
Coordinated, Distributed, Formal Energy Management of Chip Multiprocesors

Abstract— Designers are moving toward chip-
multiprocessors (CMPs) to leverage application parallelism for
higher performance while keeping design complexity under control.
However, to date, no power management techniques have been
proposed for coordinated power control of multiple processor cores.

In this paper, we first illustrate how the use of local, per-tile dy-
namic voltage and frequency scaling (DVFS) techniques can result
in tiles counteracting each others’ power management policies, lead-
ing to oscillations and significantly hurting chip power-performance.
We then propose a coordinated DVFS scheme for CMPs, which elim-
inates the oscillations and ensures efficient and resilient DVFS con-
trol. Specifically, our proposed technique incorporates thread informa-
tion collected at run-time across the chip. In addition, by extending a
control-theoretic local DVFS control technique toward DVFS for chip-
multiprocessors, our technique prescribes DVFS settings formally at
each tile, thus ensuring stable, distributed, coordinated DVFS con-
trol of a CMP. Experimental results show that our technique achieves
a 15.5% improvement in energy-delay product over a CMP with no
DVFS control, and a 7% improvement in energy-delay product against
the latest state-of-the-art local DVFS scheme.

1. Introduction

To computer architects, chip multi-processors (CMPs) are very
appealing, as replicated cores allow high-performance and high-
transistor-count chips to be built with manageable complexity and
power-efficiency. In addition to the IBM Power 5 and various re-
search designs, CMPs are also emerging in lower-power embedded
systems; in May 2004, ARM announced the MPCore embedded pro-
cessor, aimed at set-top boxes, automotive applications, and mobile
systems.

Power-efficiency and thermal-efficiency are increasing concerns for
both embedded and high-end systems. Thus, a range of methods have
been explored to address these issues. With uniprocessor chips we
know that often there is insufficient work to fully occupy the proces-
sor, due to memory latencies, lack of parallelism, or some other effect.
Continuing to run the processor at full speed thus simply wastes en-
ergy. To conserve energy, one can change the operating voltage and
frequency to scale down the speed of the processor to match the de-
creased requirements in processing performance. This voltage and fre-
quency scaling technique, or Dynamic Voltage and Frequency Scal-
ing (DVFS), is common in both embedded processors as well as more
high-performance processors.

With multiple processors on the chip, power issues are multiplied
by the presence of more processors, and magnified by the fact that
the processors can interact, cooperatively processing parallel threads
of a single application. However, most DVFS techniques proposed
to date typically apply to single processors such as the Intel XScale
or Pentium-M [6, 3, 7]. Some recent work has looked at processors
with several internal clock domains—multiple-clock-domain (MCD)
processors [10, 13, 14, 17, 18]—but are restricted to local solutions in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

which each domain is considered separately. Such local, per-tile DVFS
techniques lead to unstable DVFS control of CMPs processing multi-
threaded applications, worsening overall chip power-performance (See
Section 2).

The majority of current DVFS work can be characterized along two
general lines: the level of dynamism (online or offline) and the level of
formality (ad hoc or formal). Most prior DVFS work is either a profile-
based optimization approach (off-line formal) [5, 9, 10, 19] or a run-
time heuristic based (online ad hoc) approach [13, 14, 8, 11]. How-
ever, CMPs pose a major problem to these techniques. First, CMPs
typically execute several applications at once, making it very difficult
to obtain a representative profile. Second, the number of processors
and possible placements explosively increases the tuning space for ad
hoc approaches.

This motivates us to investigate and propose a run-time, control-
theoretic DVFS algorithm for CMPs (online formal). An online solu-
tion eliminates the need for a representative profile, and the formal ap-
proach reduces the amount of parameter tuning required while ensur-
ing stability. Currently, the best known online formal DVFS approach
is that described in [17], which uses a control-theoretic approach in
the context of MCD processors. For the remainder of this paper we
will refer to this style of control as local-PID. Local-PID is a purely
local scheme—that is, only information local to a tile is used, with
interaction across multiple tiles ignored. In this paper, we propose a
distributed version of this scheme, applying the basic mechanics of the
formal approach to CMPs, while realizing stable, distributed, coordi-
nated DVFS control.

Our approach shows that compared to a baseline approach with
only tile-gating, our scheme improves the energy-delay product (EDP)
by 15.5%. Our scheme compares favorably to local-PID, which can
only produce an 8.48% improvement in EDP. For applications with
high variability and dependencies between threads, our scheme im-
proves EDP by 8.8%, whereas the local scheme manages less than a
1% improvement. We also show that our scheme is more stable and
more resilient in situations where local-PID severely breaks down.

