Practical Techniques for Minimizing Skew and
Its Variation in Buffered Clock Networks

ABSTRACT

Clock skew is becoming increasingly difficult to control due
to many variational effects. Link based non-tree clock distri-
bution is a cost-effective technique for reducing clock skew
variations. However, previous works based on this technique
were limited to unbuffered clock networks and neglected spa-
tial correlations in the variation models. In this work, we
overcome these shortcomings and make the link based non-
tree approach feasible for realistic designs. The short circuit
risk and multi-driver delay issues in buffered non-tree clock
networks are investigated. A new clock skew tuning tech-
nique under accurate gate/wire delay models is proposed to
enhance the effect of link insertion. Our approach is vali-
dated with SPICE based Monte Carlo simulations, consider-
ing spatial correlations among variations. The experimental
results show that our approach can reduce the maximal skew
by 47%, improve the skew yield from 15% to 73% on average
with a decrease on the total wire and buffer capacitance.

1. INTRODUCTION

With the advent of nanometer VLSI technology, clock dis-
tribution networks are often haunted by increasingly signif-
icant variational effects such as process variations [1] and
power supply noise [2]. Non-tree clock distribution net-
work [3—7] has been recognized as a promising approach for
reducing clock skew variations, since multiple signal paths
can compensate each other’s variations. Among the non-
tree techniques, the clock mesh [3,5] is perhaps the most
effective and most well-known one, but it usually entails a
large wire/power overhead and is therefore affordable only
in high performance products such as microprocessors. In
contrast, the link based non-tree method [6-8] is much more
cost effective and will be the focus of study in this paper.

In [7], an analysis is performed to show that a link resistor
inserted between two nodes in an RC network always reduces
the skew or the skew variation between them. The impact of
the link on the other node pairs is also analyzed [7] and found
to be much less tractable. Based on these analyses, the work
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of [7] proposes algorithms of constructing a non-tree clock
network by inserting cross links in an existing clock tree.
Later, some algorithm improvements were suggested in [8].
These algorithms follow an important rule that links are
inserted only between nodes with equal nominal delays.

The link based non-tree method has several advantages
among which the most important one is its cost-effectiveness.
Compared to clock trees, cross link insertion can reduce the
maximum skew variation by over 30% with less than 2% in-
crease on wirelength [7]. A clock mesh can reduce the max-
imum skew variation by 90% but with over 60% increase on
wirelength [7]. Therefore, a link based non-tree approach is
an appealing choice for many ASIC designs which have rela-
tively stringent cost/power constraints. Since such non-trees
are built upon existing clock trees, this method can be eas-
ily incorporated with traditional tree based design method-
ology. Moreover, it can be easily extended to achieve useful
non-zero clock skews. The relatively difficult non-tree delay
computation is circumvented in the methods of [7]. The link
insertion in [6] is a special case which handles only H-trees.

Despite the advantages, previous works on link based non-
tree clock network [7,8] have a few shortcomings which ham-
per their applicability. The major weakness is that these
works [7,8] are limited to unbuffered clock networks. In re-
ality, most of clock networks are buffered due to the require-
ments on signal slew rate and minimal path delay. More
importantly, buffer variations [1, 2] are usually the major
contributors to clock skew variations. The effect of link in-
sertion in buffered networks is more difficult to control than
that in unbuffered cases due to the nonlinear behavior of
buffer delays and the appearance of multi-driver nets. In
addition to this methodological weakness, the experiment
setup of [7, 8] neglected spatial correlations [9, 10] in the
variation models. It has been recognized that many vari-
ations such as intra-die process variations [10] and power
supply fluctuations are spatially correlated. Moreover, the
testcases in [7,8] do not contain sequential adjacency infor-
mation. A pair of clock sinks, which are usually flip-flops
or latches, are sequentially adjacent [11] if there is a path
between them consisting of only combinational logic. The
clock skew constraints are essential only between sequen-
tially adjacent clock sinks [12]. Therefore, evaluating skew
variations between all pairs of clock sinks as in [7, 8] does
not necessarily convey the most relevant results.

