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Net-Ordering for Optimal Sharing of Cross-Capacitances 

in Nanometer Interconnect Design
 

ABSTRACT 
This paper addresses the problem of ordering and sizing parallel 

wires in a single metal layer within an interconnect bus of a 

given width, such that cross-capacitances are optimally shared 

for circuit timing optimization. Using an Elmore delay model 

including cross capacitances for a bundle of wires, we show that 

an optimal wire ordering is uniquely determined, such that best 

timing can be obtained by proper allocation of wire widths and 

inter-wire spaces. The optimal order, called BMI (Balanced 

Monotonic Interleaved) depends only on the size of drivers for a 

wide range of cases. The paper also addresses wire ordering for 

minimizing circuit delay uncertainty induced by crosstalk. 

Monotonic ordering according to driver strength is shown to be 

advantageous, hence BMI order is recommended for both 

nominal delay and delay uncertainty minimization. Heuristics 

are presented for simultaneous ordering, sizing and spacing of 

bus wires. Examples for 90-nanometer technology are analyzed 

and discussed.  

1. INTRODUCTION 
Cross-capacitances between wires in interconnect structures 

have a major effect on circuit timing. The importance of this 

effect grows with technology scaling. Since cross-capacitance 

between two wires depends on inter-wire spacing and affects the 

delays of both wires, allocation of inter-wire spaces and wire 

widths becomes an optimization problem for bus structures 

under a total area constraint [ 1]. This paper addresses a more 

general problem, where delays in a bundle of parallel wires (with 

different drivers and loads) are minimized by choosing an 

optimal ordering of the nets, in addition to optimal allocation of 

wire widths and inter-wire spaces. The total width of the 

structure is a given constraint. The problem is motivated by the 

following example: assume a bus of 2n  signals, n of them with 

strong drivers of size A (small effective output resistance) and 

n others with weak drivers of size B (large driver resistance). 

Two different arrangements of the bus, presented in Fig.1 a and 

Fig.1 b result in different circuit timing. In the second case inter-

wire spaces are shared more effectively due to grouping of wires 

of each type together and as a result, circuit timing is better. This 

example demonstrates that wire ordering according to driver 

strength can improve results of delay minimization. Ordinary 

delay minimization ignores the net-ordering degree of freedom 

and treats the order of signals in the bus as given. A brute-force 

approach to determine the best ordering is to generate all signal 

permutations in the bus, and for each permutation solve the 

wire-width and space optimization problem. This approach, 

however, is computationally infeasible for practical buses. This 

paper proves the existence of an optimal wire ordering that 

yields best delay minimization after wire sizing and space 

allocation. The paper describes an efficient algorithm to find the 

optimal order for a wide range of practical cases. The paper also 

presents and evaluates heuristics for solving the most general 

cases of this problem.  

1.1 Related Works 

The problem of allocating widths and spaces to maximize 

performance in bus structures was proposed in [ 1]. The wire 

sizing problem has been addressed in [ 2] and [ 3] for a single net. 

Sizing and spacing multiple nets with consideration of coupling 

capacitance has been addressed in [ 4] for general interconnect 

layouts by converting cross capacitance to effective fringe 

capacitance. Coupling capacitance has been addressed explicitly 

in the context of physical design for minimizing crosstalk noise 

[ 5, 6] or dynamic power [ 7]. Some authors treated the problem of 

throughput optimization in buses using uniform wire widths and 

spaces [ 21,  23, 24]. Several variants of net-reordering have been 

applied for improving layout efficiency [ 8], and for noise 

reduction [ 6,  9,  10,  11,  12]. Swapping of wires for power 

reduction was applied in [ 13]. Vittal et al. [11] have suggested 

without proof to reduce capacitive coupling noise by sorting 

wires in order of driver strength, which is closely related to our 

results.  

2. PROBLEM FORMULATION 

2.1 Interconnect configuration and delay model 
Circuit structure and notation are shown in Figure 2, illustrating 
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respectively, denote spaces to the left and right neighbors of 
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W  is the wire width. The length of all the wires is L. 