Our paper is structured as follows. Section 2 describes the local-
PID scheme and its drawbacks when used in a CMP. Section 3 pro-
poses our scheme, called dist-PID. Next, Section 4 details our simula-
tion setup and the benchmarks used, with Section 5 following with the
results. Finally, we draw our conclusions and sketch plans for future
work in Section 6.

2. Motivation

To motivate the need for distributed, coordinated DVFS, we first
study the effect of local DVFS control in a CMP, where each tile’s fre-
quency (and voltage) is set independently based on local information.

Figure 1. Each CMP tile modeled as a queueing
system.

Our study is based on local-PID, which is representative of per-
tile queue-based DVFS control policies [17, 18] and was shown to

result in better energy efficiency than prior online/offline ad hoc DVFS
approaches.

While used in an MCD context, the solid formal control-theoretic
principles behind this algorithm can be readily applied to single-clock-
domain CMPs: Each tile is modeled as a local queue model as shown in
Figure 1, with each tile processor fed by its task queue, where threads
scheduled on the processor await execution. The service rate is denoted
as µ, which is determined by the tile processor frequency f. Demand is
represented as λ, which in our system is the arrival rate of new tasks.1

Queue occupancy, q, refers to the number of task in the task queue,
as well as the expected relative execution time of each task (what we
term load factor, whose derivation will be elaborated in Section 3.3).
In this framework, the queue size, q, encapsulates the load on each
tile. Conceptually, we seek to exactly match the service rate µ with the
demand λ such that the average queue occupancy q remains constant
from interval to interval; this implies that the processor has supplied
just enough performance to meet the processing requirement of the
application, and thus the maximum amount of energy has been saved.

Local-PID computes µ at interval k as:

µk = µk−1 + Ki(qk − qref) + Kp(qk − qk−1) (1)

where µk−1 is the service rate of the last interval, qk and qk−1 the
average queue occupancy of the current interval k and previous inter-
val k-1. The remaining variables are fixed: Ki and Kp constants that
are picked based on control-theoretic principles to ensure stability, and
qref the steady-state desired queue occupancy constant. Essentially,
the above Equation 1 predicts the needed service rate to eventually
bring the queue occupancy to qref .

Conversely, if one were to assume a µk (proportional to the proces-
sor frequency), and solve for qref , then the equation produces what the
eventual value of qref (target task queue size) should be in response to
a frequency setting of µk. Solving for qref we get the following:

qref = (Kp(qk − qk−1) + Kiqk − µk + µk−1)/Ki (2)

2.1 Demonstrating oscillations

Consider the following four-threaded program as shown in Figure
2. The code on the right is the main “master thread” (Thread MT)
which launches three threads with initial parameters 2 (Thread T(2)),
17 (Thread T(17)), and 10000 (Thread T(10k)). The code on the left is
the parallel sum sqrt(). Each thread is run on a separate tile on the
CMP.

At start, MT creates three threads, running the function sum sqrt.
MT then sends each thread their initial argument (num), before moving
into a loop in which it sends a continuous stream of numbers (div) to
each thread—each number is sent three times in total. Each thread
then compares the value received and if it is divisible by the initial
argument, adds the square root to a running sum. If the value is -1, the
program ends.

From the code we see that T(17) has far less work to do; based
on profiling, T(17) spends 169 cycles per element, whereas T(2) needs
540 cycles on average. T(10k) has virtually no work, and spends fewer
than 100 cycles per element. MT inserts an entry every 106 cycles, and
stalls when the queue occupancy of either destination is full. Thus,
ideally, the tile executing T(2) should run at full speed, while the one
executing T(17) should run at approximately one-third full frequency
to realize maximum savings in energy-delay-product. T(10k) should
quickly settle to the minimum speed.

Figure 3 shows a sample execution of the code in Figure 2 using
the default settings for the stability constants (Ki=0.6 and Kp=0.2)
for local-PID. We see from the figure that T(2) quickly saturates and
runs at full frequency, as expected, and likewise, T(10k) drops to the
minimum frequency, occasionally increasing its speed to compensate
for small perturbations in execution. Unexpectedly however, rather
1In our system, λ is usually the arrival of a new thread in the task
queue. However, λ can also be the arrival of a new piece of data for
processing, for example, in the case of streaming applications.

than settling at a lower frequency, T(17) oscillates between low and
high DVFS settings.

The reason is as follows: on average the processor completes one
element every 169 cycles, but this is skewed, as the first 16 elements
require almost no processing, while the 17th needs significant process-
ing. While processing the 17th element, the incoming task queue fills
up quickly—and since T(17) does not know that T(2) is running much
more slowly, sees a large jump in queue occupancy and hurriedly raises
its frequency in response. With only purely local information, there is
no way that T(17) can know that it can slow down and match T(2).