The major goal of this work is to overcome these short-
comings and make the link based non-tree technique appli-
cable in practice. The main contributions of this work are
summarized as follows.



e Link insertion in a buffered network may result in mul-
tiple drivers for a subnet. We suggest a design crite-
rion for avoiding short circuit risk in a multi-driver net.
Some analysis results obtained in [7] for single driver
nets are extended for multi-driver nets.

e We propose a new skew tuning technique for buffered
clock tree under accurate gate and wire delay models.
The effect of link insertion depends on a well-designed
buffered clock tree which is not easy to obtain un-
der gate and wire delay models. The proposed tech-
nique can decrease nominal clock skew considerably
and therefore enhances the effectiveness of link inser-
tion.

e A complete methodology of link based buffered clock
network under accurate gate and wire delay models
is proposed. This methodology utilizes the buffered
clock tree construction techniques which are friendly
to link insertion.

e The proposed method is validated with SPICE based
Monte Carlo simulations considering spatially corre-
lated power supply variations, buffer and wire pro-
cess variations. Our experiments are performed on
testcases with sequential adjacency information. The
maximal skew, standard deviation of skew variations
and skew yield [13], which is the probability of satisfy-
ing a certain skew bound, are evaluated in the Monte
Carlo simulations.

The rest of this paper is organized as follows. The major
conclusions of previous work [7] are summarized in Section 2.
Several issues involving multi-driver nets are discussed in
Section 3. A new clock skew tuning technique is introduced
in Section 4. The proposed link based buffered clock network
methodology and algorithms are described in Section 5. The
experimental results are provided in Section 6. Finally, we
conclude in Section 7.

2. LINK INSERTION REVIEW

For completeness, we summarize a few important conclu-
sions from previous link insertion research [7]. The basic
idea behind the link based non-tree clock network method
is to obtain a non-tree by inserting cross links between nodes
in an existing clock tree. A link can be modeled as a link re-
sistor with a pair of link capacitors at the two ends. Adding
only link capacitances to a clock tree may change the skew
but does not change the tree topology. The original skew
can be restored by tuning the tree as in conventional clock
tree construction methods.

If a link resistor is inserted between a pair of nodes with
equal nominal delay (or zero nominal skew), there is no
change on nominal delay at any node in the clock network.
If there is skew variation between the two end nodes of the
link resistor, the magnitude of the variation is always scaled
down by the link resistance. The effect of the scaling is
strong when the link resistance is small or the nearest com-
mon ancestor node of the two end nodes is close to the root.
If one end of the link is in subtree 7; and the other end is in a
disjoint subtree 7', the link resistance can reduce skew vari-
ation between any pair of nodes of 1; and T;.. However, the
link resistance may worsen skew variability between nodes
in some other circumstances (see [7]).

The major guidelines for link insertions include:

e Links are always inserted between nodes with zero
nominal skew.

e Links are preferentially inserted between node pairs
which are close to each other and their nearest com-
mon ancestor node is close to the root in the abstract
topology.

e Links need to be distributed evenly in the clock net-
work so that their skew worsening effects can cancel
each other.

3. MULTI-DRIVER NETS

If cross links are inserted in a buffered clock network, it is
likely that a sub-net is driven by multiple buffers or drivers.
This fact causes two issues which do not exist in link inser-
tion for unbuffered clock networks. One is the risk of short
circuit between the outputs of different buffers. The other
is whether or not the analysis on delay and skew in [7] still
valid in the multi-driver nets.

3.1 Short Cir cuit Avoidance

If the signal arrival times at the inputs of two buffers
driving the same sub-net are significantly different, there is
a risk of short circuit power consumption. This arrival time
difference can be caused by either nominal delay difference or
delay variations. Consider the example in Figure 1 where the
outputs of the two buffers are initially low and then switch
to high with time difference of A. There is an time interval
A during which the output of upper buffer is high while the
output of the lower buffer is low. Therefore, there could be
a short circuit current flowing from the power supply to the
ground through the upper buffer and then the lower buffer
as indicated by the dashed line in Figure 1.

Figure 1: If there is significant difference A between
signal arrival time to the two drivers, there is risk
of short circuit indicated by the dashed line.

However, there is a delay for a signal (or a current) to
propagate from one buffer to the other. If this delay is
greater than A, then there is not enough time to estab-
lish the short circuit current. In other words, the output of
the lower buffer may switch to high before the signal of the
upper buffer propagates to it. Based on this observation, a
design criterion for avoiding short circuit current between
two buffers is derived as follows.

