Timing-Driven Incremental Routing for VLSI Circuits Via
Localized Slack Satisfaction Computations

ABSTRACT

Incremental routing is crucial to incorporating engineering
change orders (ECOs) late in the design cycle to correct
problems ranging from design errors to timing violations to
crosstalk in current very deep submicron (VDSM) circuits.
Most previous work in incremental routing addressed some
combination of wirelength (WL), via and routing-layer min-
imization. In this paper, we address the critical objective of
satisfying timing constraints in current high-speed designs by
developing an effective timing-driven (TD) incremental rout-
ing algorithm TIDE for ASIC circuits. There are two main
novelties in our approach. The first, at the global routing
level, is a novel interval-intersection and tree-truncation algo-
rithm for quickly determining a near-minimum-length slack-
satisfying interconnection of a pin to a partial routing tree us-
ing only local slack-type information. The second is a mecha-
nism for keeping relevant slack tolerance information at every
Steiner node of a net’s routing tree that helps to quickly and
locally determine in logk time (for balanced trees; k is the
number of pins in the net) whether any re-route of a seg-
ment satisfies all the net’s pin slacks. In the detailed rout-
ing phase, using a depth-first-search process, we allow new
nets to bump existing nets in order to have a richer solution
space, while also controlling any metric deterioration due to
net bumpings. Experimental results show that within the
constraint of routing all nets in only two metal layers, TIDE
succeeds in routing more than 94% of ECO-generated nets,
and also that its failure rate is 7 and 6.7 times less than that
of the TD versions of previous incremental routers Standard
(Std) and Ripup&Reroute (R&R), respectively. It is also able
to route nets with very little (3.4%) slack violations, while
the other two methods have appreciable slack violations (16-
19%). TIDE is about 2 times slower than the simple TD-Std
method, but more than 3 times faster than TD-R&R.

1. INTRODUCTION

Past work tackling the incremental routing problem in-
clude [1, 2, 3, 4, 5, 10]. In [1], re-routing is done in a standard
single-net routing mode in the available routing space with-
out disturbing existing net routes; we term this incremen-
tal routing approach Standard (Std). Limited search space
is the major disadvantage of this scheme. The ripup and
reroute (RE&R) approach to incremental physical design was
presented in [2]. Routings of new nets are initially attempted
without perturbing any existing net. When a new net cannot
be routed, some of the existing nets are ripped-up to free up
routing resources. The routing is then re-done for the new
nets followed by the ripped-up nets. If R&R fails to route

all the nets, the given floorplan and placement configurations
are needed to be modified. The main disadvantage of a R&R
scheme is that the routing is no longer truly incremental, as
there is no limit to the extent of ripups of existing nets, and
there is little control on the quality of their re-routes. In [10]
a two-stage algorithm is proposed to eliminate crosstalk vi-
olations for a given routing as well as minimizing the total
deviation for two-layer routing. An incremental routing algo-
rithm for FPGAs that uses a bump-and-refit (B&R) approach
which routes the new nets by “bumping” less critical exist-
ing nets without changing their topologies was proposed in
[4] and was extended for ECO routing and for FPGAs with
complex switchboxes in [3]. This approach eliminates the
net ordering problem by changing the track assignments for
previously routed nets and gives an optimal solution in the
number of used tracks. Finally, the algorithm presented in
[6] finds incremental routing solutions using a gridless frame-
work for VLSI circuits that requires variable width and vari-
able spacing on interconnects. It uses a depth-first-search
(DF'S) controlled process that optimizes the WL, vias used,
and routing completion rate of new nets by allowing overlaps
with existing nets that congest their optimal routing regions.
The overlapped or bumped segments of these existing nets are
re-routed in a similar recursive manner. The high-level DFS
control of this routing process ensures that the overlapped
nets’ lengths and other properties do not change beyond pre-
set limits, thus achieving a balance between the conflicting
requirements of near-optimal routing of new nets and bound-
ing any deterioration resulting from the re-routes of existing
nets.

Mostly, the above approaches optimize one or more of
wirelength (WL), the total number of vias, the number of vias
per net, and the number of routing or metal layers. However,
in recent years, interconnection delay has become the domi-
nant factor in determining the speed of VLSI systems [11]. In
this paper, we address this issue by presenting an incremen-
tal timing-driven (TD) routing algorithm TIDE for complex
VLSI circuits which have predefined delay constraints (slacks)
for all sink pins. We use local slack-related information in de-
termining if segment re-routes of nets or new pin connections
satisfy all slack constraints of the net. We also use a depth-
first-search (DF'S) control similar to [5], in order to route the
new nets by minimally perturbing® existing nets and only al-
lowing perturbations in which their slacks are not violated
and their WL increments are bounded.

The rest of the paper is organized as follows. In Sec. 2,

!Throughout this paper we will use the terms perturb, bump
and owverlap interchangeably.



we define the timing-driven incremental routing problem for
VLSI circuits. We explain our TD global routing algorithm
in Sec. 3. In Sec. 4, we discuss the detailed routing part of our
algorithm which includes a DFS-controlled bump-and-reroute
technique and an efficient method for determining slack sat-
isfaction of bumped nets. Experimental results comparing
our incremental router to the TD extensions (based on [9])
of the type of incremental routers proposed in [1, 2] and that
we have implemented, are given in Sec. 5. We conclude in
Sec. 6.