The total sum of wire widths and spaces is constrained to be A , 

representing the area available for laying out the bus. 
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Figure 1. Two ways to order  an interleaved bus. "A" – strong drivers 

(small resistance), "B" – weak drivers (large resistance).  Case a: 

interleaved placement, all wires share equal spaces. Case b: sorted 

placement, wires with weak drivers share large spaces and wires with 

strong drivers share small spaces, with improved circuit timing. 



 2

The delay 
i

∆ of signal 
i

σ  can be calculated from the π-model 

equivalent circuit shown in Figure 3, where
i

R is the effective 

output resistance of the driver,
i

w
R  is the wire resistance, 

i
w

C  

is the area and fringe capacitance, 
i
c

C  and 
1i

c
C

+

 are the coupling 

capacitances to the right and left neighboring signals, and 
i

C  is 

the capacitive load of the receiver’s input.  

Using an Elmore model with first order approximation for 

capacitances [ 19], the delay can be expressed as [ 18]:  
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∆ = + + + + + + + + +

 (2.2) 

where coefficients of wire widths, spaces, driver resistances and 

load capacitances are technology-dependent constants denoted 

, , , , , ,a b d e k g h  and 
,i j

m is Miller factor between wires 

i and j . If all wires can switch simultaneously, the cross-

capacitance terms are typically multiplied by a uniform 
,i j

m of 

2. For this worst-case assumption, inter-wire tradeoffs become 

very significant in optimizing the bus layout. For nominal 

delays, 
,

1
i j

m =
is assumed. Derivations in this paper use this 

assumption. Despite its simplicity, this Elmore-based modeling 

approach is widely used in practical interconnect optimizations. 

A multiplicative factor of 0.7 is generally used to fit the Elmore 

model with 50% signal delay. With more elaborate empirical 

parameter tuning, the model accuracy can be improved further: 

In [ 18], good absolute accuracy versus circuit simulation has 

been obtained by applying a parameter fitting procedure to a 

very similar wire delay model. 

 

2.2 Objective functions 
Let 1

f
 given in (2.3) be the objective function we wish to 

minimize. 1
f  denotes the sum of all signal delays. It is 

commonly used in early design stages since it captures the 

contributions of all signals to circuit timing. 
1
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For final performance tuning, it is appropriate to speed-up the 

slowest signal in the bus. The objective function for such 

MinMax optimization is 

2
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 (2.4) 

When required times of signals are specified, the corresponding 

objective functions are sum of slacks and the worst slack among 

all signals. Minimizing the sum of slacks is equivalent to 

minimizing
1
f . The case of minimizing worst slack can be 

transformed to minimizing worst wire delay
2
f .  Section 3 

covers optimization of
1
f , and section 4 considers optimization 

of
2
f . Section 5 discusses minimization of delay uncertainty 

metrics.  

3. ORDERING OF WIRES FOR SUM OF 

DELAYS OPTIMIZATION 
Let each wire have width i

W  assigned as follows: 

 1

( )
i

i

W

Rψ

=

, (3.1) 

where ψ  is a monotonically non-decreasing functions of 
i

R . 

Such assignment is practically common, as one attempts to 

balance the resistance of the driver and the resistance of the 

driven line and is known as "impedance matching". Notice that 

the case of uniform width wires is also covered by (3.1).
1
f  is a 

function of 1n + variables
i

S . The solution of minimizing 
1
f  

under the constraint g (in (2.1)) implies 

 1
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 (3.2) 

whereλ is a Lagrange multiplier. Taking partial derivatives of 

1
f  and g  with respect to

i
S , substituting to (3.2) and 

rearranging we obtain
 

2 2 2 2 2 2 2 2

0 2 4 1 1 3 5n n

S S S S S S S S
−

+ + + + = + + + +… …  (3.3) 

Notice that (3.3) holds regardless of wire widths,  

reflecting the fact that adjacent wires in the bus share common 

spaces. Equations (3.2) can be solved for 
i

S  andλ . By 

Figure 2. Interconnect configuration. The total bus width is A and the 

length is L. Each wire 
i

σ is of width
i

W , with spaces to neighbors 

i
S and

1i
S

+
, driven by a gate with effective resistance 

i
R and loaded by a 

gate with capacitance 
i

C  . 
Figure 3. Equivalent circuit for calculating the ith signal delay 
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substitution to (2.3), the minimal total sum of delays is 

expressed in terms of technology parameters, bus area 

constraint, wire driver resistances and load capacitances:  
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The quadratic last term of (3.4) depends on wire ordering. 