Denote the two buffers as B; and Bj. Let the upper bound
of the difference between signal arrival time to B; and Bj
be Ajjmaz considering variations. The lower bound Ti-.;



of signal propagation delay from B; to B; can be obtained
through the method of [14].
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where (u,v) indicates two end nodes of an edge, Ry is the
edge resistance and C), is the total capacitance downstream
of node v. The low bound 7;~.; of signal propagation delay
from B; to B; can be obtained similarly. Then, the criterion
for avoiding short circuit between B; and Bj is:

MiN(Timoj, Tjmsi) > AAijmac (2)
where o > 1 is a constant used for added safety margin.

3.2 Multi-dri ver Delay Analysis

In [7], it was shown that a link resistor inserted between
two nodes in an RC network always reduces the skew or the
skew variation between them. However, this conclusion is
for the single driver case. We will show that a multi-driver
net can be converted to an equivalent single driver net and
therefore the conclusion in [7] still holds for multi-driver
nets.

Rd1

Figure 2: The dual driver net in (a) can be converted
to the single driver net in (b) when signal departure
time ¢; at node 1 is no less than the signal departure
time ¢ at node 2.

If there are two drivers for a net as in Figure 2(a), the term
of signal delay is not well defined since the signal departure
time from the two drivers may be different. More precisely,
we need to find the signal arrival time ¢; to a node ¢ in the
multi-driver net given the signal departure time ¢; and t2
from from node 1 and node 2 in Figure 2(a). Without loss
of generality, it can be assumed that t1 > t2, i.e., t1 = t2+A
and A > 0. Now let us consider inserting a virtual resistance
R, between the signal source s; and node 1. If the signal
delay across the virtual resistance equals A and the signal
departure time from s; is to, the signal departure time t; at
node 1 is not changed after this virtual resistance insertion.
If the signal departure times at both s; and sz are t2 with
this insertion, we can merge s1 with s2 into a single source as
shown in Figure 2(b). Please note that this merging does not
affect the gate driving capability as the driving capability is
decided only by R41 and Rg42 in this model. If there are more
than two drivers, we can do the same to obtain an equivalent
single driver net. Thus, the conclusions in [7] still hold for
multi-driver nets due to this transformation.

In the above transformation, we also need to find the value
of the virtual resistance R, such that the delay across it is
equal to A. Since the net in Figure 2(b) has a single driver,

the signal delay t; at node 1 is well defined by letting the sig-
nal departure time t2 = 0. Evidently, ¢1 is a function ¢1(Ry)
depending on R, and the value of R, can be obtained by
solving the equation t1(Ry) = A. Even though the Elmore
delay at nodes in a non-tree RC network as in Figure 2(b)
for any fixed value of R, can be computed by the tree parti-
tioning method [15], obtaining an analytical expression for
function ¢1(Ry) is not trivial. Fortunately, the non-tree here
is a special case where the links are inserted only between
nodes with the same nominal delay [7]. It has been shown
in [7] that inserting such link resistors does not change delay
to any node. If the Elmore delay to a node ¢ is initially ¢;,
then its delay becomes #; after a link resistance R; is inserted
between two arbitrary nodes u and w. According to [15], the
Elmore delay #; can be computed as:
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where t,, and t,, are the Elmore delay at node v and w before
inserting the link resistance, and the value of r; is equal to
the Elmore delay at ¢ when node capacitance C,, = 1, Cy, =
—1 and the other node capacitances are zero. Obviously,
when the link resistance is inserted between two nodes u and
w with ¢, = t, there is no change on delay at any node.
Therefore, t1(Ry) can be obtained by ripping up all of the
link resistance from the non-tree network and finding the
Elmore delay in the resulting tree. In other words, R, = C%
where C1 is the total downstream capacitance at node 1 for
the tree.

4. ACCURATE AND LOCALIZED
SKEW TUNING

In this section, we will introduce a new skew tuning tech-
nique which can be applied to general buffered clock network
synthesis and is especially friendly to link based clock net-
works.

According to [7], link resistors need to be inserted between
a pair of nodes with zero nominal skew so that nominal
delay at each node is not affected. In other words, we need
to tune the skew between a selected pair of nodes to be
zero (or minimal) after the link capacitance is added. The
skew tuning in buffered clock networks has to be performed
under accurate gate model such as SPICE or lookup table
model, since the RC switch gate model employed in [7, 8]
is inadequate on handling the nonlinear behavior of buffer
delays.
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Figure 3: Tuning the location of merging node m3 in
a buffered clock tree falls into a cyclic dependency.

