Buffer Insertion Under Process Variations for Delay
Minimization

ABSTRACT

This paper considers the buffer insertion problem under pro-
cess variations. With continued technology scaling, it is
necessary to model the physical parameters to be random
variables. One approach to the buffer insertion problem un-
der variations is to use the mean values of these parame-
ters and solve the problem using traditional buffer insertion
techniques for delay minimization. Another approach is to
find a buffer insertion solution using a new method that can
handle the probability distributions. Thus, the performance
can be optimized with some yield constraint. In this paper,
we present both analytical and experimental results to show
that the two approaches give almost identical solutions. In
other words, the more expensive statistical methods are not
needed for the buffer insertion for delay minimization prob-
lem.

1. INTRODUCTION

With continued technology scaling, process variations have
become a major factor that affects circuit performance and
leads to excessive yield loss. Variations come from vari-
ous sources. Geometric process variations are most signifi-
cant [4]. Effective channel length L.sf can vary more than
50% because of the intra-die variations below 130nm tech-
nology node. The intra-die variations of interconnect geo-
metric parameters also increase beyond 25%. Supply voltage
and temperature variations are also becoming more promi-
nent in nanometer design [5]. These variations can lead to
30% or more die-to-die performance difference.

Buffer insertion is a widely used interconnection optimiza-
tion method. In nanometer designs, process variations be-
come more and more significant. It is necessary to model
the buffer and wire delay as random variables. Then there
are two ways to find the optimal buffer insertion solution:

e One is to stick to the existing methods. Based on tra-
ditional deterministic algorithm for buffer insertion [6,
13], the mean values of delay distributions are used
to guide the buffer insertion algorithm. This method
totally ignores the variability of delays. But it can
guarantee to minimize the mean delay value.
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o The other way is to use new algorithms that can handle
the probability distributions [1,7]. For example, if the
delay distributions are in Gaussian, it is reasonable to
minimize the y + 3¢ value for the delay distribution.
So optimal performance and maximum yield are both
considered.

However, the statistical methods have much longer runtime.
For nanometer designs, the number of buffers increases from
thousands to millions. The new method will lead to more
expensive design cost. If these two methods will achieve
almost same solution, traditional buffer insertion algorithm
is surely preferred.

Dynamic programming approaches have been proposed to
find the optimal solution for buffer insertion [13]. When vari-
ations become a concern, statistical buffer insertion method
was proposed [7]. However, in buffer insertion for delay min-
imization problem, coarse wire segmenting for dynamic pro-
gramming algorithms will lead to a near optimal solution [3].
It indicates that the optimal solution is insensitive to the
buffer position variation. We did further investigation on
this problem considering process variations and get similar
result: the buffer insertion for delay minimization is also
insensitive to the process variations.

In this paper, we will theoretically analyze the buffer in-
sertion under process variations. Results are derived to com-
pare the cases with or without considering process variation.
We also use both traditional and new statistical method to
find the buffer insertion solutions. Both theoretical analysis
and experimental results shows the buffer insertion problem
is “immune” to the process variations. The deterministic
buffer insertion method will give a near optimal solution for
the buffer insertion considering process variations. Thus the
more efficient traditional method is preferred. Process vari-
ations will not change buffer insertion solution in nanometer
designs. It doesn’t need to introduce new statistical buffer
insertion method considering variations.

The rest of paper is organized as follows. In Section 2,
process variation model for buffer insertion is stated. The-
oretical analysis is applied based on this model in Section
3. In Section 4, we will compare experimental results from
traditional and statistical buffer insertion algorithms. And
we will conclude this paper in Section 5.

2. PROCESS VARIATIONS MODEL

The process variations, such as physical geometry varia-
tions, are usually modeled as probability distributions. Then,
circuits’ characteristics can be expressed as functions of these
variations. For example, the delay dj for circuit element k
can be described as:

dr = dinter—die (Di) + dintra—die(Tk, Yk, Di) (1)



where d;nter—die is the delay distribution considering the
inter-die variations. It can be well handled by traditional
corner-based design methodology. dintrq—die i the delay
variation from within-die uncertainties. It could be a func-
tion of the position of element k, and p;, which are param-
eters related to variations.

