Workload Clustering for Increasing Energy Savings on
Embedded MPSoCs

ABSTRACT that combines voltage scaling with processor shut-doWhe unique-

Voltage/frequency scaling and processor low-power modes (i.e., pRESS Of the proposed unified approach is that it maximizes the oppor-
cessgr shucl-dowx) are t\?vo impportant mechanﬁsms used for(redug ities for processor shut-down by assigning workloads to processors
energy consumption in embedded MPSoCs. While a unified sch fully. It achieves this by clustering the original workloads of pro-
that combines these two mechanisms can achieve significant savi r?i::salm dgtsa];;eswo?rtcr)l?s?zsorrsogzhp?(;ssgﬁleerl Insg'\;isnpaigegmv‘k’)eegés‘ecdusﬁﬁe
in some cases, such an approach is limited by the code parallelizatigfy 11 ““- 720 % S ¢ panch is ILP i%e o Ii%ear fogramming)
strategy employed. In this paper, we propose a novel, integer linegP~S:. . Prop app . (integ prog g
programming (ILP) based workload clustering strategy across paral?@lased* that '; ']E detelrn:_lnestrt]he opglmal quklolzla_(ii:)clusdterlrrgs af?tfoss the
processors, otiented towards maximizing the number of idle processBFQC%fS?rS y'l oglmul_alng leprol em(;Jsmtg ; al? rs10t\r/1mgtlh'usmg
without impacting original execution times. These idle processors cgpPUR/ICly-available linéar solver. in order to ¢ ecl whe e';_ |sbap q
then be switched to a low power mode to maximize energy savin%%a‘:h brings any energy benefits over the pure voltage scaling based,

wher he remaining on n mak fvol fr n iilje processor shut-down based, or a simple unified scheme, we im-
ereas the remaining ones can make use of voltage/frequency sca mented four different approaches within our linear solver and tested

gm using a set of eight array/loop-intensive embedded applications.
simple unified scheme, we implemented four different approaches simulation-based analysis reveals that the proposed ILP approach

; ; ; : )i ffective in reducing energy consumption of the applica-
tested them using a set of eight array/loop-intensive embedded apfti. 'S V€'Y € .
cations. Our simulation-based analysis reveals that the proposed Izi_'ﬁns tested and (2) generates much better energy savings than all the al-

; P ; ; rnate schemes tested (including one that combines voltage/frequency
approach (1) is very effective in reducing energy consumption of the gp-_* ; -
plications tested and (2) generates much better energy savings tharL} ling and processor shutdown). In this paper, we also compare this

In order to check whether this approach brings any energy benefits o
the pure voltage scaling based, pure processor shut-down based,

the alternate schemes tested (including a unified scheme that comb a—ts)ased approach to a heuristic scheme that clusters processor work-
voltage/frequency scaling and processor shutdown). In this paper,

; ) Lot ] he remainder of this paper is structured as follows. The next section
?é?g g%rggggrtwgrﬁopaggsw approach to a heuristic scheme that Cl%?(plains the embedded MPSoC architecture considered in this work and

