
configuration table described in previous section. We consider power
contributions of all system components. Then, we compare our results
with those provided by alternative approaches.

A. Pareto Optimal Configurations

Pareto-optimal configurations are shown in Figure 5 for one worker
(PAR1) and in Figure 6 for 5 workers (PAR5). Both figures outline



5

the effectiveness of the smart design space exploration process. It is
evident that a large number of configurations have not been evaluated,
thus cutting down on simulation runs. Points that have been discarded
because they are dominated are also shown. Let us observe the one
worker case in Figure 5. The algorithm starts from the upper right-
most point corresponding to fPR/CN = fWK = fMAX . It immediately
discards the upper points in the plot and moves down vertically until
it finds the first point of the Pareto curve. We observed that the dis-
carded point correspond to fWK scaling. This means that in the start-
ing configuration the single worker is the bottleneck and by scaling
down fWK we make the system more unbalanced. In contrast, by scal-
ing fPR/CN , we get a reduction of power consumption with constant
throughput until PR/CN become the bottlenecks. This corresponds to
a Pareto optimal configuration, and the relative scaling factor between
fPR/CN and fWK frequencies minimizes the idleness. All configura-
tions with same throughput but higher power are then discarded. Other
points that we obtain by scaling PR/CN from here increase the idleness,
but they are still Pareto optimal since they are not dominated by other
configurations. The reason for this is the discrete number of available
frequencies.

With a larger number of workers (greater than four), Pareto curves
become similar to Figure 6, where a case with 5 workers is represented.
Here, PR/CN are the bottlenecks in the starting configuration. Although
we correctly scale workers frequency to balance the system, the scaling
granularity is so coarse (scaling of 5 workers at a time) that after one
scaling step the workers become the bottleneck. Therefore the identifi-
cation of Pareto points here is much less intuitive than in Figure 5.

The overall Pareto curve (PARO(NFREE)) for a maximum num-
ber of available workers is obtained by comparing the Pareto-optimal
configurations for the different numbers of workers. The curve is shown
in Figure 7 for NFREE = 5 workers. We can observe that using all of
the workers is not always the most power-efficient solution.

Fig. 7. Overall Pareto curve with five available workers.

Our analysis showed that for a larger number of workers, second-
order effects come into play. We in fact observed an increase of the
achievable throughput until the number of workers is less or equal to
eight, which is the last point with no diminishing returns. In fact, with
more than eight WKs the bus saturates when high throughputs have to
be delivered, as detailed in Figure 8. For this reason, when considering
the overall Pareto curve PARO(NMAX ) with NFREE ≥ 9, configu-
rations that do not use all of the workers are more efficient.

Interfering traffic effects are shown in Figures 9 and 10. All the
points correspond to configurations wherein producer, consumer and
workers work at the same speed, which is maximum on the rightmost
part of the plot, and scaled as we move toward lower throughput values.
Figure 9 highlights the impact of reduced available bus bandwidth on
DES performance for the 1 worker case. The throughput theoretically
achievable by configurations on the rightmost part cannot be actually
provided because of a larger impact of bus contention. This effect is
not observed in the leftmost part, since there is a lower frequency of
bus accesses to deliver lower throughput and since the processors are

Fig. 8. Bus saturation effect.

working at a lower speed than the bus.
Figure 10 instead shows the impact of average burst size of the in-

terfering traffic (σ), keeping the interfering bandwidth ρ constant. We
show that the impact on throughput is larger for smaller but more fre-
quent bursts, and that configurations providing high throughput values
are more sensitive.

Fig. 9. Effect of interfering traffic bandwidth. ρ is the bandwidth oc-
cupancy of interfering traffic with respect to maximum bus bandwidth.

B. Efficiency Comparison

In Figure 11 we compare our optimal solutions for a 2 workers case
(NFREE = 2) with an alternative policy which always uses the max-
imum number of available workers and scales down all processor fre-
quencies to get a lower throughput. With our power-aware methodol-
ogy, we can cut down power by 30% for high throughput values, since
we are able to reduce idleness. For lower throughput values the savings
are smaller but still our configurations are more power efficient.

The effectiveness of the power-aware allocation has been also com-
pared with a policy with no voltage/frequency scaling. In this case,
a lower throughput can be achieved by employing a lower number of
processors. Results are reported in Figure 12 for NFREE = 5. The
comparison highlights that using our strategy allows to save 50% of
power for lower throughput values, since we again scale frequencies to
reduce idleness.

VIII. Conclusion

We presented a QoS-driven methodology for optimal allocation and
frequency selection. Our methodology is based on functional simula-
tion and full system power estimation. It is demonstrated on the DES al-
gorithm, representative of a wider class of streaming applications with



6

Fig. 10. Effect of burst size of interfering traffic.

Fig. 11. Comparison of power-aware allocation strategy with no work-
ers tuning policy.

independent input data frames and regular workloads. We have showed
the savings in terms of needed simulation runs and the efficiency with
respect to alternative approaches.