The inter-die variations can be formulated as determin-
istic values by traditional method, thus avoiding the sta-
tistical approaches. However, intra-die variations are now
becoming more and more significant. Existing deterministic
methods cannot model to these variations. Equation (1) can
be further written as:

di, = dro(pio) + Adintra—die(Tr, Yr, Di) (2)

where dpo is the nominal value of delay. Ad;,trq—die are ran-
dom variables with zero means. In most cases, d;introa—die are
not linear combinations of p;. So even if the process varia-
tions can be modeled as Gaussian distribution, the intra die
delays are not Gaussian. However, we can use first order
approximation so the delays can still be Gaussian. Assume
all parameters p; are Gaussian variables with mean p;o, and
they are mutually independent. We have:

Odro
Ap;
Opi P 3)

di, = dro(ps) + Z

where Ap; are Gaussian distributions of parameters. And
dy is now a distribution in Gaussian.

If the delay distributions are Gaussian, it is easy to add
two delays. The result is still Gaussian. Assume d;, d; are
delay in Gaussian distributions with mean p; and p; and
variation o7, Uf respectively. The correlation coefficient be-
tween d; and d; is corr(d;, d;), and covariance cov(d;, d;) =
corr(di,d;)oioj. dsum = sum(d;,d;) is still a Gaussian vari-
able with:

Msum = Wi + 12
O = 0% + 0% + 2cov(ds, dy) )

If d; and d; are independent variables, cov(d;,d;) = 0.

3. ANALYSISONBUFFER INSERTION UN-
DER VARIATIONS

Buffer insertion without consider variations could have
closed form solution as proposed in [3]. Consider a delay
model for buffer insertion as shown in Figure 1, assume that
interconnect wire has resistance r,, and capacitance c¢,, per
unit length. The buffer is a pair of cascaded inverters, with
the minimum size inverter as input and a s size inverter to
drive the load. The buffer has input capacitance Cr and
output resistance Rqy. We also assume the intrinsic delay for
the buffer is 7. Elmore delay model is used here to analyze
the delay of wire segment between two buffers. The length
of the segment is I. And the delay t4 is from the first buffer
input to the next buffer input, i.e, the delay of first buffer
and the wire

ta = %rwcwl2 + (rwCr + Racw)l + RqCr + 18 ()

Dividing it by ! will give the delay value per unit length.

_tla 1

=7= Erwcwl + (rwCr + Racw) + w (6)

The optimal buffer insertion solution can be achieved by
finding a length I s.t. tq/l is minimized. This analytical

result is useful to guide the buffer insertion for a long in-
terconnect. We take the derivative of t4/l and solve the
equation below.

Oy 1 RiCL + 1B

ol —3mvew s~ =0 (7)
The optimal length for buffer insertion is found to be:

2(R4Cr + 7B)

T'wCw

lopt = ®)
The RyCr and 7 in lop: are determined by the device pa-
rameters. Using a linear transistor delay model, the intrin-
sic delay 7p can be approximated as ReffCess, where Reyy
is the effective resistance of first inverter and C.ss is the
gate capacitance of second stage. Compare to Ry and Cf,
Cess = sCrL and Resf = sRy. A typical value for s is 5.
This will lead to 78 > R4CL.
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Figure 1: Interconnect model for buffer insertion

Considering the process variations, ¢4 is no longer a deter-
ministic delay value. Under the variations, the capacitance
¢y and resistance r,, are now random variable. Because of
the large effective gate length variation, devices show more
uncertainty than interconnection. So we also include the
buffer delay variations in our calculation. Assume ¢y, Tw
and 7B becomes Gaussian distribution under process varia-
tions:

Cw = Cwo + Acw
Tw = Two + ATy
B = TBo + ATB (9)

where cyo, Two and 7o are the nominal values of wire ca-
pacitance, resistance and intrinsic buffer delay, respectively.
Acy, Ary, and Arp are random variables in Gaussian with
zero means. Now consider the process variations on ¢, and
Tw. Use tywq to notate the delay distribution only consider-
ing the interconnect variations. First order approximation
is used to calculate t,q4.
ot ot

twd = twdo + (ﬁ)oAcw + (ﬁ)oArw (10)
where t,q0 is the mean value of delay. We can get twqo from
Equation (5) by plug-in cwo, Two and 7po. The derivations
are also from Equation (5):

1

(g%)0 = Erwof + Ral
(J2), = Zewol® +Cul (1)

The delay for the wire segment now is a random variable
in Gaussian. So the delay per unit length t,q/! is also in



Gaussian. It has mean value t,q0/l. The variance of t,q/]
is:

twd _
var(=7) =
Thus, from Equations (10)-(12), we can calculate the vari-

ance of tyq/l

var(tyd) (12)

l2

tw 1 1
var(224) = (Zryol + Rq)*var(cw) + (§Cwol + Cr)*var(ry)

l 2
(13)
We define ow as the standard deviation of ¢,q/l. So:

ow = \/(lrwol + Ry)?var(cw) + (%cwol + CL)2var(ry)

2

(14)
The variance of ¢, and r,, are mainly from the geometric
process variations. Figure 2 shows the cross section of a
wire. W is the wire width. S is the spacing between two
adjacent wires. T is thickness of the wire. H is the spacing
from wire to substrate. The capacitance ¢, is sensitive to
the variations of these parameters, especially W and S.
is sensitive to the variation of W and T. Moreover, the
conductor resistivity p can have 18% variation in 100nm

technology.

Ground Plate

Figure 2: Physical model for interconnect

We can express the distribution ¢, and 7, in terms of
these process parameters. Closed-form equations Cy,(F;)
and R, (P}) for calculated capacitance and resistance from
those physical parameters are used.

aC,
Cw = Cwo + Z( P, JoAP;

OR
Tw = Two + Zi:(a—l;;)oAP; (15)
where P; are the parameters related to c,, including W,
H, T and S. P/ are W, T and p, parameters related to
ry. var(P;) is the measured variations of one parameter. In
current or future process, these process variations may bring
20-30% changes for capacitance or resistance, which mean
the 30 for ¢, and 7y, could be 30% of their nominal value.
So it’s reasonable to approximate the variance for ¢, and
Ty as below:

var(cy) = a’cly

var(ry) = BT (16)
We assume the 3¢ value of all P; and P] to be 20%-30% of
nominal value [2]. Then « and B are typically 0.1 — 0.15

and relatively close to each other. Let v = max(a, 8). Plug
Equation (16) into Equation (14).

1 1
ow = \/a2(§rwocwol + Rgcwo)? + ﬂ2(§cw0rw0l + 7w0CL)?
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Figure 3: The variation of td/l around the I,

Since Cr, is relatively very small, we can approximate this
equation as follows:

ow =~ \/(%Twocwol + aRgcwo + grwocwol + BrwoCr)?

~ Y(rwocwol + Racwo + rwoCrL) (18)

Consider Equation (5) and (18). If we want to minimize
the p + 30 value of t,,4/l, we can take derivative of t,q/! +
3ow over [ and we can get:

R.CL + 7B
U, =, —_== = 19
ovt (0.5 + 3y)rwocwo (19)
Compare Iy, 0 lopt:
g 1
ot — <1 (20)

lopt 1 + 6’)/

This will lead to I,,; < lopt, which means more aggres-
sive buffer insertion are needed when variations are con-
sidered. However, we have totally ignored the buffer delay
variation in discussion above. In nanometer designs, devices
have larger parameter variations and hence larger intrinsic
delay variation than interconnects. Moreover, 7 cannot
be ignored to the wire delay t,, when the wire length is
close to lopt. Similarly, we assume the variance of 75 is
var(te) = 027%. So considering the relation of 75 and I,



in Equation (8) the standard deviation of 75/! is:

bt NH(TB+RdCL)
op = —an - "7

l l

2
aerCwolopt

: (21)

where 6 is about 0.1 — (.15 for designs using 70nm-130nm
technology [8]. For future technology 8 could be even larger.