2. TIMING-DRIVEN INCREMENTAL ROUT-
ING

The objective of previous timing-driven (TD) routers have
been varied, ranging from minimizing the average source-to-
sink delay to minimizing the maximum source-to-sink delay
over all sinks [8, 9] to minimizing interconnect length subject
to satisfying all timing specifications [6]. The exact TD prob-
lem that needs to be solved is one of satisfying given timing
constraints (slack satisfaction) while minimizing WL as in [6].
We will, however, solve this aspect of TD incremental rout-
ing more efficiently than in the MVERT algorithm of [6], and
also more effectively by successively finding the next nearest
branch of the partial routing tree to connect a new pin to, if
there does not exist any slack-satisfying connection point on
the previous nearest branch.

While incrementally
routing the ECO- gen-

is usually an estimate of the overall wire length, net delay and
congestion [9]. The routing cost function that we use takes
care of these parameters and is described shortly.

The input to global routing is a set of nets N =
{ni,n2,... ,nm} with each net n; being defined by a set of
pins V; = {vo,v1,v2,... ,vx}, wherein the source or driver is
denoted by vg. We consider routing in two layers, one for hor-
izontal wires and the other for vertical wires. We route these
nets in an area that is conceptually divided into rectangular
regions called routing tiles, as shown in Fig. 1 by areas marked
by the finely dashed lines. We represent this routing struc-
ture as a grid graph G(Vy, E;), where V; = {g1,92,.-- ,91}
is the set of grid nodes representing routing tiles, and Ej,
is the set of grid edges that are present between node pairs
representing adjacent routing tiles. The problem of routing
a net in G can be described as a Steiner tree routing prob-
lem on the nodes in G that are the locations of the pins of
the net. We term the grid graph G(Vy, E;) as the GR-Graph
(Global Routing Graph). Our cost function of an edge in G
is a weighted sum of congestion, a base-cost to control net
length, and the distance-to-target which helps to steer Dijk-
stra’s shortest path wavefront towards the target pin, thereby
pruning the search space.

3.1 The Elmore Delay Model

To determine the signal delay of an interconnect, we em-
ploy the Elmore delay model which is briefly described here.
It is an appropriate delay model because of its fidelity [7]
and simplicity. A routing tree T for net n; is described
by a set of nodes V = {wo,v1,...,vr} and a set of edges
E = {e1,e2,...,ep}. The location for node v; is specified
by its coordinates z; and y;, and any edge in E is uniquely
identified by the node pair (v;,v;) or the notation e;j;, used
interchangeably, where v; is the up-stream end of this edge,
i.e., v; is closer to the source node. A subset P C V are the
sink pins of the net and are the leaf nodes in T. The re-

allows more near-optimal sistance and capacitance of edge e;; are denoted r;; and c;;,
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routing completion rate
of the new nets). However, this may result in deterioration

of some properties (net delay, number of vias, WL etc.) of

the bumped nets. A good and stable incremental routing

methodology is one which not only optimizes the routing of

new nets, but which also minimizes or bounds the deteriora-

tion in various metrics of the bumped nets. The TD incre-

mental routing problem can thus be formally stated as:

Input: A set of routed nets of a circuit and a set of new
unrouted nets.
Output: A completely routed circuit in which:
e All pin slack constraints are satisfied.
e The routing of new nets is optimized (e.g., wrt WL,
vias).
e The deterioration in the metrics of interest due to the
re-routing of existing nets is minimized or bounded.

In the next two sections we discuss at length our timing-
driven incremental global and detailed routers that address
the above objectives.

3. TD INCREMENTAL GLOBAL ROUTING

The objective of the global routing step is to elaborate
a routing plan to determine how nets will finally be routed
while attempting to optimize a given objective function which

respectively, and Ry denotes the driver (source node) resis-
tance. Let T, denote the subtree of T rooted at node v;, and
C’fl. the downstream capacitance of T,,, which is the sum of
sink capacitance and edge capacitances in Ty;. The Elmore
delay D(vi) at sink vy is given by:

>

Ve;j Epath vo—vy

D(vk):Rd~CffO+ Tij -(cij/2+Cf,’].).

Slacks of the sink pins of a net are used to guide our timing-
driven incremental routing algorithm. The slack S(vr) at sink
pin vy, is defined as the amount of delay that can be added to
the interconnect from the driver/source node to the sink pin
without increasing the maximum delay limit of that pin. The
primary goal in timing-driven incremental routing is to ensure
that for each net m; that is re-routed: Vuy € m;, AD(vg) <
S(vk), where AD(vy) is the delay change at sink pin v, due
to the re-routing of n;. For an unconnected pin v,, its slack
is its total delay specification and AD(v,) is its delay after
it is interconnected.

3.2 TD Connections of New Pins

An important issue during the global routing of a new net
n; is to decide where the next pin should be connected on the
partially constructed routing tree T of n; so that the slack
constraints of connected sink pins and the new pin are not
violated. Using the terminology of [6], let CC be the closest
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Figure 2: (a) Closest connection point CC for new pin v, to
partial routing tree T. Connecting new pin v, to any down-
stream to CC point v}, is suboptimal in delay. (b) Different
possible slack-satisfying interval(s) on edge e;; obtained from
solutions of concave inequalities.

connection point on 7" where new pin v, can be connected,
and let edge e;; be the segment of 7" which contains CC;}
see Fig. 2a. The optimality of a connection point can be
measured by using different metrics such as a weighted sum
of the delay from source to sinks, maximum source-to-sink
delay [8, 9] and meeting the specified slack constraints [6]. In
this paper, optimality is measured by meeting the specified
slack constraint of each sink pin of T" while minimizing the
wire length of the interconnect from v, to T' (as in [6]). Thus,
the optimal or near-optimal connection point for v, will be
any point on the tree which is close to and upstream or C'C.
Note that a connection that is downstream of CC cannot lead
to an optimal solution [8].