However, skew tuning in a buffered clock network under
accurate gate and wire delay model is much more difficult
than Elmore delay based tuning [16]. We will illustrate this



difficulty through an example of zero skew clock tree con-
struction in Figure 3. If zero skew has already been ob-
tained for the buffered subtrees rooted at al and a2, we
attempt to tune the location of the merging node m3 such
that the delay from m3 to each sink (sl, s2, s3 or s4) is the
same. Let downstream delay at a node k, or the delay from
k to sinks, be denoted as di. The location of m3 is decided
based on downstream delay do1 = delay(B1l) + dmi1 and
da2 = delay(B2) + dm2. The buffer delays delay(B1) and
delay(B2) depend on their input slew rates. However, the
input slew rates depend on the location of merging node m3.
We thus get into a wvicious cycle that makes it very difficult
to accurately find a merging node location that gives zero
skew. This cycle is depicted at the right part of Figure 3.

The weakest link in this cycle is the dependence of merg-
ing node location on the downstream delay dq1 and dg2. We
propose a tunable clock buffer technique to break the weak-
est link as well as the vicious cycle. If buffer delay delay(B1)
and delay(B2) can be tuned without affecting other delay or
slew in the buffered tree, we can decide the location of m3
regardless downstream delay d,1 and de.2 and then obtain
zero skew at sinks by tuning the buffer delays.

Figure 4: Tunable clock buffer.

Figure 4 shows an example of a tunable buffer contain-
ing three cascaded inverters even though different number
of inverters can be employed. There is a tunable dummy
capacitor C' between inverter I1 and inverter I12. For a given
input slew and a given output load, the delay of the buffer
can be tuned by sizing the dummy capacitor. Since the
dummy capacitor is sandwiched between inverters in the
buffer, changing its size does not affect any other delay or
slew in the buffered tree but the buffer delay itself. This
is quite different from previous works [17, 18] where dummy
capacitors are directly exposed to a subtree and a change
on a capacitor may affect everywhere in the subtree. Since
this tuning technique is performed locally, it runs faster than
global tuning methods such as [19].

For the example in Figure 3, we can simply choose a lo-
cation for m3 such that the delay from m3 to al is the same
as the delay from m3 to a2. Then, we can make da1 = da2
by sizing the dummy capacitors in tunable buffer B1 and
B2 so that clock skew among the sinks is zero. Since the
delay change with respect to the size of a dummy capacitor
is monotone, the size of a dummy capacitor can be decided
through a binary search guided by circuit simulations.

5. LINK BASED BUFFERED CLOCK NET-
WORK CONSTRUCTION

5.1 Buffered Clock TreeConstruction

The link based non-tree clock network construction starts
with an initial buffered clock tree. There are many previous

works on clock tree routing [20,21] and buffered clock tree
construction [22-25] and various techniques are included in
these different works. We integrate the best of them, those
friendly to link insertion and our own tuning technique (Sec-
tion 4) into a buffered clock tree construction method which
can facilitate better link insertion effect.

Near est conmon ancest or
level i
Y
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level i+1

Figure 5: Link insertion in buffered clock tree.
Dashed lines indicate links.

Similar as previous works [22-24], we try to build a bal-
anced tree with roughly equal number of buffers along every
source-sink path. This balanced buffered clock tree scheme
is illustrated in Figure 5. Such balanced structure itself has
certain tolerance to inter-die variations [22,23]. Further, we
will show later that it is friendly to link insertion.

The buffered clock tree is constructed through a bottom-
up merging procedure like many traditional clock routings [20,
21,25]. The merging order is based on the nearest neighbor
method [21] which selects a pair of subtrees closest to each
other for merging. In order to maintain the tree balance,
we impose an extra restriction that only subtrees with fewer
levels are merged first. The location of each merging node
is decided by the DME (Deferred Merge Embedding) tech-
nique [20] based on the Elmore delay model. Buffers are
inserted at every internal node at the same level as in Fig-
ure 5 such that the maximum load of each buffer/driver is
limited. This is an indirect way to ensure proper signal slew
rate [25].

In addition to the structural balance, we perform delay
balancing [22] for subtrees at each level. After the buffer
insertions, the entire tree can be partitioned into subtrees at
different levels indicated by the dotted lines in Figure 5. In
delay balancing, we make the delay of subtrees at the same
level identical. For example, delay(l ~ u) = delay(r ~ w)
for Figure 5. The delay balancing can be achieved by using
the tunable buffer introduced in Section 4 and sizing the
dummy capacitors.