This example is relatively simple—if, for example, T(2) was con-
nected in a chain to T(17) in a producer-consumer fashion, the oscil-
lations would be worse. Rather than T(2) falling behind rather pre-
dictably due to the steady stream of data from MT, instead T(2) would
be slowing down when another burst of data from T(17) arrives, forcing
T(2) to increase its speed again. Now in addition to T(17) oscillating,
T(2) is fluctuating as well. Clearly, this example illustrates the limita-
tions of oblivious, local DVFS control in a CMP, motivating the need
for distributed, coordinated DVFS.

2.2 Inapplicability of local DVFS schemes

So why was local, per-tile DVFS control sufficient in a MCD chip,
but not a CMP? The reason lies in several critical differences be-
tween MCDs and CMPs, which accentuate the need for coordination
of DVFS control across tiles.

First, the clock domains in MCDs are not homogeneous; the integer
(INT) domain tends to have much lower latencies per queue element,
and the load/store (LS) domain higher. Thus the LS domain needs to be
more aggressive in order to preserve performance. This is recognized
in [17] as the qref values are different, 6 for INT, 5 for FP, and 3 for
LS, as are the queue lengths: 20 for INT, 16 for FP, and 16 for LS. In
a CMP with homogeneous processors it is impossible to determine, at
design time, the different loads on each processor tile across a range
of applications. Even within an application, thread placement on tiles
may be scheduled dynamically at the user level or by the operating
system. Thus, with a single, fixed qref , one will always encounter
mismatches where qref is too lax or too aggressive. Second, the input
rate λ for MCDs is always derived from a single source (all instructions
fetched from a centralized instruction fetch unit), while the tiles in
CMPs can be fed instructions from multiple threads and programs.

Furthermore, domains in a MCD processor essentially have an in-
stantaneous feedback loop due to the single, shared fetch stage; local
queue information is thus highly indicative of overall chip load. Con-
versely, task queue occupancies on CMP tiles are more loosely corre-
lated, with spikes and ebbs at different points in time, depending on
the data dependencies between threads. Thus as this simple 4-threaded
program illustrates (see Figure 3), local-PID leads to processors adapt-
ing based on their local, internal values of qref rather than to the over-
all load situation across the chip.

This situation with qref is not unique to local-PID. Basing DVFS
decisions locally and statically, whether it be qref or some other met-
ric, will be less stable and flexible. Using synchronous-clock unipro-
cessor DVFS schemes, such as trying to keep IPC constant across all
processors, are even less indicative of thread imbalances in between
tiles. DVFS schemes for MCDs at least incorporate the sense of sep-
arate domains. For MCD processors however, the domains are tightly
integrated enough such that each element transmitted between domains
requires only a small bit of processing. The information drawn from
queue occupancy is thus more indicative of the workload across the
whole chip. In CMPs, this is less true, and therefore we need a scheme
that more explicitly shares information between domains so that tiles
can coordinate and produce a set of DVFS settings in a distributed
fashion while preserving global chip performance.

3. Proposed Work

Our example in Section 2 points to the limitations of DVFS based

void sum_sqrt() { int main() {//Thread MT
int num, div = 0; int i, child1, child2, child3;
float sum = 0.0;

child1 = thread_create(&sum_sqrt);
thread_recv(&num, sizeof(int), ANY); child2 = thread_create(&sum_sqrt);

child3 = thread_create(&sum_sqrt);
while(div != -1) {

if((div%num) == 0) sum += sqrt(num); thread_send_int(2, sizeof(int), child1); //sending num
thread_recv(&div, sizeof(int), ANY); thread_send_int(17, sizeof(int), child2);

} thread_send_int(10000, sizeof(int), child3);

_thread_send(&div, sizeof(int), ANY); for(i = 0; i < 1000; i++) {
_thread_terminate(); thread_send_int(i, sizeof(int), child1); //sending div

} thread_send_int(i, sizeof(int), child2);
thread_send_int(i, sizeof(int), child3);

}

thread_send_int(-1, sizeof(int), child1);
thread_send_int(-1, sizeof(int), child2);
thread_send_int(-1, sizeof(int), child3);
thread_wait_children();
return 0;

}

Figure 2. Sample source code

0

200

400

600

800

1000

1200

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

 T(2) T(17) T(10k)

Figure 3. Frequency selection for execu-
tion of code in Figure 2

on purely local information—more specifically, the target qref of the
formal control method which dictates the target processor frequency
needs to (1) adapt at runtime to match thread behavior; (2) be set based
on global information, rather than fixed locally at each tile; and (3)
be set to preserve high performance. Here, we detail how we build
a formal online method that supports stable, distributed, coordinated
DVFS control in a CMP, which we call dist-PID.

