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ABSTRACT
Process variations cause significant timing uncertainty and
yield degradation in deep sub-micron technologies. One so-
lution to counter timing uncertainty is through post-silicon
clock tuning. Existing design approaches for post-silicon-
tunable (PST) clock-tree synthesis usually insert a tunable
clock buffer for each flip-flop or put tunable clock buffers
across an entire level of a clock-tree. This can cause signif-
icant over-design and long tuning time. In this paper, we
propose to allow tunable clock buffers to be inserted at both
internal and leaf nodes of a clock-tree and use a bottom-
up algorithm to identify candidate tunable clock buffer loca-
tions. We then provide two optimization algorithms driven
by statistical timing analysis to reduce the hardware cost of
a post-silicon-tunable clock-tree. Experimental results on IS-
CAS89 benchmark circuits show that our algorithms achieve
up to 90% area or number of tunable clock buffer reductions
compared to existing design methods.

1. INTRODUCTION
PST clock-tree has become an important design-for-yield

technique to counter variations on path delay and clock skew
in manufactured chips. In deep sub-micron technologies,
yield loss is mainly from the following two sources: (a) func-
tional yield loss due to processing defects, and (b) timing
yield loss due to timing failures caused by processing param-
eter variations. Timing yield loss is recoverable by reducing
the sensitivity of the circuit to process variations. However,
the increasing intensity of process variations in new tech-
nologies, stringent time-to-market requirements, and limits
on non-recurring-engineering (NRE) cost have made it dif-
ficult to add timing yield as part of the design objectives
during circuit optimization steps. It is favorable to have
generic design-for-yield techniques that can be applied to
different designs and have the least impact on the current
design flow.

Rajaram et al. [1] propose to reduce clock skew varia-
tions by inserting cross links in a given clock-tree. However,
this technique cannot take path delay variations into ac-
count. Another promising design-for-yield techniques is to
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Post-silicon tunable

Figure 1: Clock distribution network of a dual-core
Intel� Itanium� processor (figure cite from [3]).

use PST clock-trees [2–4]. By inserting tunable clock buffers
into the clock-tree, slacks can be redistributed among ad-
jacent timing paths and timing failures may be corrected
through post-silicon clock tuning. As shown in Figure 1,
the clock distribution network of Intel’s recently announced
dual-core Itanium� processor uses two levels of PST clock
buffers to counter clock skews caused by process variations
and improve the timing yield. The tunable second level
clock buffers (SLCBs) at the terminals of L1 route can be
dynamically adjusted by on-chip clock phase detection hard-
ware to cancel clock skew variations. They can also be pro-
grammed from the test access port (TAP) for timing opti-
mization [2,3,5]. There is also a second level of tunable clock
buffers at every terminal of the L2 route. This level consists
∼ 15K clock vernier devices (CVDs) for clock fine-tuning
through scan [3].

Post-silicon clock tuning not only improves the timing
yield but also reduces clock power by avoid using grid-based
clock distribution networks. However, a brute-force design
method that insert a tunable clock buffer for each flip-flop
or at each clock-tree terminal uses a significant amount of
the chip area. To the best of the authors’ knowledge, there
is no systematic ways to construct a PST clock-tree that
provides the maximum tuning capability for timing yield im-
provements with minimum hardware cost. We propose to
use statistical timing analysis to drive the PST clock-tree
synthesis flow. As illustrated in Figure 2, by analyzing the
effects of process variations on timing, we can insert tun-
able clock buffers only at the critical locations in a clock-
tree. This can greatly reduce the hardware cost of a PST
clock-tree.
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Figure 2: Hardware cost reduction through statisti-
cal timing analysis.

In this paper, we study the effects of tunable clock buffer
to timing yield and present two optimization algorithms for
reducing the area or number of tunable clock buffers of a
PST clock-tree. Compared with existing design methods,
our algorithms achieve up to 90% hardware cost reduction.