our application execution model under this architecture. This section
also briefly discusses the related work. The details of our ILP-based
solution to processor workload clustering are given in Section 3. Our
experimental platform, characteristics of the applications used, and the
1. INTRODUCTION results obtained are presented in Section 4. Finally, Section 5 concludes
Embedded multi-processor system-on-a-chip architectures (MPSa@e)paper.
are becoming increasingly popular as they bring advantages of exploit-
ing parallelism at a high level and easier validation/verification. How-
ever, since these architectures contain multiple processors on the same EMBEDDED MPSOC ARCHITECTURE AND
chip along with several types of memory components, the energy con-
sumption of the chip can be a major concern. This observation has le EX_ECU_T|ON MODEL. oo .
to several recent efforts on reducing energy consumption of embedded € chip multiprocessor we consider in this work is a shared-memory
MPSoCs. architecture; that s, the entire address space is accessible by all proces-
We can roughly divide the efforts on energy savings in MPSoCs inf9"S: Each processor has a private L1 cache, and the shared memory
two categories. In this first category are the studies that employ pte-2ssumed to be off-chip. Optionally, we may include a (shared) L2
cessor voltage/frequency scaling. The basic idea is to scale down vefiche as well. Note that several architectures from academia and in-
agelfrequency of a processor if its current workload is less than tjestry fit in this description [2, 13, 10, 11]. We keep the subsequent
workloads of other processors. In comparison, the studies in the sec8fRfussion simple by using a shared bus as the interconnect (though
category shut down unused processors (i.e., put them into low-povf&e could use fancier/higher bandwidth interconnects as well). We also
states along with their private memory components) during the exedl3€ the MESI [17] protocol (the choice is orthogonal to the focus of this
tion of the current computation. Both these techniques, i.e., voltaBPer) to keep the caches coherent across the CPUs. We assume that
scaling and processor shut down, can be applied at the software | jage level and frequency of each processor in this architecture can be
(e.g., directed by an optimizing compiler) or at the hardware-level (e.§€t independently of the others, and also processors can be placed into
based on a past history-based workload/idleness detection algorithigly) Power modes independently. This paper focuses on a single-issue,
It is also conceivable to combine these two techniques under a unifl&-Stage (instruction fetch (IF), instruction decode/operand fetch (ID),
optimizer. execution (EXE), memory access (MEM), and write-back (WB) stages)
Each of these techniques has its advantages and drawbacks. FoP#glined datapath for each on-chip processor.
ample, a processor shut-down based scheme may not be applicabfgu" application execution model in this embedded MPSoC can be
if there is no unused processor (note that this does not mean that3gmarized as follows. We focus on array-based embedded applica-
workloads of all the processors in the MPSoC are similar). Similarl{fons that are constructed from loop nests. Typically, each loop nest in
the effectiveness of a voltage scaling based scheme is limited by #¢h an application is small but executes a large number of iterations
number of voltage/frequency levels supported by the underlying haffld accesses/manipulates large datasets (typically multidimensional ar-
ware. In general, exploiting processor/memory shutdown saves mEi¥S Of signals). We employ a loop nest based application paralleliza-
energy when it is applicable (as it reduces leakage energy significant@]! Strategy. More specifically, each loop nest is parallelized indepen-
or when we have only a couple of voltage/frequency levels to use. dgNtly of the others. In this context, paralielizing a loop nest means
this is not the case, then voltage scaling can be effective (and in soffgributing its iterations across processors and allowing processors to
cases it is the only choice). Based on this discussion, one can exjg@Cute their portions in parallel. For example, a loop with 1000 it-
a unified scheme to be successful. However, we want to re-iterate th&tions can be parallelized across 10 processors by allocating 100 it-
if there is no unused (idle) processor in the current workload assign-
ment, such a unified scheme simply reduces to a voltage scaling based
approach. In this paper, we use the terms “processor show-down” and “low-
Our goal in this paper is to explorensrkload (job) clusteringcheme power mode” interchangeably.
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there is really little reason for calculating the workloads of individual
processors, and thus little opportunity for workload clustering. Sec-
ond, the conventional parallelizing compilers try to use as many proces-
0 N sors as possible for executing a given computation unless there exists a
S R M compelling reason to do otherwise (e.g., the excessive synchronization
\ \ costs). Third, in many cases, trying to cluster computation in very few
Pr B2 Ps P4 Ps _ processors can have an impact on execution cycles. Since most paral-
\I B e lelizing compilers do not predict or quantify this impact, they do not
[] ictotunused attempt such clusterings, being on the conservative side.
Y | I The second issue is that, it is possible that the scenario depicted in
L L B | Figure 1(e) has poor data locality as compared to scenarios in Fig-
o @ B snotaown ures 1(b), (c), and (d). This is because conventional code parallelizers
. ) . . generally try to achieve good data locality, by ensuring that each pro-
Figure 1: Comparison of different energy-saving approaches for cessor mostly uses the same set of data elements as much as possible
a six processor architecture. Arrows indicate how the workloads (i.e., high data reuse). As a result, the scenario in Figure 1(e) can lead to
(jobs) are clustered by our approach. an increase in data cache misses, which in turn increases overall energy
consumption. This overhead should also be factored in our clustering

: oach to ensure a fair comparison.
erations to each processor. We also assume that after each Ioopﬁ F]e main contribution of the ILP approach proposed in this paper
execution, all processors get synchronized before they start execufing” ioin for each loop nest in an application, the result shown in
the next loop nest. Note that dropping this requirement would nece EE ' .
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o : . : ! Siqure 1(e), given the initial scenario (workload assignment) shown in
tate a sophisticated compiler analysis to identify the cases under wi :
a processor that finishes its portion of iterations from the previous lo ure 1(a) and thus reduce energy consumption.