The intuition behind dist-PID lies in the observation that to pre-
serve application performance while maximizing energy savings, it is
necessary to identify the threads that lie on the critical path of an ap-
plication. Those threads should be run at maximum speed to preserve
performance, while others can be slowed to maximize energy savings
without impacting performance. In parallel applications, the thread
that is the last to reach a synchronization point is that which lies on the
critical path. Hence, intuitively, if each tile knows the expected execu-
tion time of the longest-running-thread, they can DVFS their process-
ing speeds to match that, optimizing energy-delay-product.

Dist-PID operates in three steps:

1. At each tile, estimate future queue occupancy (tile workload)
using Equation 2, assuming the maximum service rate, and re-
naming qref as qtarget:

qtarget = (Kp(qk − qk−1) + Kiqk − µk + µk−1)/Ki (3)

2. Through pair-wise communications, each tile identifies the tile
scheduled with the critical-path-thread through keeping track of
the highest qtarget across the chip2.

3. With this information, each tile then re-solves using Equation 1
to determine the new service rates (tile frequency settings), es-
sentially slowing down tiles not executing critical-path-threads.

Figure 4 shows a snippet of execution near the beginning of the
code in Figure 2. Equation 1 calculates service rates in terms of 0.0
to 1.0. We then scale µ to frequency; in this example, we shall scale
frequency up to 1000 MHz. We see that in tile T(2), the queue occu-
pancy increased as the tile is unable to keep up with the processing
requirements, while the reverse is true at T(17) and T(10k). Thus we
expect to lower the frequency for T(17) and T(10k), and increase it in
T(2). Equation 2 estimates the qtargets seen for each tile, and as we
expect, tile T(2) which is experiencing the highest load will have the
highest qtarget.

Thus each tile will select T(2)’s qtarget and use this as the new qref

to re-solve the other tiles using Equation 1. Mathematically T(2) must
equal the maximum frequency (1000), running the tile at its highest
2In applications where there is no feedback loop, there must always
exist a “master thread” with no input queue, which simply produces
data for the others. In order to preserve performance, we assume it has
an infinite length input queue and thus always runs at maximum speed.

Figure 4. Example of how dist-PID assesses the
code in Figure 2

frequency on our identified critical path. In all other tiles, the equa-
tion will produce a frequency lower than maximum, as their original
qtargets are lower than qref .3

It is easy to see how this example holds up width-wise; that is, 4
or more child threads of MT. Adding a fourth thread, such as T(250),
would simply have the system consider a fourth qtarget, and the sys-
tem would remain stable with no impact on performance. However,
consider where MT is the child thread of another thread, MT+1, i.e.
it’s spawned by thread MT+1. In order for MT+1 to set its frequency,
it must receive qtarget from MT and MT’s siblings.

Here, the qtarget passed to MT+1 must not be MT’s, but rather
T(2)’s, i.e. each thread passes to its parent the highest qtarget it sees
among its siblings. By induction one can see that this holds all the way
up to the original parent thread. Thus, one can trace the critical path
through pair-wise parent-child communications.

Once the maximum qtarget is derived, it is then disseminated from
each parent to its children. As Section 3.2 shows, the communication
overhead is very low with realistic DVFS intervals of at least 50,000
cycles.

3.1 Setting of stability constants Ki and Kp

From [13, 14, 17] we set the stability constants Ki and Kp to pro-
duce a maximum swing of 4-8% in frequency per interval. To achieve
this, we assume that the load factor, or difference between (qk - qref)
and (qk - qk−1) is typically between 0 and 1000. In our case the upper
limit is not bounded; the controller can handle any value for load fac-
tor. This is particularly important because a compiler or programmer
cannot always guarantee that the load factor can be capped at 1000.
Using the stability analysis in [17], Equation 7, we choose stability
constants of Ki=0.3 and Kp=0.1. These are smaller than the default
stability constants of Ki=0.6 and Kp=0.2 because in general the work-
3If this derived frequency is lower than the lowest processor frequency
setting, that lowest setting will be selected.

load variation in CMPs tends to be shorter and sharper compared to
MCDs, and thus we need to underdamp (relatively) the response.

3.2 Hardware implementation issues

Figure 5. Proposed additional hardware needed
to calculate qtarget

Little additional low-level hardware is needed to implement dist-
PID. Figure 5 shows the hardware needed to calculate qtarget. This is
in addition to the hardware required for local-PID, which is a 16-bit
counter, a 30-bit accumulator, two adders, and two multipliers.