The rest of this paper is organized as follows: in Section 2
we first gives two formulations, PST-A and PST-N, on the
PST clock-tree synthesis problem based on two hardware
cost metrics. Section 3 provides a timing yield model for
sequential circuits based on SSTA and Monte Carlo integra-
tion. The effects of tunable clock buffers on timing yield is
analyzed and a timing yield model in the presence of tun-
able clock buffers is developed in Section 4. An iterative
linesearch algorithm utilizing a fast gradient approximation
algorithm is proposed in Section 5 to solve PST-A. A batch
selection algorithm is proposed in Section 6 to solve PST-N.
Experimental results on the effectiveness of the proposed al-
gorithms are demonstrated in Section 7, and finally Section
8 concludes this work.

2. PROBLEM FORMULATION
The tuning capability of a PST clock-tree is dependent

on the number of tunable clock buffers and their tunable
range. To achieve the maximum timing yield improvement,
a brute-force method may insert tunable clock buffers at
every terminal of the clock-tree and design the tunable clock
buffer to have a large tunable range. However, this can add
a large hardware overhead to the design.

To optimize the hardware cost of a PST clock-tree, it is
essential to choose a cost metric that reflects the actual sil-
icon cost. There are several tunable clock buffer designs
that achieve variable clock delay with very different circuit
design techniques. A common tunable clock buffer design
consists two inverters with a bank of passive loads in be-
tween [2, 6]. Each passive load can be connected or discon-
nected to the inverter by programming the control bit of its
pass gate. This type of tunable clock buffer relies on RC
delay to control the clock delay. To achieve a large tunable
range, we need to have a large passive load. Since on-chip
capacitors require a large area in a digital VLSI process, the
appropriate cost metric for this type of tunable clock buffer
is the area required to implement the passive loads, which
is proportional to the required tunable range of the buffer.
Another tunable clock buffer design achieves variable delay
by changing the driving strength of a buffer. This is either
done through controlling the bias voltage of the driver with
a digital-analog-converter [4] or introducing contention to

the driver [3]. For this type of design, the hardware cost
is insensitive to the tunable range and can be treated as a
constant. Therefore, the appropriate cost metric with this
type of design is the total number of tunable clock buffers
in the clock-tree. In this paper, we do not make assump-
tions on the design of a tunable clock buffer. Instead, we
use both metrics, total tunable range and total number of
tunable clock buffers, for the hardware cost and define two
PST clock-tree synthesis problems as follows.

Problem PST-A: (To minimize area)
Given a circuit and its buffered clock-tree, determine the re-
quired tunable range of each clock buffer such that the total
tunable range is minimized and the target timing yield is
achieved.

Problem PST-N: (To minimize the number of tun-
able clock buffers)
Given a circuit and its buffered clock-tree, select a mini-
mum subset of clock buffers such that the target timing yield
is achieved when the selected clock buffers are converted to
tunable clock buffers.

The PST-A and PST-N problems require very different
optimization approaches but are driven by the same timing
yield model. In the following sections, we propose the yield
models for circuits with and without tunable clock buffers
based on statistical timing analysis and Monte Carlo inte-
gration, and present two algorithms to solve the PST-A and
PST-N problems.

3. TIMING YIELD MODEL
A sequential circuit is represented by its circuit graph G =

(B, V, E), where B is the set of clock buffers, V is the set of
sequential elements, and E is the set of timing arcs where
eij indicates there are combinational paths between i and j.
The clock skew between i and j is defined as αij = Ti − Tj ,
where Ti is the clock arrival time at i. The maximum and
minimum path delays from i to j are denoted Dij and dij .
We assume the sequential elements are flip-flops.