nest can go ahead and start executing its portion from the next loop rgs? Technical Details and Problem Formulation

without waiting for the others. . ;
t_”(‘):rte :ré rr?ar?y Lr%&t,sgé for power management of a dynamic v 1T his section elaborates on the ILP model used to represent the prob-

g ; 1. In our problem, there exists a set of jobs (workloads) that have to
age scaling-capable processor. Most of them are at the operating 5! ’ .
tem level and are either task-based [12, 15] or interval-based [18, executed on a set of available CPUs in the embedded MPSoC such

While some proposals aim at reducing energy without compromisifigeiL the total energy spent by the system is minimal and that the exe-

performance, a recent study by Grunwald et al [6] observed noticgltion of the jobs completes within a specified time lirfiit,....~ The

able performance loss for some interval-based algorithms using act@igicessors can run different jobs at different voltage and frequency lev-

measurements. Most of the existing compiler based studies suchelgs Which affects energy consumption. The energy expended by each
[7, 14] target single processor architectures. In comparison, our wdHecessor is the sum of the dynamic energy as well as the leakage en-
targets at a chip multiprocessor based environment and combines @18y expended while running. The rest of this section describes the ILP

age scaling and processor shutdown. [20] presents and analyzes a Whdel in detail.

age/frequency scaling scheme but, they do not consider processor s% ~

down. [8] employs processor a shut-down based mechanism but d ?-l System and Job Model

not consider voltage/frequency scaling. In our experimental evaluation,JObs are members of the setonsisting ofJ... elements and the

we compare our approach to pure voltage/frequency scaling and to pRfiecessors belong to the s@tin which there are’,,.. elements. The
processor shut-down as well. processors can run &, discrete set of voltage/frequency levels (as

supported by the architecture). It is assumed that only one job can run
on a processor at anytime and that once a job starts running on a pro-

3. OUR APPROACH cessor, it runs uninterrupted to completion. However, a processor can
. run more that one job, as a result of workload clustering. The duration
3.1 Overview that the job occupies the processor is dependent on the supply volt-

Figure 1 compares four different alternate schemes that saves eneigw/frequency as well as the the frequency at which the processor is
in an embedded MPSoC architecture. It is assumed, for illustrative pruinning that particular job. The time (latency) each job takes up at dif-
poses, that the architecture has six processors. In Figure 1(a) shisvent voltage levels is specified in the artdyb_Length(j,v). Sim-
the workloads of the processors (i.e., the jobs assigned to them) iilagly, the dynamic energy spent by each job at different voltage levels

given loop nest. These are assumed to be the loads either estimategbbits and is specified ifiob_Dynamic(j, v).2 Total_Energy is the

the compiler or calculated through profiling and are for a single negym of the energies spent by all jobs on all processors due to their run-

Figures 1(b) and (c) show the scenarios with pure voltage/frequengyig as well as the leakage energy consumed by the processors. This is

scaling and pure processor shut-down based approach, respectlvel:(hé%netric whose value we want to minimize.

(b), four out of six processors take advantage of voltage scaling (note

that P; is not used in the computation at all). In (c), on the other hand3.2.2 Mathematical Programming Model

we can place only one processo#s) into the low-power mode. A The constraints specified below give the mathematical representation

combination of these two approaches is depicted in Figure 1(d). Bf-our model. We use 0-1 integer linear programming (ILP). This ILP

sically, this version combines the benefits of voltage/frequency scalig@mulation is executed for each loop nest separately. Table 1 gives the

and processor shut-down. Finally, the result that can obtained by W&ation used in our formulation.

ILP approach proposed in this paper is illustrated in Figure 1(e). NoteJob Assignment Constraints. The 0-1 variableX (p, j, v) deter-

that what our approach achieves isctasterthe total amount of com- mines whether processprruns jobj at voltage/frequency level. One

putational load in as fewer processors as possible so that the number

of unused processors is maximized. In this particular case, the original

loads of three processorB4, Ps, andP;) are combined and assigned to?In this paper, we do not assume a specific code (loop nest) paralleliza-

processoi;. As a result, processo¥3; and P, can be also placed into tion strategy. Rather, we assume that each loop nest is parallelized us-

the low-power mode (along with their private memory components) tog one of the known techniques. For each n&%t.. is determined

maximize energy savings, in addition . The next subsection gives by the processor with the largest workload. This is to ensure that our

the technical details of this approach. When there are opportunities, elustering does not have a negative impact on execution times.