To build the qtarget hardware, we distribute Ki such that:

qtarget = Kp/Ki ∗ (qk − qk−1) + qk + (−µk + µk−1)/Ki

The multiplications cannot be done by lookup table, as in local-
PID as our range is essentially unlimited. However, Kp/Ki is fixed, 3
in dist-PID, and can be done with a shift and a fixed value add. Also a
constant is −µk/Ki, and can be pre-calculated to save a multiplication.
Thus, all we need is four adders and two multipliers. Since qtarget and
µk are calculated in different steps, multiplexers, adders, and multipli-
ers can be shared, which brings the total to a 16-bit counter, a 30-bit
accumulator, four adders, and two multipliers.

The second implementation overhead concerns the communication
bandwidth used in the distribution and derivation of qtarget. By using
pair-wise communications between tiles housing parent-child threads
to percolate qtarget, the overhead can be reduced to just the sending
of two floats per tile per statistics interval, which is a low 256 bits in
2,500 cycles in our assumed system. Alternatively, the distribution can
be simply pre-orchestrated, such that tiles on the outside send to a tile
on the inside, who will select the highest qtarget, and forward it to its
interior recipient. The resultant qref will be passed downward along
the same path4. In a 4x4 tile CMP, for example, the maximum latency
will be eight hops round-trip, which will ensure up-to-date information
in the face of the 2,500-cycle statistics interval.

3.3 Estimation of queue occupancies qi in a CMP

Our technique estimates the execution load on a tile in a CMP
through monitoring the threads in the task queue of a tile. Each thread
is associated with a load factor (a number ranging from 0 to 1000),
provided by the compiler or programmer. Queue occupancies at each
tile are then the summation of the load factors of all threads in the tile’s
task queue.

This load factor allows the software some control over the perfor-
mance of the code. In local-PID, qref is used to allow the software to
dictate the general performance objective—a higher qref saves more
energy, a lower one preserves higher performance. In the same way,
the load factor for each thread allows the software some control over
the hardware power management of the CMP. Higher load factors in-
struct the hardware to be more aggressive in saving energy, while a
lower setting aims to maximize performance.
4Common DVFS settings across multiprogrammed workloads are au-
tomatically supported with this protocol. However, normally each ap-
plication only needs to handle its own family of threads. Thus in this
case qtarget must also be accompanied by a thread ID.

Processor Core
Processor clock 1 GHz, 7 stage pipeline
Issue/Decode/Commit width 2/2/2 instructions per cycle
Branch predictor 4096-entry, 13 bit global history
Functional Units 2 IntALU, 2 IntMult/Div, 1 FPALU, 1 FPMult/Div, 1 MemPort

Memory Hierarchy
L1 D-cache Size 32KB, 4-way, 32B blocks, 1 cycle latency
L1 I-cache Size 32KB, 4-way, 32B blocks, 1 cycle latency
L2 None
Memory 20 cycles

Network
Topology 2-dimensional mesh
Channel Width 256-bit
Flit Size 256-bit
Input Buffers 15 flit buffers per port
Output Buffers 1 flit buffer per port
Crossbar 5-by-5
Router Pipeline 3 cycle latency (scouts), 1 cycle latency (others)
Link Traversal 1 cycle latency between hops

Table 1. Architectural parameters.

The load factor can be estimated in several ways. The first is
through profiling. While profiling can be quite accurate, since the load
factor needs only be a relative measure of load across threads, we can
estimate it using simpler, static measures. For instance, the size or
number of input arguments often serves as a good proxy for execution
time. We show in Section 5 how dist-PID remains resilient even with
simple load factors that approximate actual execution time.

4. Methodology

4.1 Simulation setup

To evaluate dist-PID we implemented our controller on an event-
based simulator modeling a 16-tile chip multiprocessor with an inte-
grated network on-chip. Each model is based on XTREM [4], a vali-
dated SimpleScalar-ARM [2] simulator with additional modifications
done to support multiprocessing and networking. The architectural pa-
rameters are listed in Table 1.

Threads are scheduled using a simple heuristic-based policy; first
try to schedule onto any free processor in the system. If none are
available, schedule the thread onto the processor with the lightest load.
Clearly, more sophisticated scheduling policies may lead to higher per-
formance. However, as DVFS is essentially reactive, trying to save
energy only after threads have been scheduled, the specific scheduling
policy used is orthogonal to the DVFS policy.