3.1 Timing Constraints and Slack Vector
A circuit needs to satisfy hold-time and setup-time con-

straints:

αij + dij ≥ T j
h , (1)

αij + Dij ≤ T − T j
s , (2)

where T j
h and T j

s are the hold-time and setup-time of flip-
flop j and T is the clock period. Define the hold-time slack
of (1) as sd

ij = αij + dij − T j
h and the setup-time slack as

sD
ij = T − Dij − αij − T j

s and collect all the slack variables

as an R2|E|×1 slack vector s, a circuit satisfies all the timing
constraints if

s ∈ C0, (3)

C0 = {w | wi ≥ 0, i = 1 . . . 2|E|}.
In other words, a circuit is free from timing failures if its
slack vector is in the feasible region C0, which is the non-
negative orthant.

Recent statistical timing analysis researches have shown
that a delay variable d can be represented in a compact and



accurate canonical delay model [7–9]:

d = µd + [βd,1βd,2 . . . βd,l]

�
����

f1

f2

...
fl

�
���� = µd + βdf , (4)

where µd is the mean value of d, f1 . . . fl are global and local
variation sources. With some derivations [9], the slack vector
can be expressed as a multivariate Gaussian distribution

s ∼ N (µs, Σs) , (5)

where Σs is the covariance matrix of s.

3.2 Slack Filtering
The dimension of s is 2|E|, which can be very large for

large circuits. However, many of the timing paths have
abundant of slack and do not contribute to the timing yield
loss. Therefore, it is desirable to filter out non-critical slack
variables to reduce the dimension of the slack vector. We
use the following criteria:

µsi

σsi

≥ p. (6)

For si satisfying (6), we delete the i-th rows of s, µs and
Σs as well as the i-th column of Σs. This brings down the
dimension of the slack vector to a manageable size n. Alter-
natively, we can control n by selecting p.

3.3 Timing Yield Estimation
The nominal timing yield of the circuit is

Y0 = P (s ∈ C0)

=

�
· · ·
�

C0

jpdf(s1, s2, . . . , sn)ds1ds2 . . . dsn, (7)

where jpdf(s) is the joint probability density function of
s. Since the slack variables are correlated, it is difficult to
perform multi-dimensional integration analytically to obtain
the timing yield. We use Monte Carlo integration, which is
an efficient method to calculate high dimensional integrals,
to obtain timing yield estimations. We generate N slack
vector samples according to µs and Σs, and calculate the
nominal timing yield by

Y0
∼= N0

N
, (8)

where N0 is the number of samples that falls in C0.
Checking whether a sample s falls in C0 is straight-forward,

we check if every element in s is non-negative. It is worth
to note that there are other high dimensional integration
methods, such as parallelepiped, ellipsoid, or binding prob-
ability methods, for timing yield estimation [10]. However,
these methods have their restrictions and Monte Carlo inte-
gration is a competitive method even without slack filtering.

4. TIMING YIELD WITH TUNABLE CLOCK
BUFFERS

Tunable clock buffers can be used to redistribute path
slacks among adjacent timing paths and possibly fix timing
violations. We first study the effects of tunable clock buffers
on timing yield, and develop a timing yield model in the
presence of tunable clock buffers. The optimal timing yield

that can be achieved through post-silicon clock-tuning can
be estimated efficiently using the derived model.

4.1 Tunable Clock Buffer and Slack Vector
Figure 3 shows a circuit with five timing critical paths.

When buf1 is converted to a tunable clock buffer, the hold-
time and setup-time slacks of paths 1 and 2 can be changed
by adjusting the delay of buf1. Let s1 ∼ s5 be the hold-
time slacks and s6 ∼ s10 be the setup-time slacks of paths
1 ∼ 5, the slack vector after a change of t1 on the buf1 delay,
s(t1) = s + k1t1, is shown in Figure 3. Likewise, the slack
vector after a change of t2 on buf2 delay, s(t2) = s + k2t2,
is shown in Figure 4.
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Figure 3: Effect of changing buf1 delay on the slack
vector.
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Figure 4: Effect of changing buf2 delay on the slack
vector.

Similar analysis shows that the effects of tuning the delays
of internal clock buffers can be represented by the linear
combination of the effects of tuning leaf level clock buffers.
For example, the slack vector after adding t3 to the buf3

delay, s(t3) = s + k3t3 = s + (k1 + k2)t3, is equivalent to
adding t3 to both buf1 and buf2 delays.