The optimal connection point is, in general, likely to be
a non-Hannan point [6]. The work of [6] showed the advan-
tage of using non-Hannan points and proposed an algorithm
MVERT to perform routes based on non-Hannan points for
the routing tree. MVERT finds the optimal connection point
(in terms of WL) that satisfies all slacks through a binary
search and obtains significant WL reductions compared to a
SERT-like algorithm [8]. References [6, 8] showed that the
delay at every sink node is a concave function® of the dis-
tance [, of the connection point for v, from C'C on branch
€i,5-

It seems that MVERT considers all the k& delay functions
for a net with & sink nodes and performs a binary search over

2 A concave function of z is a one which initially increases with
z (slope is positive but decreasing) reaches a global maximum
(slope is 0) and then decreases (slope is negative and its mag-
nitude is increasing); see Fig. 2b for a pictorial example of a
concave function.

their intersection points on the span from C'C to the upstream
Steiner node v; (Fig. 2b) on e;,;. The time complexity of this
computation would be ©(k?logk) per sink pin as there are
2k(k — 1) intersection points to compute and sort (into two
lists, one by y-axis and another by x-axis values) among the
k functions before the binary search process can be started.
One of our significant contributions in this work is recognizing
that in reality it is enough to satisfy propagated slack-type
constraints at only three nodes, the new sink v, and the two
Steiner nodes v;,v; at the ends of e;,;; how different types
of slack values (called “tolerances”) are computed at Steiner
nodes is the subject of the next subsection (and is another
innovation useful for locally determining slack satisfaction in
different scenarios). This slack-satisfaction evaluation at the
above three nodes takes constant time. However, every time a
new sink is added to the current partial tree, it takes ©(log k)
time to update the tolerance values along the path from the
new sink to the source node for a balanced routing tree and
O(h) time in general, where h = O(k) is the height of the tree
(see Sec. 3.4.2). Thus per sink pin added, our time complexity
is ©(logk) for a balanced tree and ©(k) for an extremely
unbalanced tree.

The valid Steiner points for connecting v, are located
in the intersection C'P of the slack-satisfying interval(s) for
each of the three “satisfaction functions”. These functions
correspond to the following three subsets of sink pins con-
nected to T: Set:1 = {vy}, Setz = {v.|lv, € PN Ty} and
Sets = {vr|v, € PN (T — {Ty; U{ei;})}, where P is the set
of sink pins of T'; these subsets are illustrated in Fig. 3a. For
each subset we have a different function to determine whether
slacks of any sinks in these subsets will be violated if pin v,
is connected to Steiner point v, € e;;j. The slack-satisfying
intervals on e;; for each of these functions is determined for
the above subsets of sink pins (Fig. 2b shows that for concave
functions there will be one to two slack-satisfying intervals,
if any), the intersection C'P of these intervals is obtained,
and if the intersection is not empty, the closest point to CC
in it is determined for making a connection; note that there
will only be a constant number of disjoint intervals in CP.
The algorithm and satisfaction functions are elaborated in
Sec. 3.4.

3.3 Tolerance Concepts for Local Evaluation of
Slack Satisfaction

Connecting a new pin to a partially constructed tree T'
and ripping-up and rerouting some segment of 7' can cause
both the total length of T" and the slack at each sink pin to be
changed. We next define some concepts that capture allow-
able delay and capacitance changes at Steiner points and sink
nodes of T', and are useful in quickly determining if all slack
constraints in T are satisfied when it is incrementally modi-
fied in the two scenarios mentioned above: (a) connection of
a new sink and (b) partial rip-up and reroute of a segment of
T.

Referring to Fig. 3b, let R,” denote the upstream tree
resistance of node v;, which is the sum of all the edge resis-
tances in the path from v; to the source node vo plus the
driver resistance Rg; also, R,? = R4. Let Cg(vy) be the gate
capacitance of pin v,. Recall that D(v;) is the delay from
the source/driver pin to the Steiner-node/sink-pin v; in the
routing tree T'; see Sec. 3.1.

Definition 1: Tolger(v;) is the maximum delay increase that
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Figure 3: (a) Q, K, M are the intervals on edge e;j
where slack requirements are satisfied for the sinks in Set,
Sety and Sets, respectively. CP is the interval where @,
K and M intersect. (b) Routing tree with various toler-
ances shown at each node. The numbers in brackets are
(D, Tolger, Tolcap, Anc_Tolcap); note that Tolge; of a sink pin
is its slack. When the interconnect length to x = ve increases
by Al;, and thus the capacitance by c - Al,, delay changes
percolate to various nodes as shown by the dashed arrows.

can be tolerated at v; without violating the slacks of sink pins
in the subtree T, rooted at v;.

Thus Tolger(vi) = {S(z)} or recursively,

min
T E sinks(Tvi)

Tolger(vi) =

min
vj € children(v;

){TOldel (v;)}- (1)

Note that for a sink pin z, Tol4e(z) = S(z) where S(z) is
the slack of z. As seen in Fig. 3b, the delay tolerance for
node vy is 5ps which is the minimum of the slack (or delay
tolerances) of its two children nodes v and vz.

Definition 2: For a Steiner node v;, the capacitive tolerance
Tolcap(v;) is the maximum capacitance increase downstream
in Ty, that can be tolerated without violating the slack at
any sink pin in T,;. The boundary condition for the capaci-
tive tolerance is at sink pins z, where Tolcqp(2) is defined as
S(z)/RyP. Let Al, be the length increment of interconnect
to z due to rip-up and reroute of the segment connecting x
to its parent Steiner point v;. The increase in delay AD(z)
at x is:

AD(z) = R¥(c- Al,) + % C(Alg)? + 20y - Aly) + 1+ Aly - Cg(z).