Distribution of qtargets is done via the on-chip network, with statis-
tics transmission prioritized. Statistics on queue occupancy and load
factor are sent every 2,500 cycles. Next, to determine the DVFS in-
terval, the regular points in time in which we invoke our DVFS al-
gorithms, from [18] we see that the “optimal” interval lies between
1,000 and 5,000 cycles. For our machine, we cannot afford to have
intervals so long that the behavior of very fast moving threads is lost
in the aggregation; thus we want to choose a DVFS interval that can
handle the fastest possible input rate into our machine. From micro-
benchmark tests which we used to measure thread setup and launch
time in our machine, we estimate that the fastest input rate into a tile
will be around 3,000 cycles, or more than 30 times the rate for the INT
domain in [17]. Thus we believe the lower bound for the DVFS inter-
val to be 30,000 cycles, and the upper bound in the range of 150,000
cycles.

For the individual processors we assume ARM-like processors, and
our assumptions for DVFS transition and setup delays are the same as
in [17], or 73.3ns/MHz and 171ns/2.86mV. Dynamic power numbers
for the CMP are obtained using Wattch [1] for the processor and mem-
ory components and Orion [16] for the network, running at a nominal
voltage of 2.08V. The individual processors can select frequencies be-
tween 100 MHz (0.45V) and 1 GHz (2.08V). Voltages and frequencies
are derived from the equation f = ((V - Vt)α)/V, where XScale values
are used for Vt (0.45) and α (1.5).

4.2 Benchmarks

We coded five multi-threaded benchmarks to evaluate dist-PID.
Two are kernels that are aggressively multi-threaded to tax the pro-
posed distributed DVFS technique (recursive quicksort and Othello,
a game-playing algorithm. Three others are SPEC [15] benchmarks
(equake, twolf, and mcf) that are hand-partitioned. The load factors
here are empirically determined. As mentioned before, the load factor
need only be an approximation—we show in Section 5 that dist-PID
is resilient to major variations in the load factor, whereas local-PID is
not.

quicksort: The multithreaded quicksort consists of threads created
at each recursive invocation. Compared to the other four benchmarks,
quicksort puts very high thread pressure on the system, averaging 288
cycles per thread, versus 5788 cycles on average for the other four.
This creates large variance in the scheduling of threads across the tiles,
requiring a nimble DVFS policy that can respond quickly as the work-
load on tiles vary. The load factor is based on the number of items to
be sorted.

Othello: Othello is an application of minimax tree search in a clas-
sic game—each player’s move involves searching the tree and select-
ing the best move. Each move spawns a new thread. In Othello, each
move can create six or more new threads, which creates significant spa-
tial and temporal variance in the load on each tile. As each move has
roughly comparable (order of magnitude) computational complexity,
the load factor is predefined at 250.

183.equake: Equake has two parallelized loops: the first is the
“simulation loop” which calculates the matrix K, and the second in
the “time integration loop” which is a sparse matrix access loop over
K. Threads synchronize between loops. Like Othello, each thread has
roughly comparable computational complexity, and the load factor is
hence preset at 50 for each thread.

181.mcf: This benchmark is a specialized instance of a network
minimum-cost flow problem. Due to a large shared data structure,
there is significant execution variability as a result of variable-latency
memory operations. We target the kernel portion of 181.mcf (function
refresh potential), assigning one thread to each node in the
tree. The tree has arbitrary number of children, depending on the input
data set, but in practice, is quite bimodal—either very small or very
large. After each phase of computing the potential value, a new
tree is re-generated, with tree size shrinking at each phase. The load
factor is set by profiling the tree traversal; if there exists a grandchild,
the load factor is set at 750. For all others the load factor is 0.

300.twolf: Twolf does placement and global routing. Its kernel
(function new dbox a) that we target consists of a linked list traver-
sal, where each flow does the computation for a single node (which
corresponds to another list traversal). Here, we apply decoupled soft-
ware pipelining [12] to pipeline-parallelize the program, so producer
threads prefetch nodes from memory, while consumer threads perform
computation. The load factor is set by profiling the linked list traversal,
and multiplying the length by 100.

5. Results

To evaluate the efficiency of our proposed scheme, we simulated
our benchmarks under a number of conditions. We evaluated three
schemes, baseline, local-PID, and dist-PID. The baseline scheme is
a processor with no DVFS, but “tile-gates” a tile when all the threads
in a tile’s task queue are stalled (waiting for other threads). When a
tile has no threads, it is also tile-gated, and thus consumes no dynamic
power. The interval length is 50,000 cycles, more of which will be
discussed with Figure 7. Local-PID uses a qref of 300, or one-third of
the maximum expected queue occupancy.