approach can also use voltage/frequency scaling for the clustered johsere j represents a job (workload) andrepresents a voltage (fre-
However, we first need to clarify two important issues. Someongiency) level. In our implementation, the entrieg @f_Length(j, v)

may ask at this point “why has the application (corresponding to tla@d Job_Dynamic(j, v) are filled using profiling. All energy estima-

scenario in Figure 1(a)) not been parallelized at the first place as shavwems are performed using Wattch [1] under the 70nm process technol-

in Figure 1(e)?” There are several reasons for this. First, most curregl. The increase in data cache misses as a result of clustering is cap-

code parallelizers do not consider any energy optimizations. Therefaxged during our profiling.




Expression (6) calculates the leakage energy spent. As mentioned ear-

Notation Explanation H i i ;
Job_Dynamic(j, v) | Dynamic energy for running job (workload)at voltagev lier, if Busy(p) is 1, then Ieakage Is spent by processor
Job_Length(j,v) | Time taken to run joly at voltagev Prnas—1
X j, Value is 1 if jobj runs on pr vol -1 variabl
(p,],v} Sztu:fjibs jobj runs on processgr at voltagev (0-1 variable) L-Energy = Leakage_Value % Z *Busy(p) ©)
P | Set of processors p=0
T_max | Time deadline before which all jobs must finish . . . i o
J_max | Total number of jobs to be executed Objective Function. The objective function which is the total en-
P_maax | Total number of processors available ergy spent by the system is the sum of the the leakage and dynamic
V_num | Total number of voltage (and frequency) levels available energies. This is the function that our approach tries to minimize:
Total_Energy | Total energy consumption of the system (to be minimized)
Leakage_Value | Leakage energy spent by a processor if it is not Total_Energy = D_Energy + L_Energy )
shut down

The constraints and expressions mentioned in this section are suffi-
Table 1: Notation used in our model. cient to express our problem within ILP. We next look at the additional

iob letel d all iob heduled constraints that can be used in order to handle two special cases.

Io I runs Comﬁ. etely on_?_ne prochlssor.an all jobs are scheduled to TUQy|taqe/Frequency Scaling without Clustering. To model clas-

only once. This is specified as follows: sical voltage/frequency scaling within our ILP formulation, an input

VpeP YieJ YweV X(pjv) e {01} (1) Vvalue Assign(j,p) should specify the processor on which each job

runs. Further, by connecting this value to that’€y, p, v), all jobs

are forced to run on the assigned processors alone. This connection can

P, -1V, -1 e N .
. &I ) be specified by the following constraint:
vied > > X(p,jv) =1 2 P y g
p=0 =0 Vinum —1
. . . Vpe PVjeJ X(p,j,v) = Assi ,j 8
Constraint (1) expresses the tetk(j, p,v) as a binary variable; a b J UZ::O (p.3,v) ssign(p.J) ®

processor either runs the job or it does not. Constraint (2) states that

each job can be run only on one processor and that all jobs are assignetiustering without Voltage/Frequency Scaling.To model job clus-

to some processors (i.e., no job is left unassigned). Notice that we wasting without voltage and frequency scaling, we need to constrain the

to determine the value oX (p, j, v) for all p, j, andv. choice of available voltage frequency levels to either each processor in-
Deadline Constraints. Jobs are assigned to processors as long dividually or all processors. In the case of constraining the voltage lev-

they can meet the time deadline that is specified. Constraint (3) ejs of all processors to one value, constraint (9) can be used to ensure

presses this: that all no jobs are assigned voltage levels other than the one specified.
Imaz =1 Vnum =1 Vp € PYje VeV —{v'} X(p,j,v)=0. 9)
Vpe P Z Z X (p, j,v) * Job_Length(j,v) < Tmaz 3) . o .
j=0 =0 To constrain each individual processor to an independent voltage level,

constraint (10) below can be used.