4.2 Tuning Vector and Buffer Filtering
Let t be an R|B|×1 vector corresponding to the tuning

amount of the B clock buffers, the slack vector after applying
t is

s(t) = s + Kt, (9)

where K is the tuning matrix and ki, the i-th column vector
of K, is the tuning vector of the i-th clock buffer.

After slack filtering, some clock buffers are not connected
to timing critical paths and their corresponding tuning vec-
tors are zero vectors. Moreover, tuning the delay of a clock
buffer can have the same effect as tuning some other clock
buffer. Therefore, we can filter out these clock buffers and
reduce the number of candidate clock buffers for selection
from |B| to m. Figure 5 shows the algorithm to obtain the
tuning matrix K and candidate clock buffers U . Figure 6
illustrates the result of the algorithm on a simple circuit.

4.3 Parameterized and Optimal Timing Yield
With post-silicon clock-tuning, a circuit is considered func-

tional if there exists a delay configuration t that can bring its



Procedure SelectCandidate
Input: Circuit graph G(V, E, B), slack vector s
Output: Tuning matrix K, candidate buffers U

1: Number clock buffers in reverse topological order
2: m = 0, K ← φ, U ← φ
3: for i = 1 . . . |B| do
4: if bufi is a leaf buffer then

5: vi
j =

�����
����

0 , bufi is not connected to sj

+1 , bufi drives the source(target) of
hold-time(setup-time) slack sj

−1 , bufi drives the target(source) of
hold-time(setup-time) slack sj

6: if vi �= 0 then
7: m = m + 1, K ← [K|vi], U ← U ∪ {bufi}
8: end if
9: else
10: vi =

�
b∈Child(i)

vb

11: if vi �= 0 and vi �= vb, ∀b ∈ Child(i) then
12: m = m + 1, K ← [K|vi], U ← U ∪ {bufi}
13: end if
14: end if
15: end for

Figure 5: Algorithm to select candidate tunable
clock buffer locations and generate tuning matrix.
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Figure 6: Candidate tunable clock buffer locations
obtained by applying the SelectCandidate algorithm.

slack vector to the feasible region C0. Alternatively, we can
treat the effect of post-silicon clock-tuning as an enlarge-
ment on the feasible region. Let ri be the tunable range
of the i-th candidate clock buffer, the parameterized timing
yield that can be achieved given the tunable range vector r
is:

Y(r) = P (s ∈ C(r)), (10)

C(r) =

��
	

w | w = y − Kt,
yi ≥ 0, i = 1 . . . n
rj ≥ tj ≥ −rj , j = 1 . . . m


�
�

= {w | w � −Kt, r � t � −r} ,

where � and � are element-wise inequalities. Note that the
model (10) is applicable whether r is a continuous vector or
a discrete vector. Therefore, the same parameterized timing
yield model can be used both for PST-A and PST-N.

To check if a slack vector sample s is in the feasible region
C(r), one needs to solve the linear program

min 0 (11)

s.t. −Kt � s,

r � t � −r.

and check if (11) is feasible. We use CLP, a high quality Sim-

plex [11] solver of the COIN-OR project [12], to solve the
feasibility problem for each slack vector sample and get the
parameterized timing yield estimation. Note that although
the parameterized timing yield is more costly to obtain than
the nominal timing yield, the runtime to solve 100,000 in-
stances of the feasibility problem (11) with n ∼ 1000 and
m ∼ 2000 is still less than an hour on a 1.7GHz Pentium-M
PC due to the high efficiency of the Simplex algorithm [13].

We can obtain the optimal timing yield by assuming all
candidate clock buffers have a (+∞,−∞) tunable range, or

Y∗ = P (s ∈ C∗), (12)

C∗ = {w | w � −Kt, t ∈ Rm} .