5.1 Energy-delay-product savings

Figure 6 shows the energy-delay product for the five benchmarks.
Overall the local scheme had 85.5% of the energy consumption of the
baseline, but increased execution time by 6.9%, producing an energy-

0

0.2

0.4

0.6

0.8

1

1.2

quicksort othello equake twolf mcf average

Fixed-PID Dist-PID

Figure 6. Normalized energy-delay product.

delay value of 97.3%. This supports our motivation that having a fixed
qref independent of the system state is not the best solution; from ob-
servation gains from one tile are canceled out by losses from another.
By comparison, our proposed scheme saved 20% of the energy but in-
creased execution time by only 5.6%, giving us an energy-delay prod-
uct of 84.55%.

Othello in particular is problematic for both schemes. Othello tends
to have long running threads punctuated by short outbursts where it
launches many threads at once; this made it difficult for our dist-PID
scheme to figure out the critical path, and track the oscillations faith-
fully. Nevertheless, dist-PID still outperforms Local-PID. Dist-PID
saved 8% energy at the cost of 8.4% performance, whereas Local-PID
saved 14% energy, but increased run-time by 30%.

Quicksort on the other hand maps well to dist-PID, as the use of
the size of the input arguments as the load factor proved a good proxy
for computation complexity, allowing dist-PID to precisely identify
the critical path and slow non-critical-path threads appropriately, lead-
ing to a larger energy-delay-product savings of 86.6% as compared to
Local-PID’s energy-delay-product of 98.3%.

As the threads of equake are fairly balanced in terms of execution
complexity, the opportunities for DVFS occur largely when the paral-
lel sections begin to wind down. Dist-PID outperforms local-PID, as
qtargets communicate information about the other tiles that are near-
ing completion, while Local-PID continues to try to match its queue
occupancy to qref . Local-PID is virtually the same as the baseline,
whereas Dist-PID decreased energy consumption by 14.7% while in-
creasing performance by only 4.1%.

Both schemes performed equally well for twolf; As twolf generates
218,000 threads with significant variation in execution times. With that
kind of sustained input rate, both schemes are able to find many places
to save energy. With mcf, threads typically either perform very shallow
or very deep traversals of tree. In twolf the critical paths are very short,
whereas in mcf the critical path is very obvious but very long. Thus
both schemes were easily able to identify which tiles to slow down and
save energy.

5.2 Effect of DVFS interval

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

quicksort othello equake twolf mcf

50k 100k 250k

Figure 7. Energy-delay product as a result of
varying the DVFS interval.

Figure 7 shows the result of varying the DVFS interval for our pro-
posed scheme. Shorter intervals, in general, lead to better energy-
delay-product, with the exception of Othello. For Othello the short
interval is actually worse; longer intervals captured Othello’s behavior

better and performed better. This is because Othello’s long-running
threads require much longer DVFS intervals—short intervals tend to
over-emphasize the small bursts in behavior. Local-PID suffers partic-
ularly from this behavior.

Quickly evolving codes like quicksort suffered from longer inter-
vals as longer intervals hamper quick responses to changes in work-
loads. Equake, while much more static, suffered from slow reaction
times, particularly with equake where the potential needed to be capi-
talized immediately.

5.3 Stability of DVFS control

0

1

2

3

4

5

6

7

8

9

100 10 1 0.1 0.01

local-PID (Othello) dist-PID (Othello) local-PID (Quicksort) dist-PID (Quicksort)

Figure 8. Run-time as a result of varying the load
factor for both local-PID and dist-PID.

Figure 8 shows the execution time (normalized against that of base-
line) after varying the load factor of Othello and quicksort from 100x
to 0.01x for both schemes. The local-PID simulations are indicated
with triangular markers whereas the dist-PID ones are indicated with
square markers.

We see that for both applications, dist-PID is relatively resilient to-
ward load factor variation, remaining stable. Local-PID, however, is
quite fragile. Unlike dist-PID, for Othello the performance of local-
PID jumps quite severely at some point, which is when the load factor
crosses over the default qref . We see that once the load factor con-
sistently stays over the default qref , local-PID tries to preserve per-
formance. If it is below the default qref , local-PID tries to save en-
ergy, without regard to the overall program state. The crossover point
is not always foreseeable and not particularly predictable—here, it is
very sudden and without indication, rocketing up to 6 times the normal
execution time to normal. Thus we see that distributed, coordinated
control not only improves EDP, but ensures stability due to inter-tile
coordination.

For quicksort, local-PID performs well when the load factors are
overestimated—for example, when the element size to be sorted is
larger than what quicksort was tuned for. This tells the local-PID
controller that we underestimated processing requirements, and thus
to try to preserve performance. When the load factors are underesti-
mated, however, performance skyrockets—much more markedly than
in dist-PID. This leaves the programmer and compiler in an interest-
ingly quandary. If the load factor calculation is tuned for a large quick-
sort, we risk the possibility that a smaller quicksort will take a massive
hit in performance. Common sense would thus be to lean toward tun-
ing for smaller quicksorts. But taken to the extreme, only very small
quicksorts would be eligible for energy savings, and then we miss the
point of DVFS. Again, our results show a compelling reason to have
adaptable, coordinated, run-time DVFS.