Now the variation of ¢4/l could come from both intercon-
nect variation and the device variation:

t
var(Td) =0’ =0p 4oy (22)
Compare the op to ow when | = lop:. Depending on the
scaling strategy, the ratio ow /op may change. Normally,
ow /o will remain close to 1 for different technologies [9].
Now we compare the changes of op and ow at | = lopt.

0

% = YTw0Cwo (23)
0 2
% = —Gl—gtrwocwo (24)

ow is a linear function of I. The slope is YrwoCwo. 0B is a
function proportional to 1/1%, as plotted in Figure 3

When [ decreases from l,p¢, the interconnect variations
make the ow decrease linearly. However, shorter distance
between two buffers makes the buffer delay variations more
critical. op will increase when [ decreases. At l = l,p¢, they
increase or decrease at the same rate because v and 6 are
close to each other. So the var(td/l) will almost remain un-
changed if the buffer delay variations are considered. When
1 decreases more from l,p¢, the increase of op are dominant.
We can see the variance of delay per unit length increases
when ! < lopt.

Consider [ increase from lop:, ow increase linearly. op
will decrease with 1/ 2. So the increase of ow is dominant.
We can see the overall variance o2 increase when [ 3> l,p: in
Figure 3.

In Figure 3, we also plot some extreme cases [9] for ow
and op. Consider the extreme case that either scaling only
the devices or only the interconnections, the ratio ow /oB
will vary from 2-0.67. So we plot these ow, o and o2. The
o’ in Figure 3(b) still have a relatively flat curve between
0.906pt to 1.11p¢.

From the previous discussion, we find the variance for
the unit length delay will remain the same value when [ is
very close to l,p: because the decrease (or increase) of op
is similar to the increase (or decrease) of ow. However,
when [ becomes much larger or smaller than l,p;, o> always
increases from its value at lop¢-

In Figure 4, we plot the mean value and standard devia-
tion of t4 with the parameters at 100nm technology (same
as those in the Section 5). Elmore delay model is used and
close-form equations in [10,11] are used to calculate the
mean and variance of delay. Other technologies also have
the similar curves as in Figure 4.

From Figures 3 and 4, variance has a flat curve around
the l,p¢ point. And it will increase when ! becomes much
larger or much smaller than l,p:. This indicates that the
optimal solution of buffer insertion to minimize the mean
delay value will also have minimum delay variability.

4. EXPERIMENTAL RESULTS

To verify the results in last section, we carry out the buffer
insertion experiment with/without considering the process
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Figure 4: Mean value and standard deviation per
unit length under 100nm technology parameters

variations. The buffer insertion problem for a pin-to-pin net
can be formulated into a shortest path problem in directed
acyclic graph (DAG) [6]. With process variations, it be-
comes a statistical shortest path problem and can be solved
by the method proposed in [1].

Edge weight t4 is a function of physical parameters of the
buffer and the wire. Sakurai’s closed form equation [11] is
used to calculate capacitance for the wire segment. Elmore’s
delay model is used to calculate the delay of wire segment.
Drive resistance R4 and the load capacitance Cr, are related
to the buffer.

Ry =Vdd/I.sy

Cr = Cor L, W,

where C,. is gate capacitance of unit area, L, and W, are
gate length and width, respectively. I.ss and intrinsic buffer
delays are calculated by empirical equations in [10].

Those algorithms in [1,6] can be extended to handle the
buffer library. So we will consider the buffer insertion with
different buffer types, which is different from the analysis in
Section 3.