There are two main reasons for the delay balancing. First,
delay balancing results in almost equal signal arrival time at
each buffer of the same level. Hence, the risk of short cir-
cuit is greatly reduced if link insertion is restricted among
subtrees of the same level according to the discussions in
Section 3.1. The other reason is for the convenience of mul-
tilevel link insertion. Every subtree rooted at a buffer/driver
becomes a zero skew subtree after delay balancing. Then,
cross links can be easily inserted between subtrees at higher
levels like the link between v and w in Figure 5.

After the buffered clock tree is constructed, a SPICE
simulation is performed to obtain a precise estimation on



clock skew. Usually, the skew within a subtree rooted at a
buffer/driver is negligible. Since there is no buffers within
such a subtree, the Elmore model provides a fairly good
fidelity which is verified by SPICE simulations in [8]. How-
ever, there could be a significant delay difference between
different subtrees at the same level. Thus, we perform a
post-processing of delay balancing through tuning the clock
buffers based on the SPICE base skew information. Com-
pared to previous skew tuning work [19] using SPICE model,
our method is much easier.

5.2 Link Insertion

The algorithm for link insertion in buffered clock networks
has some significant differences from the unbuffered case [7,
8], even though they share the same top-level framework
below.

1. Select the node pairs for link insertion.

2. Add link capacitance to the selected nodes and per-
form skew tuning to restore the original skew. The
skew tuning includes two steps. First, the locations of
merging nodes in each subtree rooted at a buffer/driver
are tuned to restore zero skew for the subtree. Next,
SPICE simulation is performed to obtain a precise
inter-subtree skew estimation. And the inter-subtree
skew is minimized by sizing the dummy capacitors in
the tunable clock buffers. This step is the same as
the post-processing in the initial buffered clock tree
construction.

3. Insert link resistance into the selected node pairs. Since
we always select node pairs with zero nominal skew and
restore such zero skew in skew tuning of previous step,
the link resistances do not affect nominal skew.

Procedure: NodePairsBetweenTrees(1}, Ty, m)
Input: Two subtree T; and T,

size indicator m for each sink/buffer level
Output: A set P of node pairs
1. P90
2. For each sink/buffer level deeper than [ and r
3. Decompose 1; to sub-subtrees S; = {l1,l2...Im}
4. Decompose 1r to sub-subtrees Sr = {ri,r2...rm}
5. Construct bipartite graph G; , between S; and S,
6. Gp«— MST of Gy
7
8

For each edge (I3, ;) in Gp
If link between I; and r; has short circuit risk or
9. no sequentially adjacent sinks between I; and r;
10. Remove (I;, ;) from G,
11. Else if degree(l;) > 1 and degree(r;) > 1
12. and weight(l;, r;) > threshold

13. Remove (l;,75) from Gp
14. P « PU edges in G,
15. Return P

Figure 6: Algorithm of selecting node pairs between
two subtrees.

The most important step is node pair selection. Similar
as [7,8], the selection proceeds from the root node toward the
leaf nodes recursively. In Figure 5, when an internal node
p is visited during this tree traversal, node pairs between
its left subtree 7; rooted at node | and right subtree 7;

rooted at r are selected. Every node pair between 7; and
1+ shares the same nearest common ancestor node p. Then,
the same procedure is performed for nodes I, r and their
child nodes. The algorithm of selection between 17 and T
is shown in Figure 6. The input of this algorithm contains
a user-specified parameter m which roughly indicates the
number of pairs to be selected. A larger m implies that
more node pairs are selected.

Our selection algorithm has a significant difference from
previous works [7,8] which restrict link insertion among only
sink nodes. We also consider link insertion between input
nodes of buffers at the same level. For example, a link can
be inserted between node u and w in Figure 5. Because the
delay balancing introduced in Section 5.1 is performed, the
nominal skew between input nodes of buffers at the same
level should be close to zero. Link insertion between these
input nodes can further reduce their skew variation as well
as the risk of short circuit. Moreover, such multilevel link
insertion can enhance the effect of skew variability reduc-
tion when handling with severe buffer variations. There-
fore, node pair selection is performed at each sink/buffer
level deeper than [ and r as indicated by the loop starting
from line 2 of Figure 6.
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Figure 7: Find MST (thickened edges) on the bipar-
tite graph in (a). After performing iterative dele-
tion, the selected node pairs are indicated by the
edges in (b).