Only the c¢- Al, capacitance increase on the new interconnect
from v; to = has a bearing on the delay increases of the other
sink pins in T, ; see Fig. 3b. The delay change AD(v;) at z’s
parent node v; is

AD(vi) = R,? - ¢~ Al.

The delay change at all sinks of T}, other than z will also
be AD(v;) and thus we have the constraint AD(v;) < the

Smin(Tv;) _
RYP -

vi

minimum slack Spin(Ty;) in Ty, or ¢ - Al <
up

Tolcap(y) - % where y is the sink in T,, with minimum

v

slack. In other words,

up
Tolcap(vi) = Y e s?;klg(TUi)(Tolcap(m) . R—;,f)’ or recursively,
ind
Tolup(v) =, _ min | (Toluy(0): ) (2

Definition 3: Ancestor capacitance tolerance Anc_Tolcap(vi)
at node v; is the maximum capacitance increase that can be
tolerated in the subtree T, without violating the slack of any
sink pin in the entire routing tree T'.

Thus Anc_Tolcep(vi) =

v € ancestor(v;)U{v;

J{Toleap(vi)}

or recursively,

AncTolcap(vi) = min{Anc_Tolcap(vp), T0lcap(vi)}  (3)

where vp, is the parent node of v; in T'.

As seen in Fig. 3b, any change in an interconnect of
Ty, also affects the delay of each node, say, va ¢ Ty,.
Tolcap(v2) = 1fF is reflected in Tolcqp(vi) = 2fF of its par-
ent v1, which in turn is reflected in Anc_Tolcap(vs) = 2fF of
its child node wv4; this means that if the capacitance increase
seen in T,, is more than 2fF, this will violate the slack of vs.
Thus Anc_Tolcap(v;) of v; captures the maximum allowable
capacitance increase in T, beyond which some slack in T" will
be violated. Thus Anc_Tolcqp(v;) is the crucial slack-related
tolerance to check; T'olcqp(v;)’s use is essentially in computing
Anc_Tolcqp(vi) using Eqn. 3.

3.4 Interval Intersection Algorithm (IntAl)

We now discuss the algorithm for determining the inter-
val(s), if any, on the edge e;,; of the partially routed tree T
where new pin v, can be connected without violating slack
constraint in the sinks in the three subsets Seti, Sets and
Sets; see Sec. 3.2. If the reader wishes he/she can skip the
step-by-step derivation of the satisfaction functions leading to
Inegs 5,6,7. It will, however, be useful for the reader to take
a look at the inequalities themselves, and read the material
after each of them in their respective sections.

We refer to Fig. 2a for the notations used here.

1. Slack-satisfying interval for Set; = {v,}: Let
Acap(CC) be the capacitance increase seen at CC caused
by connecting v, to T at CC, l,,, be the distance between v,
and CC, l1,c. be the distance from v; to CC and Cq(e;;) be
the total downstream capacitance at v; plus the capacitance
of the interconnect e;; connecting v; and v;; see Fig. 2a. For
any connection point v, upstream of C'C, the interconnect
capacitance Acap(vy) = Acap(CC) + c.ly where [ is the dis-
tance between C'C and v, and the downstream capacitance
at vy will be C4(vs) = Cyl(eij) — c.(l1,cc — lz). Referring to
Fig. 2a, using the delay D(v;) at parent Steiner node v;, we
can calculate D(v,) as:

D(va) = D(ws) + BiZ - (Cg(va) + Acap(u))
Eecoplbs) 1 oo

Cy;,vgp
Frape - [SE22 4 Calvn)] + P, [ S
(4)



Toleap(vz) = Toleap(vj) - —=us = Toleap(vy) -

For any valid Steiner connection on edge e;;: D(vy) —
S(vu) < 0. After substituting in this inequality for D(v.)
from Eqn. 4 and expanding some of its terms, we get as a
function of the variable [, the following inequality that needs
to be satisfied:

filly)=—r-c- 1.2 + [RyP+2-1r-c-licc — 7 Caleiz)
_r~Acap(CC)+r-c-lvu].lz+H§0 (5)
2 2

where H is the constant part of the D (v, )— S(v,) expression.
f1(lz) is a concave function, an example of which is shown
in Fig. 2b. The general procedure for determining the inter-
val(s) @ that satisfy a concave inequality fi(lz) < 0 (as in

Ineq. 5) is as follows.

— Obtain the two roots z1,2z2 of fi(lz) = 0. Let
z1 < z2. Note that since the function is concave,
the possible intervals satisfying fi(lz) < 0 are to
the left of and including 21 and to the right of and
including z»; see Fig. 2b.

— If (21 > l1,cc) (i-e., the z; distance node is to the
right of CC) then Q = [v;, CC|]. Exit.

- If 21 <l1,cc and 22 > l1,cc then
if z1 >= 0 then Q = [v;,v.,], where v,, is the
node on e;; at a distance of z; from v;.
else Q = (. Exit.

- If 27 <l1,cc and 22 <y cc then
{
if 21 >=0 Q = [vi,v,,] else Q = 0.
if z2 >= 0 then Q = QUJv.,,CC] else Q = QUO.
}  Exit.