Consequently, there exists an order which minimizes the total 

sum of delays. The important conclusion from expression (3.4) 

is that for wire widths assigned as in (3.1), wire ordering affects 

the minimal sum of delays via driver resistances, while the 

effect of load capacitances is order-insensitive.  

We now describe how to obtain the optimal order, and prove 

that this order is indeed the optimal one. Such order takes the 

driver with the largest resistance to reside at the center of the bus 

channel. The other drivers are taken in monotonically decreasing 

order of driver resistance, and located alternately on the left and 

right of the signal bus as shown in figure 4. We call the resulting 

order BMI (Balanced Monotonic Interleaved). The advantage of 

BMI order stems from the fact that spaces are shared by wires 

with similar driver resistances, since the shield wires at the 

sidewalls effectively have zero-resistance drivers. 

 

Definition  (BMI order):  Given a bus of n signals with driver 

resistances
0 1

,,
n

RR
−

…
, the permutation of signals 

0 1

* ( , , )
n

R R
−

Π = … is called Balanced Monotonic Interleaved 

(BMI) if it satisfies  

0 1 1 2
1 1

2 2 2

n n n n n
R R R R R R R

− −

− +
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

< < < < < < <…
. (3.5) 

Notice that the reversed permutation which 

satisfies
1 0 2 1n n

R R R R
− −

< < < <… , is also BMI. 

 

Theorem 1 (Optimal order): Let wire width be a monotonic 

non-increasing function of driver resistance. The net-

ordering yielding minimal sum of delays is then BMI. 

Proof outline: Induction used on the number of wires. For one 

or two wires the order is undefined. For 3 wires, optimality of 

BMI order can be simply shown, based on properties of the sum 

of square roots in the last term of (3.4) . For additional wires, it 

can be shown by induction that after adding a new wire to the 

bus and rearranging the wires, BMI order will yield minimal 

total sum of delays. ■  

The function ( )Rψ (3.1) needs to be selected carefully. 

Although the theorem holds for equal-width wires, the goal is to 

approach the absolute minimum which could be achieved in the 

space of all orderings, wire width and wire spacing assignments. 

A simple, yet practical, wire width function is the inverse linear 

 ( )
i i

i

W R

R

α

β γ
=

+

, (3.6) 

whereα , β and γ are positive constants.  

In the most general case, both wire widths and spaces can vary 

arbitrarily, yielding 2 1n + equations. In this case the optimal 

wire ordering may depend on the values of capacitive loads and 

is not necessarily BMI. The next theorem defines conditions for 

optimality of BMI order in the most general case. 

Theorem 2: For a  given set of n  wires{ }
0 1 1

, , ,

n

σ σ σ
−

… , 

if each pair of wires 
i

σ  and  
j

σ  with driver resistances and 

load capacitances (
i

R ,
i

C ) and ( j
R , j

C ) satisfy
i j

R R>  

and 
i j

C C≤ , then the optimal order of this set of wires is 

BMI, under total sum of wire delays objective function. 

If the conditions of the theorem are not met, the solution of the 

most general problem is very complex, as it involves the 

exploration of many permutations.  

In order to make the computational effort reasonable, the 

following heuristic is proposed. It is based on the BMI order and 

yields near-optimal solutions. The complex optimization 

problem is divided into two successive simpler ones. First, 

theorem 2 is checked. If it is satisfied, the optimal order is BMI. 

Otherwise, the heuristic assigns wire widths by some 

parameterized monotonic non-increasing function such as (3.6). 

BMI order is now guaranteed to be optimal. Then continuous 

optimization is applied, exploring for the optimal values of inter-

wire spaces and the width-function parameters (e.g. α , β and 

γ in (3.6)). This heuristic reduces time complexity of the 

optimization problem by factor of ( !)O n and reduces the 

number of unknown parameters from 2 1n+  to n p+ , where p 

is the number of parameters in the width function. Experiments 

show that a well-chosen width-function yields ordering, widths 

and spaces that result in total sum of delays which is very close 

to the global optimum. 