The optimal timing yield is based on the assumption that all
clock buffers are tunable and have infinite tunable ranges.
Since there is a diminishing-marginal-return effect on the
hardware cost to timing yield, it is reasonable to set a target
timing yield below Y∗. We set the target timing yield as
Yt = Y0 + 0.9 × (Y∗ − Y0) for the following discussions.

5. TOTAL AREA MINIMIZATION
In this section, we first cast the PST-A problem into a

nonlinear optimization problem. We use a simultaneous per-
turbation (SP) [14,15] algorithm to significantly reduce the
time for gradient approximation of the timing yield func-
tion using only two Monte Carlo integrations. Finally, an
iterative SP linesearch algorithm is proposed to solve the
problem efficiently.

5.1 Nonlinear Optimization Formulation
We formulate the PST-A problem as a nonlinear optimiza-

tion problem with simple bound constraints as below:

max Lγ(r) = Y(r) − γ


i=1...m

ri (13)

s.t. ri ≥ 0, i = 1 . . . m.

By choosing a positive penalty parameter γ, we force the
tunable ranges of the candidate buffers that do not con-
tribute to the timing yield improvement to be ’squeezed’
toward zero. This formulation is similar to a typical penalty
function based optimization that minimizes the total tun-
able range and a penalty term on the timing yield violation.
However, it will become clear that this formulation provides
benefits on selecting γ and allow us to start the optimization
from a feasible solution.

The nonlinear optimization problem can be solved using
linesearch algorithms. Linesearch algorithms require gradi-
ent information of the objective function. Since we don’t
have the analytic formula of Y(r), we need to approximate
its gradient using only Y(r) evaluations. A common gradi-
ent approximation method is finite difference (FD). A line-
search algorithm using one-sided finite difference approxi-
mation follows

rk+1 = rk + ckĝγ(rk) (14)

ĝγ(rk) =

�
���

Y(rk+bke1)−Y(rk)
bk

− γ

...
Y(rk+bkem)−Y(rk)

bk
− γ

�
��� , (15)

where ck is the step size and bk is the perturbation size of
iteration k, ĝγ(rk) is the gradient approximation of Lγ(r)
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Figure 7: Illustration of the convergence of SP and
FD linesearch [14].

at rk, and ei is a unit vector with 1 on the i-th element.
Therefore, in each step it takes m parameterized timing yield
evaluations to obtain a gradient approximation. This is too
computationally expensive.

5.2 Simultaneous Perturbation
Recent studies have shown that it is possible to use only

two function evaluations to approximate the gradient by tak-
ing a random perturbation vector ∆k [14,15]. The gradient
approximation with SP is

ĝγ(rk) =
Y(rk + bk∆k) − Y(rk)

bk

�
���

1
∆k,1

...
1

∆k,m

�
���− γ1. (16)

There are a few conditions in order to guarantee the con-
vergence of a linesearch algorithm using SP. The most im-
portant ones are that bk and ck need to go to 0 at appro-
priate rates and ∆k,i are independent and symmetrically
distributed with E[∆k,i] = 0 and E[|∆k,i|−1] < ∞. A com-
mon choice of the perturbation vector ∆k is the symmetric
Bernoulli ±1 distribution. It has been shown that under
mild conditions, the number of measurements of Y(r) by
SP can approach 1

m
of that from FD while achieving the

same asymptotic mean squared error of the solution. The
intuition behind SP is that the gradient approximation in
(16) is an unbiased approximation and it contains as much
information as that from a finite difference approximation.
Figure 7 illustrates the convergence of linesearch algorithms
with SP and FD.

5.3 Iterative SP Linesearch
We propose an iterative SP linesearch algorithm in Figure

8 to solve the PST-A problem. The algorithm starts from
an initial solution rinit, which has a sufficiently large pa-
rameterized timing yield (> Yt). For example, we can find
a sufficiently large q such that rinit = q1 satisfies this con-
dition. At the beginning of the optimization, we initialize
the parameters for SP gradient approximation (b, η, c, C, π)
according to the guidelines given in [15]. We let χ = 2,
θ = 0.9 and ε = 0.001, which controls the convergence rate
of the outer iterative loop (line 4-21).