2. Slack-satisfying interval for Set; = {v.|v. € PN
Ty;}+  When pin v, is connected to point v, the delay in-
crease AD(v;) due to the the extra capacitance Acap(vs) +
Cy(vu) seen at v, cannot be greater than the delay toler-
ances (slacks) of any sink in Sets in order for v, to be a valid
connection. In other words, the capacitance tolerance at v,
should be greater than the added capacitance; the capaci-
tance tolerance at v, can be derived from the tolerance at

node vj as:
R)? R)?
vj
J

Rvm (Rx]p - r(lz + l2,cc))

where [3... is the distance of CC from v;. So, in order to
ensure that connecting the new pin v, to v, will not violate

any slack in Setz, Acap(ve) + Cg(vu) — Toleap(ve) < 0. This
gives us a second inequality as a function of [:
f2(lz) = Acap(CC) + ¢+ Iz + Cg(vy)
Ry?
vj

T ca 2) . m
ol IJ('U]) (Ruf_r'(lz+12,cc))

<0 or

f2(ls) = —re-1,° + [RyY - c— (Acap(CC) + Cg(vu))r — re - locell

the Steiner nodes on the path from v, to source pin vo. Thus
it will be enough to compare the extra capacitance with the
ancestor capacitance tolerance Anc_Tolcqp(vi) at v;. Hence
for satisfying the slacks of the sink pins in Sets: f(vg) =
AncTolcap(vi) — [Acap(vs) + Cg(vu)] > 0, ie.,

fa(le) = Anc_Tolcap(vi) — [Acap(CC) + ¢ - Iz + Cg(vy)] > 0.
(M)

By solving the linear inequality f3(l») > 0 we get the valid
interval M for Sets.

Inegs. b, 6 and 7 provide us the three respective slack-
satisfying intervals @, K, M as shown in Fig. 3a. The final
valid interval C'P of candidate points for connecting the new
pin is the intersection of these intervals; see Fig. 3a. If CP
is not empty then we select the point p € C'P which is the
closest point to C'C to connect the new pin. This connection
will not only satisfy all slack constraints but will also be near-
optimal in wire length. Fig. 4 gives the flow chart for finding
this intersection.

THEOREM 1. The IntAl algorithm correctly determines the
closest Steiner point on edge e;; of partially routed tree T
that satisfies slack constraints of all sink pins of T, if any
such point exists.

Proof:  Follows by construction from the derivation of
fi(lz), f2(lz) and f3(l;) and the correct determination of ca-
pacitive tolerances T'0lcqp and Anc_Tolcqp of Steiner nodes of
a routing tree. <

After we decide where the new pin will be connected on T,
we apply Dijkstra’s shortest path algorithm (with edge costs
described in Sec. 3) to find a global path from v, to vg.

3.4.1 Connection Failure and Tree Truncation

Sometimes there may not be a connection point on e
to connect new pin v,, i.e. CP is an empty set. We then
try another connection point on another segment of 7. As
seen in Fig. 4, based on the failure condition, some portion
of the routing tree T is truncated in order to eliminate edges
that are also guaranteed not to have a valid connection point.
After truncating T, if the remaining routing tree Tr is empty,
then it means that because of some slack violation(s), this net
cannot be routed and we declare a failure to route this net
with the given timing constraints.

Our tree truncation approach is another significant im-
provement over previous techniques which on a connection
failure on e;,; either conducted an exhaustive-type search by
attempting a connection at the next closest branch and so
forth, or a connection was directly attempted at the source
node without trying to find valid connections on any other
tree branches.

THEOREM 2. The tree truncation method given in Fig. 4
will always find a slack-satisfying connection point for new

—Tolcap(vj) - Rxf + (Acap(CC) + Cg(vu)) - (Rxf —r-lacc) <0pin vy on the nearest valid edge, if one exists, of the partial

(6)

This too is a concave function, and we find its satisfying
interval(s) K, if any, using a similar procedure as that given
above for f1(lz).

3. Slack-satisfying interval for Setz = {vi|vy € PN
(T — {ei; UTy,; 1)} To check whether the slack of any
pin v, € Sets will be violated, we need to check if the extra
capacitance at vy is no more than the capacitive tolerances of

routing tree T.

Proof Outline: We consider one case here due to space con-
straints. Referring to Fig. 4, let M = 0; this means that the
minimum capacitance increase c - ly, (see Fig. 2a) in T}, for
connecting v, to C'C on branch e;; is > Anc Tolcqp(vi) =
Tolcap(vp) for some ancestor vp, of v; with the minimum
Tol.qp among all its ancestors. Thus c - [,, capacitance in-
crease will violate some slack in Ty,. Since any other con-
nection of v, to any other branch of T, will, by definition of
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Figure 4: The IntAl algorithm with tree truncation for ob-
taining the valid Steiner point set C' P for connecting new pin
v, to a partially routed tree T'.

CC, have length > [,,, we can only connect v, to a branch
above T,,. However, there may be an ancestor of v, whose
Tolcap while greater than that of vy, is still less than ¢-1,,, . If
v, is the highest such ancestor of v,, then we cannot connect
vy to Ty, but may be able to do so at some branch above
T.,.; hence the remaining tree to consider connecting v, to is
T-T,,.<

3.4.2 As-Needed Updates

After we connect the new pin to the routing tree, de-
lay and capacitance tolerances of the Steiner nodes need
to be updated. The delay of the sinks in Sets will in-
crease by AD = Ry? - [Acap(vs) + Cg(vy)], and the delay
of any ancestor Steiner node vy, will increase by AD(vy,) =
Ry? -[Acap(vy)+Cg(vy)]. It is only necessary to compute and
store the respective delay and tolerance changes at the child
and all ancestor Steiner nodes of v,. Subsequently, when
we need to determine if a delay and capacitance change at
a new Steiner node or at a sink node (due to re-routing a
bumped segment of T' or connecting a new pin to it) satis-
fies the tolerances at its child v, and ancestor nodes, we first
update their tolerances by traveling up the tree from v, to
the source node vp and accumulate all previously updated
delay and tolerance changes in this path, and then apply the
checks. Thus it is not necessary to completely update the
entire tree after every delay and capacitance changes. This
process of as-needed-updates takes O(h) time where h is the
height of the tree; if the tree is balanced, then this time is
O(log k), where k is the number of pins on the net.