 

4. OPTIMAL ORDERING OF WIRES UNDER 

MAXIMUM DELAY OBJECTIVE 

In this section, we examine ordering optimization for 

minimizing worst wire delay (2.4). It can be shown that the 

objective function of total sum of delays (2.3), and the objective 

function of worst delay (2.4) are the norms
1
 and

∞

 

respectively. Relying on the norm equivalence theorem we 

expect similar properties of both objectives. We aim to 

demonstrate optimality of BMI order for minimization of worst 

wire delay as well. However, since (2.4) is not differentiable, the 

Figure 4. Building BMI order from a set of wires sorted 

according to driver resistance 
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technique used for deriving optimal order for total sum of delays 

cannot be applied here.  

Let's rewrite (2.2) in the following way, with
,

1
i j

m = : 

1

1 1
i

i i i i i i i

i i i i i

eCb d
a kRW gR RC hR

W W S S W
+

⎛ ⎞ ⎛ ⎞
∆ = + + + + + + + ⋅ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 (4.1) 

It has been reported in [ 22] that after minimization of worst wire 

delay in a bus, delays of all wires are equal (equal-delay 

property). Using this property it can be shown from (4.1) that at 

the minimum delay point, wire width is a monotonically 

decreasing function of driver resistance. We can assume then 

that wire width is of the form (3.1), where ( )
i

Rψ is convex or 

linear monotonic non-decreasing function in wire driver 

resistance. If in addition, we assume that all load capacitances 

are equal, then (4.1) can be rewritten in the form: 
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+
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 (4.2) 

where ( )
i

Rα and ( )
i

Rβ are monotonic non-decreasing 

functions in 
i

R  due to (3.1). From (4.2) it follows that stronger 

drivers will be assigned smaller inter-wire spaces and weaker 

drivers – larger inter-wire spaces. It matches our result for total 

sum of delays optimization, since the order providing the best 

sharing of inter-wire spaces is BMI. From (4.2) it follows 

immediately that for two adjacent wires  

 
1 2i i i i

R R S S
+ +

> ⇒ >  (4.3) 

Property (4.3) can be used to determine optimal order for 

minimizing worst delay. In 3- and 4-wire cases BMI order has 

been proven analytically to be optimal. Since we don't have a 

complete proof for n  wires, we have demonstrated 

experimentally that BMI order is optimal under maximum delay 

objective in most cases. We have created about 1000 random 

problem instances for 5 wires and 100 random problem 

instances for 6 wires and obtained BMI optimal order in most 

cases (the computational effort is infeasible for a larger number 

of wires). We have found that when not all load capacitances are 

equal, in about 80-85% of cases the optimal order is BMI. When 

all load capacitances are the same, the relative number of 

optimal BMI orders arises to 93-95%. We have found that with 

equal capacitances, the cases which deviated from BMI (7-5 %) 

were caused by effects of proximity to the shield wires at the 

sides, since spaces to the shield wires are not shared by a pair of 

signals. These effects become significant only if driver 

resistances are nearly equal. Further details are omitted here to 

save space. 

 

5. OPTIMAL ORDERING OF WIRES FOR 

MINIMIZING DELAY UNCERTAINTY 

Capacitive coupling is the primary source of noise in sub-micron 

digital CMOS and becomes worse with technology scaling. One 

of the most important characteristics of capacitive noise is delay 

uncertainty [ 20]. As in the case of delays where we dealt with 

total sum of delays and worst delay, we introduce two new 

objective functions for minimizing delay uncertainty: 

 
3 max,i

i

f t= ∆∑  (5.1) 

and  

 
4 max,

max
i

i

f t= ∆ , (5.2) 

where 
max,i
t∆ is maximum delay uncertainty of signal i and can 

be expressed according to [ 20] as  

 
m ax ,

lo g 1
p

i i

d d

V
t

V

⎛ ⎞
∆ = ∆ +⎜ ⎟

⎝ ⎠

 (5.3) 

p
V denotes peak noise [ 9]. Since peak noise is bounded, (5.1) 

and (5.2) are similar to the objective functions for minimizing 

total sum of delays and worst delay. Therefore, in this case it is 

reasonable to expect BMI optimal order. Thus, the same optimal 

order can minimize both delay and delay uncertainty 

characteristics. Examples for simultaneous minimization of 

delay and delay uncertainty objectives are shown in the next 

section.  