The node pair selection procedure at each sink /buffer level
is derived from the MST (Minimum Spanning Tree) based
algorithm in [8]. Both the left subtree 7; and the right sub-
tree T, are decomposed into m sub-subtrees. In Figure 5,
each subtree is decomposed into 4 sub-subtrees. Then, a
bipartite graph is generated with each vertex corresponding
to a sub-subtree as shown in Figure 7(a). The weight of an
edge is equal to the minimum sink/buffer distance between
the two sub-subtrees it is incident to. For example, if the
nearest, sink pair between sub-subtree I3 and sub-subtree 72
is k and v in Figure 5, the weight of edge (I3, 72) is equal to
the distance between sink &k and sink v. Next, an MST (Min-
imum Spanning Tree) on this bipartite graph is obtained as
indicated by the thickened edges in Figure 7(a).

The edges in the MST correspond to candidate node pairs
for the selection. These candidate edges are further pruned
through a rule based iterative deletion as in line 7-13 of Fig-
ure 6. In addition to the algorithm in [8], our algorithm
considers two more criteria for edge deletion. One is to en-
sure that there is no short circuit risk when a link is inserted
for a node pair. If the inequality (2) is violated, the corre-
sponding edge is removed. The other one is for improving
the efficiency of link insertion by considering sequential ad-
jacency information. As the skew constraints are essential
only between sequential adjacent sinks [11], an edge between



Non-balancing, WO-link Balancing, WO-link
Case | #Sinks | Delay | Skew WL | #Buf | Total cap | CPU | Delay | Skew WL | Total cap | CPU
$9234 135 468 97 | 41498 8 7.24 0.3 367 0.5 37043 6.44 31
sb378 164 612 71 46218 20 8.09 1.0 379 2.9 42522 3.00 51
513207 500 663 60 | 133650 80 23.15 2.0 662 11.7 | 129203 23.01 203
Ave 266 581 76 73789 36 12.8 1.1 469 5.0 69589 10.8 95

Table 1: Nominal results for buffered clock trees. The maximal source-sink delay and the maximal skew are
in ps. The wirelength (WL) results are in ym. The total capacitance is in pF. CPU time is in seconds.

sub-subtree [; and sub-subtree r; is removed if there is no
sequentially adjacent sink pair between them. The rule con-
sidered in line 12 of Figure 6 is similar to that in [7,8]. This
rule tries to remove edges which may cause physically long
links, as long links increase wirelength and disturbance to
the original clock tree. Before enforcing this rule, the degree
of each end vertex of the edge is checked. If one of the end
vertices has degree less than 2, the edge deletion may result
in no link for the corresponding sub-subtree and is therefore
skipped.

Since the bipartite graph has m vertices, the MST has
2m — 1 edges. Hence, the number of node pairs selected for
T; and T at a sink/buffer level is on the order of m.

6. EXPERIMENT

6.1 Experiment Setup

The ISCAS89 benchmark suite is employed for the exper-
iment as it includes relatively complete circuits with both
combinational and sequential elements so that the sequential
adjacency information for clock sinks (flip-flops) are avail-
able. In contrast, the well known r1 — 5 clock net bench-
marks [16] do not have combinational logic or the sequen-
tial adjacency information. Since the clock skew constraints
are essential only for sequentially adjacent sink pairs [12],
the ISCAS89 benchmark circuits are more realistic than the
rl — r5 benchmark circuits.

First, synthesis is performed on the ISCAS89 benchmark
circuits by using SIS [26] to obtain a mapped netlist. Then,
an academic placement tool mPL [27] is employed to get
circuit placement. Assuming a 180nm technology, wire ca-
pacitance values are obtained by using the SPACE 3D ex-
traction tool [28]. The other wire parameters such as ILD
(inter-layer dielectric) dimensions and sheet resistances are
taken from [29]. Gate/buffer models and timing simulations
are based on HSPICE with 180nm technology parameters
from [30].

Our techniques are implemented in C++ and run on a
Sun Solaris Ultra Sparc machine with 2GB RAM. Clock
skew variations are evaluated through Monte Carlo simu-
lations. Variations on buffer channel length, power supply
level, wire width and sink load capacitance are considered.
These variations are assumed to follow Gaussian distribu-
tion with standard deviations equal to 5% of their nominal
values. Spatial correlations among the variations are han-
dled by the PCA (Principle Component Analysis) method
as in [10].