4. TD INCR. DETAILED ROUTING

After the global router assigns routing tiles to the inter-
connection between pin v, and point v, on T, the detailed
routing phase begins. The objective of the detailed routing is
minimum utilization of available routing resources, including

the number of vias.

In current VDSM technology the

number of grid lines for detailed rout-
ing in a tile will be huge, resulting in
an extremely large search space for the
detailed route from v, to v.. In order
to reduce the search space but still be
able to explore good routing solutions
on the average, we route on a ran-
dom grid graph within the globally as-
V3 signed routing tiles. The random grid
graph, termed the DR-Graph (for de-
tailed routing graph), is obtained sim-
ply by randomly generating a small %
(e.g. 3%) of all vertical and horizontal
grid lines in the routing tiles assigned
by the global router. These grid-lines
also include horizontal and vertical lines passing through the
centers of nodes v, and v,; see Fig. 5. By again applying
Dijkstra’s shortest path algorithm and using a cost function
that considers via-cost, we find an exact path from v, to v,
in the DR-Graph.
Bump-and-Reroute and Its DFS Control During
detailed routing, we first try to find an appropriate path
P, € PV in the routing tiles, where PV is the set of the
paths between points (nodes) v, and v, that are vacant, i.e.,
they do not overlap any existing nets. Sometimes the routing
resources are not available in these routing tiles to complete
a valid route. In this case, the detailed router will explore
a path P, € PO where PO is the set of paths that over-
laps with some existing nets [5]. The overlapped segments
(o-segs) of existing nets in turn will have to be ripped up
and rerouted between the closest two Steiner nodes on their
respective nets, and their routing in turn may overlap other
existing nets. Thus we may get a sequence of rerouting over-
laps and partial R&Rs among the existing nets. Note that
we do not rip-up and reroute the entire overlapped existing
net as in the case of [2]. Here, we are only ripping-up and
rerouting the o-seg of the overlapped net [5].

Finding a path for a particular o-seg can initiate a set of
other o-seg rip-ups and path searchings which finally termi-
nate when a P, € PV is found for each leaf o-seg of this tree-
structured search. Essentially, we are performing a depth first
search (DFS) of partial rip-ups and re-routings, to find a solu-
tion for the original o-seg, i.e., the one that was overlapped in
the routing of a new net. A DFS path terminates in failure if
the route selected for the current o-seg overlaps already over-
lapped existing nets in the current path or overlaps obstacles
or leads to some constraint violation (e.g. a slack violation on
any pin of the net containing the o-seg, increase in net length
of the o-seg beyond a pre-set upper bound) . If a particular
path P, € PO fails in this manner, the search backtracks
and tries another unexplored path P; for the o-seg. When
all paths explored for the current o-seg fail, the search back-
tracks to the parent o-seg that overlaps it and tries another
path of it. This phase is one of the cruxes of our incremental
routing algorithm. We thus use the acronym TIDE for our
algorithm, which stands for TIming-driven DEpth-first search
controlled segment ripup-&-reroute.
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Figure 5:
Randomly gen-
erated grid-lines for
detailed routing.

4.1 Slack-Satisfying Bumping of Existing Nets
A crucial issue addressed in our timing-driven incremen-
tal routing algorithm is to decide whether re-routing the o-



seg of an overlapped net n; will violate any of its sink pins’
slacks. The pre-computed tolerances (see Sec. 3.3) stored at
the Steiner nodes of n;’s routing tree T" allow us to quickly and
locally determine re-routings of the o-seg that will satisfy all
slack constraints of n; or determine that such re-routings are
not possible in our solution space. We consider three types
of possible overlaps of n;: (1) overlapping a leaf interconnect,
(2) overlapping an interior interconnect, and (3) overlapping
a Steiner node. Due to space constraints, here we discuss
only the first type of overlap.

4.1.1 Overlapping a leaf interconnect

As seen in Fig. 6, during the bump and re-route process,
some segment of the current net can overlap an interconnect
of an existing net n; that connects a sink pin v;; we term this
a leaf interconnect.

In this case,
we only rip-
up the inter-

pin v; and its
parent Steiner
node v, in T
and try to find

ny
‘old route
é (Vp, W)

¢=-= -

[l

i neweroute

Vgl |V nzf (Ve V) Vy
@) (b)

Figure 6: (a) Overlapping of a leaf in-

terconnect between v, and v, and (b) its
rerouting.

tween v; and
vp without vi-

constraint. This
problem is sim-
ilar to that of
finding a con-
nection point
for a new pin which was addressed in Sec. 3.4. The differ-
ence here is that, we already know that a valid and good
connection point for v; is vp. Thus, we only need to check
whether the tolerances stored at v; and v, allow a reroute of
the interconnect between v, and v; with an increased length.
Let Al,, be the change in length of interconnect (vp,v;). If
Al,, = 0, it means that there is no extra capacitance Acap
or delay and thus vacuously all slack constraints of T" are sat-
isfied. If, on the other hand, Al,, > 0, the extra capacitance
will be Acap = ¢ - Al,, and it will increase the delay at pin
v by

R - (c- Aly) + % (Al + 2 1y, - Aly,) + 17+ Aly, - Cglvr).

Thus to determine if this re-routing of the leaf interconnect to
v; satisfies all slack constraints of T, we only need to ensure
that: AD(v;) < S(vi), and Acap < Anc_Tolcap(vp).

The last condition guarantees that this extra capacitance
does not violate any node capacitance tolerance and hence
any sink pin slack in the routing tree T'. Thus the concepts of
tolerances of Steiner and sink nodes provide a simple, fast and
accurate means for verifying if interconnect re-routings satisfy
all slack constraints of the net without exhaustive checking.