In the first iteration, we choose the penalty parameter
γ according to the equation in (line 3) to ensure that the
timing yield after the first iteration is still larger than Yt.
In the following iterations, we gradually increase the penalty
parameter γ and reduce the step and perturbation sizes (line

Procedure IterativeSPLinesearch
Input: Y(r), Yt, initial solution rinit

Output: Final tunable range r̃

1: Initialize b, η, c, C, π, ε, χ, θ
2: r̃ = rprev = rinit

3: γ =
Y(rinit)−Yt

|rinit|
4: repeat
5: /* maximize Lγ(r) using SP linesearch */
6: k = 1, rk = rprev

7: repeat
8: bk = b

kη , ck = c
(C+k)π

9: ∆k ← ±1 symmetric Bernoulli random vector

10: ∆k = max(∆k, −rk
bk

) {legalization}
11: Approximate ĝγ(rk) by (16)
12: rk+1 = max(0, rk + ck ĝγ(rk)) {legalization}
13: k = k + 1
14: until |Lγ(rk)− Lγ(rk−1)| < ε
15: if Y(rk) > Yt then
16: r̃ = rk

17: end if
18: rprev = rk

19: /* update step size (b, c) and penalty weight γ */
20: γ = χγ, b = θb, c = θc
21: until Y(rk) < Yt

Figure 8: Algorithm for total tunable range mini-
mization using iterative SP linesearch.

20). Within each iteration, we use SP linesearch to find the
optimal solution for the given penalty parameter γ (line 5-
17). The latest intermediate solution that satisfies the target
yield is recorded in r̃ (line 15-17). There are two legaliza-
tion steps in the algorithm (line 10, 12). The gradient ap-
proximation given by (16) can generate unrealistically large
gradients due to a small perturbation step ∆k,i in the de-
nominator caused by the legalization step (line 10). We use
max(0.5bk, |∆k,i|) as the perturbation step size in (16) to re-
solve this problem. Truncation on the perturbation step can
introduce noise to the gradient approximation. The noise
has a greater impact to the convergence of the algorithm if
it occurs at the beginning of the linesearch iteration when
the step size is large. Therefore, choosing rinit instead of
the origin as the starting point can reduce the noise effect.

The runtime of the algorithm is dominated by the num-
ber of Y(r) evaluations, which is the same as the number
of SP linesearch steps (line 7-14). We can terminate the it-
erative SP linesearch loop early when a certain number of
Y(r) evaluations is used. For large problems, our algorithm
can take less than m steps to find a tunable range vector,
less than the time for a traditional FD linesearch to take the
very first step.

6. REDUCTION ON THE NUMBER OF TUN-
ABLE CLOCK BUFFERS

In this section, we first analyze a greedy algorithm for
solving the PST-N problem and point out its issue. We then
propose a batch selection algorithm to speedup the process.

6.1 A Greedy Algorithm
In the PST-N problem, we are only concerned with the

number of tunable clock buffers used in a PST clock-tree.
A digital-to-analog converter controlled tunable clock buffer
with ∼ 700ps tunable range in a 0.18µm technology has



Procedure Greedy
Input: Timing yield model Y(r), target yield Yt

Output: Selection vector rsel

1: r = 0, Ycur = Y0

2: repeat
3: b = 0
4: for j = 1 . . .m do
5: if rj = 0 then
6: rj =∞
7: if Y(r) > Ycur then
8: Ycur = Y(r), b = j
9: end if
10: rj = 0
11: end if
12: end for
13: rb =∞
14: until Ycur > Yt

15: rsel = r

Figure 9: Algorithm for greedy selection of tunable
clock buffer locations.

been reported in [4]. This tunable range is sufficient to
counter process induced path delay and clock skew varia-
tions. Therefore, we assume that a tunable clock buffer has
an infinite tunable range in the PST-N problem. Under this
assumption, a PST clock-tree can be represented by a se-
lection vector rsel, where the tunable range rsel,i is ∞ for
a selected buffer i, and 0 otherwise. However, to find a se-
lection vector with minimum number of non-zero elements
(tunable clock buffers) that satisfies the target timing yield
is a combinatorial optimization problem.