REFERENCES
[1] L. Benini, A. Bogliolo, and G. De Micheli. “A survey of design tech-

niques for system-level dynamic power management”. IEEE Trans. on
VLSI Systems, pages 299–316, June 2000.

[2] N. Jha. “Low power system scheduling and synthesis”. IEEE/ACM Conf.
on CAD, pages 259–263, 2001.

[3] W. Kwon and T. Kim. “Optimal voltage allocation techniques for dynam-
ically variable voltage processors”. IEEE Trans. on VLSI Systems, pages
125–130, June 2003.

[4] P. Pillai and K. Shin. “Real-time dynamic voltage scaling for low-power
embedded operating systems”. ACM SIGOPS 01, pages 89–102, October
2001.

[5] A. Iyer and D. Marculescu. “Power efficiency of voltage scaling in mul-
tiple clocks, multiple voltage cores”. Int. Symposium of Computer Archi-
tecture, pages 158–168, May 2002.

[6] L. Leung, C. Tsui, and W. Ki. “Simultaneous task allocation, scheduling
and voltage assignment for multiple-processors-core systems using mixed
integer nonlinear programming”. ISCAS03, V:309–312, May 2003.

[7] J. Liu, P. Chou, and N. Bagherzadeh. “Communication speed selec-
tion for embedded systems with networked voltage-scalable processors”.
CODES02, pages 169–174, May 2002.

[8] A. Rae and S. Parameswaran. “Voltage reduction of application-specific
heterogeneous multiprocessor systems for power minimisation”. ASP-
DAC, pages 147–152, January 2000.

[9] D. Roychowdhury, I. Koren, C. Krishna, and L. Y.H. “A voltage schedul-
ing heuristic for real-time task graphs”. Int. Conf. on Dependable Systems
and Networks, pages 741–750, June 2003.

Fig. 12. Comparison of power-aware allocation strategy with no fre-
quency scaling policy.

[10] D. Bertozzi and L. Benini. “Battery lifetime optimization for energy-aware
circuits ”. Low Power Electronics Design, edited by C.Piguet, pages –,
2004.

[11] J. Suh, D. Kang, and S. Crago. “Dynamic power management of multi-
processor systems”. Int. Parallel and Distributed Processing Symp., pages
97–104, April 2002.

[12] D. Lackey, P. Zuchowski, D. Bedhar, T.R. aand Stout, S. Gould, and
J. Cohn. “Managing power and performance for systems-on-chip designs
using voltage islands ”. Int. Conf. on CAD, pages 195–202, November
2002.

[13] Y. Zhang, X. S. Hu, and D. Z. Chen. Task scheduling and voltage selection
for energy minimization. DAC03, pages 183–187, 2003.

[14] D. Zhu, R. Melhem, and B. Childers. “Scheduling with dynamic volt-
age/speed adjustment using slack reclamation in multi-processor real-time
systems”. IEEE Trans. on Parallel and Distributed Systems, 14:686–700,
July 2003.

[15] D. Pham et al. “The design and implementation of a first generation CELL
processor”. IEEE/ACM ISSCC, pp.184–186, 2005. July 2003.

[16] I. Hyunsik, T. Inukai, H. Gomyo, T. Hiramoto, and T. Sakurai. “VTC-
MOS characteristics and its optimum conditions predicted by a compact
analytical model”. ISLPED01, pages 123–128, August 2001.

[17] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest,
and R. Lauwereins. “Energy-aware runtime scheduling for embedded-
multiprocessor SOCs”. IEEE Design and Test of Computers, pages 46–58,
2001.

[18] L. Benini, P. Siegel, and G. De Micheli. “Automatic synthesis of gated
clocks for power reduction in sequential circuits”. IEEE Design and Test
of Computers, pages 32–40, December 1994.

[19] K. J. Nowka et al. “A 32-bit PowerPC System-on-a-Chip with support
for dynamic voltage scaling and dynamic frequency scaling”. IEEE JSSC
Vol. 37, no. 11, pp. 1441–1447, Nov. 2002.

[20] G. Qu. “What is the limit of energy saving by dynamic voltage scaling? ”.
IEEE/ACM Int. Conf. on Computer Aided Design, pages 560–563, 2001.

[21] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, R. Zafalon, Analyzing
On-Chip Communication in a MPSoC Environment, Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition 2004,
Paris, France, Feb 16-20, 2004, pp. 752-757 Vol. 2

[22] Federal Information Processing Standards Publication 46-2, ”‘Announc-
ing the Standard for DATA ENCRYPTION STANDARD (DES)”’,
http://www.itl.nist.gov/fipspubs/fip46-2.htm,Dec.
1993.

[23] Intel XScale technology, http://www.intel.com/design/intelxscale/
[24] RTEMS Home Page, http://www.rtems.com