6.2 Experiment Design

The experiments are designed to test the effect of the pro-
posed techniques:

e Balancing vs. non-balancing. The tunable buffer
(Section 4) based delay balancing (Section 5.1) is a

Balancing + link
Case | Delay | Skew WL | Total cap | CPU
s9234 370 0.8 39866 6.96 32
sb378 380 0.7 43097 7.62 53
s13207 674 11.8 | 130074 23.13 413
Ave 475 4.4 71012 12.6 166

Table 2: Nominal results for link based buffered
clock networks. The maximal source-sink delay and
the maximal skew are in ps. The wirelength (WL)
results are in um. The total capacitance is in pF.
CPU time is in seconds.

main technique for both tuning nominal skew and fa-
cilitating link insertion. Thus, both non-balancing and
balancing cases are tested in the experiments.

e Link vs. WO-link. Link insertion is the core tech-
nique of the proposed approach. Results with link in-
sertion are compared with those without link insertion
(WO-link).

The experimental results are organized in two parts:

e Nominal results. In this part, the maximal source-
sink delay (ps) and the maximal skew (ps) are re-
ported. In addition, we show the major resource us-
ages including wirelength (WL) in pm, number of
buffers and the CPU time (in seconds) of running our
algorithms. We also report total wire and buffer ca-
pacitance which includes the tunable dummy capaci-
tances so that there is an overall estimation on wire
and buffer cost on a normalized basis.

e Variation results. These results are obtained from
1000 iterations of Monte Carlo simulations for each
case. The maximum skew (MS) and standard devia-
tion (SD) of skew among all iterations are recorded.
In addition, the skew yield (SY) [13], which is the
probability of satisfying a certain skew bound (SB), is
reported.

6.3 Experimental Results

The nominal results without (with) link insertions are
listed in Table 1 (Table 2). These data show that our delay
balancing technique can reduce both source-sink delay and
the nominal skew significantly. The link insertion does not
change the nominal delay and skew very much compared to
the results from delay balanced trees. This fact is in ac-
cordance with our expectation since the same delay balanc-
ing technique is applied for the tree construction and the
skew tuning after inserting the link capacitors. Since the
delay balancing is based on sizing the dummy capacitors
within tunable buffers, we need to observe increase of the
buffer capacitance including the dummy capacitance. The



Non-balancing, WO-link

Balancing, WO-link

Balancing + link

Case | MS | SD SB SY

MS | SD SY

MS SD SY

s9234 | 175 | 23 50ps 0%
sb378 | 217 | 32 50ps 5%
s13207 | 247 | 33 | 100ps 41%

112 16 42%
95 13 38%
243 33 48%

64 10 | 95%
94 14 | 63%
180 27 | 61%

Norm ave 1 1 1

0.70 | 0.72 2.87

0.53 | 0.59 | 4.87

Table 3: Variation results. The maximal skew (MS), standard deviation (SD) and skew bound (SB) are in

ps. The last row shows the normalized average values.

capacitance data indicate that the total buffer capacitance
is much smaller than the total wire capacitance. Therefore,
the buffer capacitance increase is often smaller than the wire
capacitance reduction due to the delay balancing. The CPU
time for delay balancing and the skew tuning for link inser-
tion tends to be high as implied by the rightmost column
of Table 1 and Table 2. This is mostly due to the SPICE
runtime when the sizing the dummy capacitors. Since the
number of clock networks on a chip is usually not large, this
runtime is still reasonable for practical applications.

The variation results are shown in Table 3. One can see
that the delay balancing technique can actually reduce skew
variation in term of the improvement on the maximal skew
(MS) and the skew yield (SY). Obviously, the link insertion
can improve the standard deviation (SD) in addition and
can improve the maximal skew and the skew yield more
significantly. The average skew yield is improved from 15%
to 73% by our method.

7. CONCLUSION

In order to cope with the increasingly significant skew
variations, we propose a new skew tuning and link insertion
technique for buffered clock networks. The induced multi-
driver issues such as short circuit risk and multi-driver delay
estimation are studied. The skew tuning technique is accu-
rate and friendly to the link insertion methodology. Exper-
imental results from SPICE based Monte Carlo simulations
confirm the effectiveness of our approach.
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