A common approach for combinatorial optimizations is a
greedy method. Figure 9 shows a greedy algorithm for find-
ing a selection vector. The algorithm starts with an empty
selection vector and select a buffer in each iteration until the
target timing yield is achieved. In each iteration it checks
the potential timing yield improvement of every unselected
buffer and choose the one that gives the maximum improve-
ment. The major issue of the greedy algorithm is that it

requires m+(m−M+1)
2

× M parameterized timing yield eval-
uations, where M is the number of non-zero elements in
rsel. This is unacceptable for large problems where m and
M are both large. We need an algorithm that generates a
good selection vector using ∼ m parameterized timing yield
evaluations.

6.2 Batch Selection Algorithm
We propose a batch selection algorithm in Figure 10 to

overcome the runtime issue of the greedy algorithm. In-
stead of selecting one buffer at a time, we scan through all
the unselected buffers and select a buffer immediately if it
provides a timing yield improvement greater than a thresh-
old value Yth (line 6-7). The threshold value is decreased
exponentially and the selection only takes a few passes to
complete (line 13).

The number of Y(r) evaluations needed for our batch se-
lection algorithm is ωm, where ω is the number of scans
to achieve the target timing yield. Since the threshold for
buffer selection Yth decreases exponentially, ω is usually a
small constant. Therefore, the overall runtime of our algo-
rithm is M

ω
times faster than the greedy algorithm.

7. EXPERIMENTAL RESULTS

Procedure BatchSelection
Input: Timing yield model Y(r), target yield Yt

Output: Selection vector rsel

1: r = 0, Ycur = Y0, Yth = 0.1× (Y∗ − Y0)
2: repeat
3: for j = 1 . . . m do
4: if rj = 0 then
5: rj =∞
6: if Y(r) > Ycur + Yth then
7: Ycur = Y(r)
8: else
9: rj = 0
10: end if
11: end if
12: end for
13: Yth = 0.5× Yth
14: until Ycur > Yt

15: rsel = r

Figure 10: Algorithm for batch tunable clock buffer
selection.

We implement our algorithms in C++ and test them on
a 1.7GHz Pentium-M computer. We take ISCAS89 bench-
mark circuits and synthesize and place them using SIS [16]
and Dragon [17] to obtain realistic flip-flop placements. In
practice, a timing critical path is usually connected to other
critical paths and critical paths usually form cycles (other-
wise a critical path can be eliminated by introducing useful
skew to its source or target flip-flop). We apply an iterative
clock scheduling algorithm [6] to identify timing critical cy-
cles. We then take the first 500 ∼ 2000 timing critical paths
and build a parameterized timing yield model for each cir-
cuit as discussed in Section 4.

For each circuit, we generate an H-tree and assume there
is a clock buffer at every branching point and terminal of
the H-tree. For S9234.1, we use an eight-level H-tree (256
terminals). For the rest of the circuits, we use ten-level H-
trees (1024 terminals). Only tunable clock buffers are shown
in the subsequent figures.

For PST-A, we compare our iterative SP linesearch algo-
rithm, IterSP, with a regular design method, Regular, that
insert identical tunable clock buffers to all terminals of the
clock-tree. For PST-N, we compare our batch selection al-
gorithm, Batch, with the greedy algorithm, Greedy, and a
levelized design method, Levelized, which represents a cur-
rent tunable clock-tree design strategy that insert tunable
clock buffers across an entire level in the clock-tree.