Note thatl’,... is determined, for each loop nest, by the longest (largest)
workload. Vp e PYje JYveV —{v,} X(pj,v)=0. (10)

Clustering and Processor Shut-Down Constraints.Multiple jobs _ o
are run on the same processor if the number of jdhs.., exceeds the Here,v" andv,, are the universal and individual (for procesgpwolt-
number of processor,..., but also if such an arrangement reduces thage levels, respectively. These constraints simply limit the voltage lev-
overall energy spent by the system. In case a processor is not assigiedo be used. In this case, the decision to cluster jobs together on a
any job, either because of clustering of jobs or becalisg. < Pna.. Processor is made by our solver and depends on whether it results in a
or because of both these reasons, then it is shut down. Such a procdswegred overall energy consumption.
does not consume any dynamic energy as it has no jobs running on it
and it does not consume any leakage energy as it is shut down (excep 3 Explicit Expression of Overheads

for some small amount of leakage in memory components). Constrainf:{ecall that. the de C -
o . , gradation in cache behavior as a result of our work-
(4) is introduced to capture processor shutdown: load clustering is captured whob_Dynamic and JJob_Length arrays
Vp € P,Yj € JYveV Busy(p)> X(p,j,v) (4) during profiling of the application code. However, an alternate formu-
lation of the problem that expresses the extra overheads due to clus-
For a particular processpt Busy(p) is necessarily 1 if any of the val- tering is also possible. This can be done as followkssign(p, 7),
ues inX (p, j,v) is 1. Through this constraint, the value Biusy(P) as defined above, represents the default assignment of jobs to CPUs
is not explicitly expressed if all values N (p, j,v) are 0. However, (i.e., the assignment before clustering). If the jobs are not scheduled on
a value of 1 inBusy(p) adds leakage to the overall energy. As theheir default processors, there is an energy penalty incurred. The extent
objective of the ILP-based model is to reduce enefglysy(p) willbe  of the penalty is dependent on the characteristics of the jobs. Array
assigned to be 0 if all values i (p, j, v) are 0’ Move_Cost(j,p1,p2) is used to capture the energy spent in migrating
Leakage and Dynamic Energy Calculation.The following expres- (transferring for the sake of clustering) jgfrom processop: to ps.
sions capture the leakage energy and dynamic energy spent by the 8fsve(j, p1,p2) is a 0-1 variable, which is 1 if joly migrates from
tem as the sum of the leakage and dynamic energies, respectively, spEpreSSOp: to processop:. Constraint (11) below calculates the total
by each processor. Dynamic energy spent by a processor is the sut@vgérhead energy spent due to clustering workloads and constraints (12)
the dynamic energies spent for each job that is run on that proceséod (13) deal with the term/ ove(j, p1, p2).
This is captured by expression (5):

Jmaz—1 Pmazr—1
Pmaz—1 Jmaz—1 Vaum —1 S K

D_Energy = Z Z Z X (p, j,v) * Job-Energy(j,v) (5) §-Energy = Z_: Z:O
p=0 =0 v=0 =0 P
Praz—1
> (Move(j, p1,p2) * Move_Cost(j,p1,p2))  (11)

“To preserve data in memory components, a shut-down processor con- ps =0

sumes some leakage [4]. Our experiments are performed based on p1 # p2

this principle. However, in our presentation of the ILP formulation,

we assume no leakage consumption in the shut-down state for ease of

presentation. Vj € J,¥p1 € P,V¥pa € P: Move(j,p1,p2) € {0|1} (12)



Algorithm 1 Heuristic_Job-Allocator()

Constant Value
Tmaz | 6time units ./ Initialization
Jmaz | 4 ! D_Energy :=0; LEnergy := 0
Prax | 4 ! TotaLEnergy := 0
Voum | 5 P forp=0t0P,, 4. -1do
Leakage-value | 5energy units ProcTime_Left(p) := Trax

for j=01t0 Jyaqe -1do
X(p.j) =0
end for
end for

Table 2: Constant parameters used in the example.

©ONOTNRARWNE

X(p,j,v) Interpretation
X(0,0,3) | Processor 0 runs job 0 at voltage level 3 10: // Primary Phase

X(0,2,2) | Processor 0 runs job 2 at voltage level 2 11: for j=01t0 Jpae -1 do

X(2,3,4) | Processor 2 runs job 3 at voltage level| 4 12: LeastSaFar :=Tpq.; LeastSaFarHolder := Py, g, -1
X (3,1,3) | Processor 3 runs job 1 at voltage level 3 13: forp=0t0P,,qs -1do