5. EXPERIMENTAL RESULTS

The TIDE incremental algorithm was tested on a number
of benchmarks which were generated by creating magnified
cell layout versions of the Mccl circuit (an MCM circuit) tem-
plate with different magnifications, randomly generating the
required pins on the cell and chip boundaries (more the mag-
nification, proportionately more is the number of pins and

connect between

another path be-

olating any slack

Unit Wire Resistance | 0.076 Q/um
Unit Wire Capacitance | 0.118 fF'/um
Driver Resistance 180 Q/pum
Gate Capacitance 234 fF

Table 1: Technology Parameters for 0.18um node

Ckt|# nets|# pins]|| Ckt [# nets|# pins
cktl| 1643 7200 ckt2 | 2277 10080
ckt3] 2949 12960 |[ ckt4 | 3588 15840
ckt5| 4287 18720 |[ ckt6 | 4919 21600
ckt7] 5572 24480 [ ckt8 | 6261 27360
ckt9]| 7613 33120 [[ckt10O]| 10435 | 47520

Table 2: Benchmark Circuit Characteristics.

nets that can be accommodated), and randomly connecting
them by nets of 2-14 pins®. Their characteristics are shown in
Table 2; the number of nets ranges from 1643 to 10,435 and
the number of pins from 7200 to 47,520. Pin slacks in each
net n; were determined by a Gaussian distribution in the in-
terval [0, 5% of Dmas(ni)], where Dpaq(ni) is the maximum
pin delay in n;. To simulate ECO, we randomly deleted 10%
of the original nets, and randomly added the required new
nets to connect the unconnected pins (two random variables
were used, one for selecting the new net sizes [between 2-14
pins according to the distribution in footnote 3] and the sec-
ond to determine its pins). For each benchmark circuit, we
generated 10 different random ECOs, and the results given
for each circuit are averaged over these 10 runs.

We compared TIDE to the timing-driven versions of two
prior incremental routing techniques Std [1] and R&R [2] im-
plemented by us overlaid on a timing-driven routing algo-
rithm SERT/SOAR with elements of the SERT-C algorithm
of [8] and the SOAR algorithm in [9] in it—essentially this
algorithm adds new sink pins to the partially routed tree T
in decreasing order of their criticalities or distances from wvo,
trying first to minimize WL, and failing that to minimize, by
a connection to vo, the delay increases to all connected pins
(at the expense of WL). We will term these incremental TD
algorithms TD-Std and TD-R&R.

All routings were required to be completed within the two
metal layers of the original circuits; the experiments are thus
of the “car crash test” variety, where some failures are guar-
anteed to happen, and the overall success rate is thus an
important metric. We used the parameters in Table 1 for
Elmore-delay calculations. We ran all three methods on a 2.6
Ghz Pentium Linux machines with 1GB of RAM. The results
are given in Table 3; Total HP unrt is the sum of the av-
erage half-perimeter (HP) of the bounding box of unrouted
nets and the Modif nets per new net is the average num-
ber of existing net re-routed to accommodate a new net; the
other metrics are self-explanatory. TIDE was able to route
almost all the nets (=~ 94%) without sacrificing any quality
metric. TIDE has =~ 7 and = 6.7 times fewer unrouted nets
than TD-Std and TD-R&R, respectively. The total length of
unrouted nets by TD-Std and TD-R&R are 7.8 and 7.2 times
more than that of TIDE. TD-Std and TD-R&R were not able
to route 19% and 16% of nets, resp, due to slack violations,
while TIDE had only 3.4% slack violations; note that some
of these violations could be theoretical certainties as we are
not ensuring, especially for new nets?, if these timing spec-

% Generated according to the following distribution: 2 pins:
30%, 3-4 pins: each 20%, 5 pins: 10%, 6-7 pins: each 5%,
8-10 pins: each 2%, 11-14 pins: each 1%.

*Dimaz(n;) for new nets is based partly on the HP length



# new % Unrt. Slack viols Total HP unrt Av rout net Vias per Modif nets Runtime (secs)
nets | pins nets nets (x10°) length (x10%) new net per new net