 

6. RESULTS AND DISCUSSION 

Numerical experiments for various problem instances were 

performed using 90 nanometer technology parameters calculated 

based on [ 15]. We used continuous optimization, and verified 

the results for allowed discrete sizes as required in modern 

layout tools. All the computation was performed in Matlab, and 

we have simulated some circuits before and after optimization to 

verify the delay improvement in Spice.  

 In the first experiment we evaluated 20 random problem 

instances using five signals. Each signal was assigned a driver 

randomly. The range of driver resistances was 100 Ω to 2 KΩ  

and load capacitances in the range 200 fF to 10 fF were assigned 

accordingly, to avoid excessive driver loading, such that the 

conditions of theorem 2 are always satisfied. For each problem 

the wire widths and spaces were optimized to yield minimum 

total sum of delays and minimum worst wire delay. This was 

done for all the 5!=120  possible order permutations. The 

procedure was repeated for five different bus widths A – 5, 10, 

15, 20 and 25 mµ , and five different bus lengths L – 300, 500, 

1000, 5000 and 10000 mµ . The optimization impact (% 

improvement of best versus worst ordering, after width/space 

optimization, averaged for 20 random problem instances) is 

presented in Table 1. In each cell, the upper half cell (colored in 

gray) represents total sum of delays optimization and the lower 

half cell – worst wire delay optimization. Worst case crosstalk 

was assumed (i.e. Miller factor of 2). This experiment 

demonstrates that net ordering can significantly improve results 

of wire sizing and spacing optimization, especially when width 

is tightly constrained. The worst wire delay objective is affected 

more than sum of delays. Since theorem 2 is always satisfied in 

this example, all obtained optimal orders for total sum of delays 

minimization are BMI. On the other hand, only 80% of the 

obtained optimal orders for minimization of worst delay are 

BMI. It can be explained by influence of shield wires and 

varying load capacitances. For buses with 32 or 64 wires we 

could not perform the exhaustive search, but we confirmed that 
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BMI net ordering could improve worst wire delay by a 

significant percentage.  

The second example shows in Table 2 the effect of signal 

ordering on buses with both strong and weak drivers. A bus of 7 

signals with driver – load pairs of (100 Ω – 50 fF ) or (1.9 ΩK  

– 5 fF) was examined for various numbers of the weak drivers. 

Bus width and length were A=12 mµ   and L=600 mµ . As could be 

Table 1 

Average improvement (best vs. worst ordering) for random 

problem instances, in sum-of-delays (upper half-cell) and 

worst wire delay (lower half-cell) 

 A=5 

mµ  

A=10 

mµ  

A=15 

mµ  

A=20 

mµ  

A=25 

mµ  

7.14% 6.13% 5.13% 4.25% 3.62% L=300 

mµ  18.60% 13.23% 9.89% 7.68% 6.14% 

8.41% 7.39% 6.31% 5.40% 4.71% L = 500 

mµ  20.73% 16.17% 12.91% 10.56% 8.79% 

9.51% 8.57% 7.65% 6.71% 5.97% L = 1000 

mµ  22.14% 18.83% 16.05% 13.82% 12.03% 

9.65% 8.67% 7.97% 7.24% 6.63% L = 5000 

mµ  20.64% 19.41% 17.75% 16.19% 14.79% 

8.62% 7.91% 7.29% 6.59% 5.99% L =10000 

mµ  18.61% 18.05% 16.71% 15.37% 14.14% 

 

expected, when the numbers of strong and weak drivers were 

about equal, signal ordering was most effective.  The worst 

ordering was indeed the interleaved one described in Figure 1a, 

while the best one was clearly BMI. Miller factor of 1 was 

assumed (nominal delays). 