. . 14: if ProcTime_Left[p] > JohDuration[j,V;,wm -1] and
Table 3: X (p, j,v) values determined by the ILP approach. ProcTime.Left < [fggsts(l,:anhen U ]
15: LeastSaFar.Holder := p; LeasSa Far := ProcTime_Left[p]
16: end if
17: endfor
. 18: X(LeastSaFarHolder,j) := 1; JobLevel[j] :=0
Vj € J,Vp1 € P,Vpz € Psuchthap; # py : 19: ProcTime Left[LeastSaFarHolder]:= ProcTime Left[LeastSaFarHolder] -
Vinum —1 LeastSaFar

Move(j,p1,p2) = Assign(pr, )+ > X(p2,jiv) (13) 5Qiendfor

v=0 .
22: for p=01t0 Py, q. -1do
We also need to alter the objective function to inclédé&nergy. The 23:  BestJob = -1; BesLevel :=-1; Bestvalue :=0

P P 24 forj=01t0 Jimax -1do
new objective function is: 55! it X[p.j] == 1 then

Total_E =D.E LE S_E . @4 26 vi=1

oral-fnergy nergy + nergy + nergy (14) 27: while v < (Vium -1) and ProcTime_Leftfp] > (JohDuration[j,v] -
JohDuration[j,0] ) do
%8: if BestValue < (JohEnergy(j,v] -JohEnergy[iVywm -11) then
Fps . BestJob :=j; BestLevel :=v
3.24 HeUI’I_StIC App_ro_ach . . 30: BestValue := (JohEnergy[j,v] -JohEnergy[j, Vi, wm -11)
We now describe a heuristic algorithm that tries to perform process3: end if

shut-down through workload clustering as well as voltage/frequeng%: vi=v+l
scaling. The algorithm (given in Algorithm 1) has two phases. The pr: end while
mary phase of the algorithm closely resembles a bin-packing heuri enzf}gr'f

in which jobs are allocated to processors based on some given capge- it BestJob> 0 then
ity limit so that the processors are filled as much as possible. Thiszg: = ;0 e e =y -1
essentially a greedy approach. In the second phase, one job is ch@8en qngit '
among all the jobs allocated to a processor and this job is scaled3@: end for

there is a slack in that processor) so that the energy consumption is #: // Energy Calculation
ther reduced. The choice of the job is such that energy is reducedHo for p=01t0 Py, ., -1do
the greatest extent, and this process is repeated for all processors fith Busy =0

. ! C h T for =010 Jmax -1d
a slack (free time). Finally, the energy of the resulting clustering Js;: OrE]nergyO: x(p,j)*ngDynamiC[j,Jthevel]: Busy := Busy + X(p.j,v)

calculated. 45 end for
46: if Busy> Othen
3.25 Example 47. L_Energy := LEnergy + Leakag&/alue

and the heuristic method operate in practice. Table 2 shows the consfhtend for ~
parameters for the system. There are 4 jobs (workloads) to be run oi-4 t@-Energy := REnergy + LEnergy
processors. Each job can be run at 5 different voltage/frequency levels
and the deadline for the completion of the jobs is 6 time units. These
values are selected for illustrative purpose only. _is calculated as follows:

Array Job_Dynamic(j,v) provides the dynamic energy spent in
running each job at different voltage/frequency levels, and is assum

This section presents an example and demonstrates how the ILP n%ho@”d if

ea_Energy = X (0,0, 3)xJob-Dynamic(0, 3) + X (0, 2, 2)xJob_Dynamic(2, 2)

to be obtained (through profiling) as follows: +X(0,1,3)xJob_Dynamic(1,3) + X (0, 3, 4)* Job_Dynamic(3,4)
1 9 3 4 5 =1%x44+1%x54+1%x84+1x%15=32.
25 46 8 10 Since three processors are used, 15 energy units are spent as leakage.
Job_Dynamic = | 5 35 6 8 |- This calculation is shown below.
3 6 9 12 15 L_Energy = 3 x Leakage_value = 3+ 5 = 15

Array Job_Length(j,v) provides the execution time (latency) of eachAs a result, the total energy spent is the sum of the dynamic and leakage
job at different voltage/frequency levels and is assumed to be as fehergies spent by all processors. Therefore, we have:

L Total_Energy = D_Energy + L_Energy = 32 + 15 = 47

6 5 4 3 2
12 10 8 6 4 Our heuristic approach, on the other hand, proceeds as follows. In the
Job_Length = 9 7 3 92 1 |- primary phase, all jobs are assigned greedily to a processor in which
24 15 12 9 6 they can complete within the time limif,.... (6 unites). Job O is as-

signed to processor 0 at voltage level 4. Thus, it occupies 2 units of

X (p, 7,v) values returned by our ILP solver are presented in Tabtene on processor 0. Job 1 requires 4 time units to finish its execution.
3. From this table, it can be gathered that there are two jobs execuitghce, it is assigned to processor 0 since processor 0 has 4 time units
on processor 0, one job each is executed on processors 2 and 3feeel Now, processor 0 is completely assigned, whereas processors 1,
that no job is executed on processor 1. All jobs finish on or before tBeand 3 are free. Job 2 takes 1 time unit to run and is assigned to pro-
specified deadline. The total dynamic energy spent is 32 units, whiokssor 1. Job 3 takes 6 time units to execute. As processors 0 and 1 do



X(p,j,v) Interpretation Scaled? Simulation Parameter Value
X(0,0,4) | Processor 0 runs job 0 at voltage leve|4 No Processor Speed 400MHz
X(0,1,4) | Processor 0 runs job 1 at voltage level4 No Number of Processors 8
X (1,2,2) | Processor1runs job 2 at voltage level|2 Yes Lowest/Highest Voltage Levels 0.8V/1.4V
X(2,3,4) | Processor 2 runs job 3 at voltage leve|4 No Number of Voltage Levels 4
Table 4: X (p, j,v) values determined by the heuristic approach. Instruction Cache 2-way8a§206iative
not 6 units of available execution time, job 3 is assigned to Processor 2. 2 bétE;lOCks
This completes the first phase of the heuristic algorithm. Data Cache 2-way associative
In the second phase, each processor is examined in turn and one job is 32 byte blocks
chosen from each processor with a slack for voltage/frequency scaling. Memory 32MB (banked)
Processor 0 has no available free time; so, no job on it can be scaled. Off-Chip Memory Access Latency 100 cycles
Processor 1 has only job 2 running on it. This job can be scaled from Bus Arbitration Delay 5 cycles
level 4 to level 2. This increases its execution time by 2 units, but Replacement Policy _ Strict LRU
reduces its energy consumption from 8 units to 5 units. Processor 2 Cache Dynamic Energy Consumption 0.6nJ
has no slack and hence job 3 which is running on it cannot be scaled. LMemory Dynamic Energy Consumption 1.17nJ
. . . eakage Energy Consumption for 32 byte
X(p,j,v) values returned by our heuristic approach are shown in Table Normal Operation 4.49 pJ
4. The dynamic energy spent with this heuristic approach is calculated Shut-Down State 0.92pJ
as follows: Resynchronization Time for Shut-Down Stafe 30 msec
D_Energy := X(0,0,4) * Job_Dynamic(0,4) Resynchronization Time for Voltage Scalin 5 msec
+X(0,1,4) * Job_Dynamic(1,4) + X(0,2,2) * Job_Dynamic(2, 2) Table 5: The default simulation parameters.

+X(0,3,4) * Job_Dynamic(3,4)
=1%*5+1%x10+1%541x15=35.

As three processors are used, 15 energy units are spent as leakage.of igferent sizes. We first ran these applications through our simulator

calculation is shown below. without any voltage scaling or processor shut-down. This version of an
L_Energy = 3 * Leakage_value = 3 ¥ 5 = 15 application is referred to as the base version or base execution in the

) ) remainder of this paper. The energy consumptions (which include en-
As before, the total energy spent is the sum of the dynamic and leakaggies spent in processors, caches, interconnects, and off-chip memory)
energies spent. This can be computed as follows: under the base execution are 272.1mJ, 388.3mJ, 197.9mJ, 208.4mJ,

571.0mJ, 466.2mJ, 292.2mJ, and 401.5mJ for 3D, DFE, LU, SPLAT,

Total-Energy = D-Energy + L-Energy = 35+ 15 = 50 MGRID, WAVES, SPARSE, and XSEL, respectively. The energy re-
sults presented in this section are givemasmalizedvalues with re-

In this example, the ILP method saves 3 energy units over the heusipect to this base execution.
tic method. This example also demonstrates that the ILP approach cafho calculate the dynamic energy consumptions for caches and mem-
be used as an upper bound to test the quality of the solutions returigsg we used the Cacti tool [19]. We approximated the leakage energy
by heuristics. consumption by assuming that the leakage energy per cycle for 4KB

SRAM is equal to the dynamic energy consumed per access to a 32
byte data from the same SRAM. Note that this assumption tries to cap-
4. EXPERIMENTAL EVALUATION ture the anticipated importance of leakage energy in the future as leak-