Ckts TD-S | TD-R [TIDE|| TD-S | TD-R [ TIDE || TD-S | TD-R | TIDE || TD-S | TD-R | TIDE || TD-S | TD-R | TIDE ||TD-S| TD-R |TIDE|| TD-S | TD-R | TIDE
Ckt1l 159 | 664 || 19.2 3.0 | 2.8 17.2 | 3.0 2.3 0.45 | 0.03 | 0.03 || 1.80 | 2.01 | 1.58 || 13.3 | 14.9 | 13.2 0 3.7 | 1.8 || 62.0 |1342.1| 90.4
Ckt2 224 | 923 |[ 19.7 | 4.9 | 3.5 | 22.6 | 4.4 3.2 0.91 | 0.25 | 0.07 || 2.53 | 2.87 | 2.26 || 13.2 | 15.0 | 13.5 0 4.4 [ 1.8 || 87.8 |1854.0|154.2
Ckt3 295 (1259 25.9 | 24.2 | 4.2 || 284 | 17.5 | 5.4 1.98 | 1.91 [ 0.16 || 3.23 | 3.69 | 2.95 || 12.5 | 14.4 | 13.7 0 3.6 | 2.1 94.0 | 347.6 | 203.0
Ckt4 357 |1491(| 17.6 | 85 | 3.1 | 28.0 | 10.1 | 5.9 || 2.02 | 1.03 | 0.20 || 4.00 | 4.46 | 3.49 || 13.2 | 15.0 | 13.3 0 3.6 | 2.3 /147.9|1591.2|264.6
Cktb 424 | 1818 22.7 | 19.5 | 3.4 || 37.1 | 14.1 | 8.1 3.68 | 3.31 | 0.31 || 468 | 5.33 | 4.18 || 12.7 | 14.6 | 13.4 0 3.2 | 2.6 || 200.5| 983.4 |212.1
Ckt6 475 |2004|| 40.2 | 42.0 | 3.1 || 74.7 | 59.7 | 8.9 7.97 | 8.67 | 0.42 || 494 | 5.59 | 4.81 || 11.3 | 12.8 | 13.3 0 5.0 | 2.2 |[112.9] 202.1 | 314.9
Ckt7 539 |2242|| 46.3 | 47.8 | 3.1 |[105.3| 95.5 | 10.7 |[11.70| 1.22 | 0.53 || 5.21 | 5.97 | 5.49 || 10.6 | 12.0 | 13.4 0 3.7 | 3.1]/128.5]| 178.2 [318.9
Ckt8 616 (2622 23.9 [ 22.5 | 3.4 || 53.9 | 26.6 | 12.0 || 8.22 | 8.10 | 0.71 || 6.76 | 7.71 | 6.22 || 12.7 | 14.6 | 13.8 0 3.4 | 2.0 |[260.5|1501.2458.5
Ckt9 748 3174 46.5 | 48.4 | 3.2 [[139.9(127.8| 13.7 |[22.10 (23.54| 1.07 || 7.43 | 8.42 | 7.58 || 11.2 | 12.6 | 13.7 0 5.8 | 2.2 |[196.6 |1277.5|449.3
Ckt10 978 (4087 73.1 | 74.3 |15.8|[438.0(429.2| 98.1 ||{61.92|63.13(11.90|| 8.76 | 9.31 | 8.06 8.8 9.3 | 12.9 0 10.5 | 2.3 || 152.6 | 167.3 | 312.6
Overall
Avg 481 (2024 40.7| 39.1 5.8 || 94.5| 78.8 | 16.8 ||12.09|11.12| 1.5} || 4.93 |5.568 |4.66 || 11.9 |13.5 |13.4 0 | 4.7 |2.83 ||144.3] 944.5|277.9
Factor

improv

of TIDE 7.02 (6.74 5.63 (4.69 7.85 |7.22 1.06 (1.19 0.89 |1.01 0 [2.04 0.52 | 3.40

Avg -
global
nets 31.83 |80.6 | 3.2 ||56.9 |44.7 [10.7 ||10.63|10.84|1.29 ||20.83|42.17|6.61 || 45.0 |75.5 |17.1 0 |31.3 |3.8

Factor

improv

of TIDE 9.78 |9.56 5.32 (4.18 8.24 |8.40 3.15 |6.38 2.63 |4.42 0 [9.48

Table 3: Circuit-wise comparison of metrics across TIDE, TD-Std (TD-S) and TD-R&R (TD-R) for random deletion of 10%
of existing nets and random generations of new nets to connect the unconnected pins. All metrics reported are averaged over

ten random runs of net deletions and additions.

ifications are actually attainable. As shown in Table 3, the
average length of nets routed by TIDE is 6% and 19% shorter
than those routed by TD-Std and TD-R&R, resp. The num-
ber of vias used by TIDE and TD-R&R are comparable with
TD-Std using 11% less vias (TIDE is much superior in via-
usage for global nets).

TIDE is 3.4 times faster than TD-R&R, while being about
half the speed the simple TD-Std method. The last two rows
of Table 3 show results for global nets, i.e., nets whose lengths
are > 50% of the HP of the chip. The improvements of TIDE
over TD-Std and TD-R&R for global nets are even better in
all metrics except slack violations (for which it is comparable)
than its already significant improvements for all nets. This
underscores TIDE’s efficacy efficacy for both local and global
nets as well as for more complex circuits.

The runtimes for TD-R&R bear some explanation. As
can be seen in Table 3, its runtimes sometimes fluctuate sig-
nificantly from circuit to circuit and in inverse proportion
to the circuit size. We observed that TD-R&R sometimes
takes an inordinately long time to route some new nets in
some circuits, and this has little to do with circuit size. We
believe this stems from the potentially out-of-control ripup-
&-reroutes that can occur in TD-R&R when it encounters a
densely congested routing region. Since the ECO simulations
were randomized, it probably escaped such regions for some
circuits but got stuck in them for others. Another seeming
runtime anomaly that applies to all three methods is that
when we go from ckt9 to the much larger ckt10, all runtimes
decrease noticeably (this is significantly more pronounced for
TD-R&R). However, the % of unrouted nets and slack vio-
lations are disproportionately more for ckt10 than for ckt9
for all three methods, meaning that if these failures were de-
tected early enough then runtimes could decrease.

6. CONCLUSIONS

A timing-driven (TD) incremental routing algorithm
TIDE was developed for VLSI circuits. TIDE solves the exact

estimate of m; which is generally an underestimate for large-
size nets.

TD routing problem - satisfying sink pin slacks while mini-
mizing the net length. TIDE has several innovative features
including a near-min WL interval-intersection algorithm for
a valid connection of a new pin to a partially routed tree us-
ing only three local slack-satisfying functions, Steiner node
tolerance concepts that allow accurate, fast and local deter-
mination of slack satisfaction for all pins during global as well
as detailed routing, and a DFS-controlled bump-and-reroute
process that explores a richer solution space for new-net rout-
ing without significantly compromising on the route qualities
of existing nets. Our router was tested on several example
benchmarks with up to > 10, 000 nets, and was shown to pro-
duce significantly improved results in terms of the number of
successfully routed new nets, number of vias required, wire
length of nets and slack violations when compared to the TD
versions of the well known Std and R&R routing methods.
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