6. Conclusions and Future Work

We have shown that distributed, coordinated DVFS control is nec-
essary to overcome the possibly counter-acting DVFS actions of local
DVFS. Our proposal of dist-PID is shown to boost energy-performance
on CMPs while ensuring the stability of DVFS control. Compared to
local-PID, it achieves up to 8.8X improvement in EDP on benchmarks
with substantial variance across the chip. We also show how local-PID
can oscillate substantially for certain benchmarks, while our proposed

dist-PID ensures stability.
One way to improve upon dist-PID is to look at ways of dynam-

ically tracking the performance of threads and to recalibrate the load
factor based on this information. While dist-PID can handle reasonable
inaccuracy in estimating the load factor, this additional ability would
allow it to recover from completely incorrect load factor estimates.

As CMPs continue to be proposed and implemented, we believe
that the techniques described in this paper can be used to extend on-
line, formal approaches to DVFS from the uniprocessor realm into
CMPs. Our approach is lightweight, requiring little extra hardware,
and distributed, requiring little extra communication bandwidth. Over-
all, we believe our approach to be an effective way of improving DVFS
for CMPs.

7. References
[1] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for

Architecture-Level Power Analysis and Optimizations. In In Proceedings
of ISCA27, ISCA 2000.

[2] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0.
Computer Architecture News, pages 13–25, 1997.

[3] L. Clark. Circuit design of XScale (tm) microprocessors. 2001
Symposium on VLSI Circuits, 2001.

[4] G. Contreras et al. XTREM: XScale technology research for energy
modeling. Intel Internship Report, 2003.

[5] C.-H. Hsu and U. Kremer. The design, implementation, and evaluation of
a compiler algorithm for CPU energy reduction. In Proceedings of
PLDI-2003, 2003.

[6] Intel Corp. The Intel XScale Processor Architecture.
http://developer.intel.com/intelxscale, 2002.

[7] Intel Corp. The Intel Pentium M Processor.
http://www.intel.com/design/mobile/pentiumm/documentation.htm, 2004.

[8] A. Iyer and D. Marculescu. Power and performance evaluation of
globally asynchronous locally synchronous processors. In Proceedings of
ISCA-29, 2002.

[9] J. Lorch and A. Smith. Improving dynamic voltage scaling algorithm
with PACE. Proceedings of SIGMETRICS-2001, 2001.

[10] G. Magklis, M. Scott, G. Semeraro, D. Ablonesi, and S. Dropsho.
Profile-based dynamic voltage and frequency scaling for a multiple clock
domain microprocessor. In Proceedings of ISCA-30, 2003.

[11] D. Marculescu. On the use of microarchitecture-driven dynamic voltage
scaling. Workshop on Complexity Effective Design, 2000.

[12] R. Rangan, N. Vachharajani, M. Vachharajani, and D. August. Decoupled
software pipelining with the synchronization array. In In Proceedings of
PACT-13, 2004.

[13] G. Semeraro, D. Albonesi, S. Dropsho, G. Maklis, S. Dwarkadas, and
M. Scott. Dynamic frequency and voltage control for a multiple clock
domain microarchitecture. In Proceedings of MICRO-35, 2002.

[14] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi,
S. Dwarkadas, and M. Scott. Energy efficient processor design using
multiple clock domains with dynamic voltage and frequency scaling. In
Proceedings of HPCA-8, 2002.

[15] The Standard Performance Evaluation Corporation. WWW Site.
http://www.spec.org, Dec. 2000.

[16] H.-S. Wang et al. Orion: A power-performance simulator for
interconnection networks. ”In Proceedings of MICRO-35”, 2002.

[17] Q. Wu, P. Juang, M. Martonosi, and D. Clark. Formal online methods for
voltage/frequency control in multiple clock domain microprocessors.
Proceedings of the Eleventh International Conference on Architectural
Support for Programming Languages and Operating Systems, 2004.

[18] Q. Wu, P. Juang, M. Martonosi, and D. Clark. Event driven voltage and
frequency control in multiple clock domain microprocessors. In
Proceedings of HPCA-11, 2005.

[19] F. Xie, M. Martonosi, and S. Malik. Compile-time dynamic voltage
scaling settings: Opportunities and limits. In Proceedings of PLDI-2003,
2003.