The parameters are chosen from [8]. To show the larger
variation will give the same result, we set the larger param-
eters variations for some technologies as labeled 100nm and
70nm larger variations in Table 1. For these test data, we
set the 30 value to be 1/3 of the mean value. All nominal
parameter values follow the data in ITRS01 [12].

We use the driver resistance Rp = 1kQ2 and the load ca-
pacitance Cr = 10fF. Buffer library with 4X, 8X, 16X, 32X
and 64X sizes is used to optimize the delay of 5-20mm long
wires. 100 possible buffer locations are assumed to locate
uniformly along the wire. We notice the buffer insertion so-
lution will converge when the number of possible locations
is larger than 50. Analysis in [3] shows the reason why the
coarse grid also leads to an optimal solution.

We optimize the p + 30 delay with considering process
variation first. An algorithm for statistical shortest path
is used to find the optimal buffer insertion solution under
process variations.

To compare to the statistical approach, we also run the
traditional shortest path algorithm to minimize the mean
delay to get the buffer insertion solution without considering
process variation. Then, the pu and o value for this buffer



our method worst case method Comparison
L BUF# [ p(ps) [ o(ps) | p+30(ps) || BUF# | u(ps) [ o(ps) [ p+ 30(ps) Ap [ A(p+30)
100nm technology
5mm* 2 268.9 | 14.78 313.3 2 268.9 | 14.78 313.3 - -
10mm* 3 527.5 | 24.12 599.9 3 527.5 | 24.12 599.9 - -
20mm* 7 1040.0 | 36.6 1149.8 7 1040.0 | 36.6 1149.8 - -
70nm technology
Smm 2 248.1 13.9 289.9 2 248.0 14.1 290.2 +0.03% -0.1%
10mm* 4 488.1 22.7 556.1 4 488.1 22.7 556.1 - -
20mm* 9 962.4 | 33.7 1063.6 9 962.4 | 33.7 1063.6 - -
45nm technology
10mm* 10 536.7 | 18.7 592.9 10 536.7 | 18.7 592.9 - -
20mm* 19 1065.2 | 27.9 1145.8 19 1065.2 | 27.9 1145.8 - -
100nm technology with larger variations
Smm* 2 268.9 | 17.0 319.9 2 2689 | 17.0 319.9 - -
10mm 3 528.4 | 274 610.6 3 527.5 | 284 612.6 +0.02 -0.003%
20mm* 7 1040.0 | 421 1166.2 7 1040.0 | 421 1166.2 - -
70nm technology with larger variations
5mm* 2 248.1 16.0 296.0 2 248.1 16.0 296.0 - -
10mm* 4 488.1 25.5 564.5 4 488.1 25.5 564.5 - -
20mm* 9 962.4 | 37.6 1075.1 9 962.4 | 37.6 1075.1 - -

Table 1: Experimental results

insertion scheme is simulated with the same parameters.

Table 1 shows the results of different methods. p and
o are mean and standard deviation of delay under process
variations, respectively. We use “#” in first column if results
from two method are identical.

From Table 1, we can find that the traditional method
could have relatively smaller mean delay for some cases. It
may also get a lager variation. However, the differences are
very minor. In most cases two methods give identical solu-
tions. So the traditional methods without considering pa-
rameter variations are still working when variations are be-
coming more dominant. The buffer insertion solution from
existing algorithms will NOT lead to excessive yield loss.

5. CONCLUSION

In this paper, we proved that the buffer insertion problem
is “immune” to the process variations. Based on our vari-
ation model, we analytically compared the optimal buffer
insertion solution with or without considering process vari-
ation. They share the same buffer insertion results. We
also carry out the experiments on buffer insertion by tradi-
tional and statistical algorithms. The results are still simi-
lar. Thus, we claim that process variations will not change
buffer insertion solution in nanometer designs. It doesn’t
need to introduce new buffer insertion method considering
variations for minimizing the 2-pin net delay.
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