Table 2 

 % improvement of best versus worst ordering, after 

width/space optimization, for a bus with two driver strengths 

No. of weak 

drivers 

Worst delay 

optimization  

Sum of delays 

optimization  

1 0.17% 0.39% 

2 8.94% 4.81% 

3 13.81% 8.12% 

4 18.17% 11.19% 

5 11.99% 7.52% 

6 6.16% 3.55% 

 

In the third example, delays obtained by exhaustive 

simultaneous ordering/sizing/spacing optimization are compared 

with results of heuristics using BMI order for total sum of delays 

objective. We used the same set of 20 instances as in example 1. 

The heuristic described in section 3 with the inverse linear width 

function (eq. 3.5) was applied. The results are presented in Table 

3. For each value of bus width and length, the delay interval 

between the optimal result of exhaustive search and the optimal 

result of the heuristic is presented as a fraction of the delay 

interval between best and worst results of the exhaustive search. 

As can be seen, by using parametric width optimization, the 

global minimum was approached as closely as 0.37% on 

average.  

Table 3 

Relative delay distance between heuristic result and the 

global minimum 

 A=5 

mµ  

A=10 

mµ  

A=15 

mµ  

A=20 

mµ  

A=25 

mµ  

L=300 

mµ  
0.16% 0.14% 0.42% 0.19% 1.34% 

L = 500 

mµ  
0.20% 0.25% 0.15% 0.18% 0.29% 

L = 1000 

mµ  
0.13% 0.14% 0.19% 0.28% 0.35% 

L = 5000 

mµ  
0.17% 0.21% 0.28% 0.45% 0.65% 

L =10000 

mµ  
0.25% 0.28% 0.38% 0.52% 0.66% 

Average 0.182% 0.204% 0.284% 0.324% 0.658% 

 

In the last experiment, we analyze minimization of delay 

uncertainty objective functions. We generated 20 random 

instances of 8 wires with wire drivers chosen randomly from the 

range 100 Ω to 2 KΩ  and all load capacitances are 10 fF. The 

width of the bus is 18 mµ . Miller factor of 1 was assumed. For 

each set of wires, we assumed worst order similar to Fig 1.a, and 

BMI order has been taken as the best one. After that, we 

performed optimal wire width and inter wire space allocation for 

each case, calculated relative differences in objective functions 

between these two orders and averaged all differences. The 

operation was repeated for 5 different bus lengths, as presented 

in Table 4. As can be seen, ordering improved delay uncertainty 

in all cases by about 30-40 %.  These experiments demonstrate 

the effectiveness of BMI ordering for both delay and delay 

uncertainty minimization. 

Table 4  

Advantage of BMI order vs. worst order 

Bus 

width, 
mµ  

Total sum 

of delays 

impact, % 

Worst 

delay 

impact, % 

Total sum of 

delay 

uncertaincy 

impact, % 

Worst delay 

uncertaincy 

impact, % 

300 2.73 6.70 29.82 37.73 

500 3.53 9.27 30.34 39.97 

1000 4.44 12.14 30.83 40.56 

5000 4.82 14.03 30.18 35.07 

10000 4.36 13.21 28.72 34.27 
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7. CONCLUSION 

  

We have shown that reordering of wires can improve results of 

timing optimization by wire-sizing and spacing, for a wiring 

channel of constrained width. It has been shown that the optimal 

order of wires generally depends on both wire driver resistances 

and load capacitances. Analysis of sum-of-delays minimization 

(which is equivalent to minimization of the average signal delay) 

with shield wires at the sides of the channel, showed that when 

wire widths are uniform or are specified by a monotonic non-

increasing function of wire driver resistance, the optimal order is 

BMI (Balanced Monotonic Interleaved) and depends on driver 

resistances only. The general problem of simultaneous net-

ordering, wire-sizing and spacing optimization was presented, 

and solution heuristics were proposed, reducing complexity by 

factor of ( !)O n , and the number of optimization variables from 

2 1n +  to n p+ . Numerical experiments demonstrated heuristic 

results approaching the global optimum within approximately 

0.5%. Ordering optimization has been shown to be advantageous 

for simultaneous minimization of total sum of delays, worst 

delay, sum of uncertainties and worst delay uncertainty.  
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