We present only energy results in this section. The reason is tlage becomes the dominant part of energy consumption for 0.10 micron
none of the techniques evaluated increases original execution cy¢kasd below) technologies for the typical internal junction temperatures
(i.e., we do not exceef’,... in any loop nest). Specifically, for eachin a chip [3]. In the shut-down state, a processor and its caches con-
loop nest, the processor with the largest workload sets the limit for votame only a small percentage of their original (per cycle) leakage en-
age/frequency scaling and processor shut-down. The ILP solver usegy. However, when a processor and its data and instruction caches in
in our experiments is Lgolve [9]. We observed that the ILP solutionthe shut-down state are needed, they need to be reactivated (resynchro-
times with the application codes in our experimental suite varied beized). This resynchronization costs extra execution cycles as well as
tween 56.7 seconds and 13.2 minutes. Considering the large enexglya energy consumption as noted in [4], and all these costs are cap-
savings, these solution times are within tolerable limits. tured in our simulations and included in all our results.

All the experimental results are obtained using the SIMICS simu- Our first set of results, the normalized energy consumptions with the
lation platform [16]. Specifically, we embedded in the SIMICS platdifferent schemes, are presented in Figure 2. Each group of bars in this
form timing and energy models that help us simulate the behavior gffaph corresponds to an application, and the last group of bars gives
the following four schemes: VS (pure voltage/frequency scaling bastite average results across all eight applications. The energy savings
approach); SD (pure processor shut-down based approach); VS+SRdaieved by the VS scheme are not very large (6.55% on the average).
unified approach that combines VS and SD); and CLUSTERING (tfidnere are two main reasons for this. The first one is the inherent char-
ILP-based approach proposed in this paper). The default simulatixcteristics of some applications. More specifically, when there are no
parameters used in our experiments are listed in Table 5. In the lestg idle periods, VS is not applicable. The second reason is the lim-
three schemes, when a processor is unused in the current loop negiedtnumber of voltage/frequency levels used in the default configura-
is shut-down and its L1 instruction and data caches are placed into tiom (see Table 5). In comparison, the SD scheme behaves in a different
low-power mode. The specific low-power mode employed in this paperanner. While it is not applicable in some cases (e.g., in applications
is from [4]. DFE, MGRID, SPARSE, and XSEL), the energy savings it brings are

We used 8 array/loop-intensive applications for evaluating the fosignificant in cases where it is applicable. VS+SD simply combines the
approaches mentioned above: 3D, DFE, LU, SPLAT, MGRID, WAVEfenefits of the VS and SD schemes, reducing to VS when SD is not
SPARSE, and XSEL. 3D is an image-based modeling application tlzplicable. The average energy savings (across all eight applications)
simplifies the task of building 3D models and scenes. DFE is a digehieved by SD and VS+SD are 7.36% and 13.52%, respectively. The
ital image filtering and enhancement code. LU is an LU decomposargest energy savings are obtained by our ILP-based approach, which
tion program. SPLAT is a volume rendering application which is usdd 22.65% on the average. These results clearly show the potential ben-
in multi-resolution volume visualization through hierarchical waveletfits of our ILP-based workload clustering approach.
splitting. MGRID and WAVES are C versions of two Spec95FP ap- To better illustrate where our energy benefits are coming from, we
plications. SPARSE is an image processing code that performs spajise in Figure 3 the percentage of time each processor spends in the
matrix operations, and finally, XSEL is an image rendering code. Theaetive and idle states for procedure mx3-raw.c, one of the thirteen sub-
C programs are written in such a fashion that they can operate on inpatsgrams in application MGRID. We see from this graph that our ILP-
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5. CONCLUSIONS

This paper proposes a workload clustering scheme for embedded
MPSoCs that combines voltage scaling with processor shut-down. The
uniqueness of the proposed unified approach is that it maximizes the use
of processor shut-down by clustering workloads (jobs) in as few pro-
cessors as possible. We tested this approach along with three alternate
schemes using a simulation-based platform and eight embedded appli-
cations. Our experiments show that this clustering approach is very
effective in reducing energy consumption and generates better results
than the three alternative schemes evaluated. Our results also show that
the savings brought by this approach increases as the number of volt-
age/frequency levels or the number of processors is increased. We also
designed and implemented a heuristic solution to workload clustering,
and compared it to our ILP approach.
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