7.1 Nominal and Optimal Timing Yield
Table 1 shows the parameters for the timing yield model

and the nominal and optimal timing yields of each circuit.
The number of timing critical paths included in the tim-
ing yield model is in the second column. The third column
shows the number of candidate tunable clock buffer loca-
tions. The number in the parenthesis shows the number
of candidate buffers at the leaf level of the H-Tree. The
timing yields are obtained by Monte Carlo integration with
100,000 samples for each circuit. The nominal, optimal and
target timing yields of each circuit are shown in column four
through six. As shown in the table, post-silicon clock-tuning
provides significant timing yield improvements.



Circuit # Paths(n) # Buf.(m) Y0(%) Y∗(%) Yt(%)
S9234.1 500 149(75) 92.15 97.48 96.94
S13207.1 500 417(210) 94.56 99.44 98.95
S15850.1 1000 641(321) 92.69 99.97 99.24
S35932 1000 541(271) 54.93 99.99 95.49

S38584.1 2000 1591(796) 86.69 99.44 98.17

Table 1: Timing yield models of the ISCAS89 bench-
mark circuits.

Circuit Regular IterSP
Area CPU Area Redu. Steps CPU

S9234.1 24.94 1.9m 8.51 65.9% 52 1.1h
S13207.1 68.60 2.8m 11.33 83.5% 63 3.4h
S15850.1 104.85 7.5m 10.09 90.4% 107 6.5h
S35932 101.23 42.2m 1.90 97.4% 73 44.3h

S38584.1 238.26 36.7m 17.19 92.8% 189 30.8h

Table 2: Comparison on total area between a reg-
ular design method and the iterative SP linesearch
algorithm. The area is estimated by total tunable
range.

7.2 Total Area Improvement
We compare the total tunable range achieved by IterSP

and Regular in Table 2. For Regular, we use the same tun-
able range for all the leaf level clock buffers and use a binary
search to find the tunable range to within 0.1% resolution.
The tunable range is then multiplied by the number of leaf
candidate clock buffers (the number in the parenthesis in
Table 1) for area estimation.

As shown in Table 2, IterSP achieves > 65% area reduc-
tion for PST clock-trees. One of the reasons for the sig-
nificant improvement is that IterSP only assigns a tunable
range to a clock buffer no larger than what is required and
this greatly reduces over design. The other contributor to
the large improvement is that IterSP distributes the total
tunable range among all candidate clock buffers that locate
at different levels of the clock-tree.

Figure 11 shows the tunable range vector rk for S9234.1
in the k-th SP linesearch step. As shown in the figure, the
gradient approximations provided by SP efficiently guide the
linesearch algorithm to supress the tunable ranges of the
candidate buffers that do not contribute to significant timing
yield improvements in only a small number of steps. In
r52, about half of the 149 buffers have zero or small tunable
range. This is because there are only 75 linearly independent
tuning vectors among the 149 candidate buffers.

We found that averaging four gradient approximations for
each SP linesearch step provides better convergence rate
without sacrificing too much runtime. On average, IterSP
uses ∼ m parameterized timing yield estimations.

Although IterSP can obtain a good tunable range vector
using only ∼ m parameterized timing yield estimations, it
is still too slow for large problems such as S35932. One of
the reason IterSP takes extremely long runtime on S35932
is due to its low nominal timing yield. As a result, we need
to solve ∼ 45K instances of a 1000 × 541 linear feasibility
problem for each parameterized timing yield evaluation. For
large problems, it is necessary to select a small subset of
candidate clock buffer locations and reduce the problem size
before applying IterSP. Our batch selection algorithm is a
good candidate for this goal.

0

0.2

0.4

1 51 101 Sorted buffer index

Tunable
range
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Figure 11: The tunable range vector of S9234.1 dur-
ing iterative SP linesearch.

Figure 12: The tunable clock-tree of S35932. The
triangles and light gray lines indicate tunable clock
buffer locations and timing critical paths.

7.3 Tunable Buffer Count Reduction
Table 3 shows the number of tunable clock buffers and

runtime to achieve the target timing yield. In Levelized, we
select the highest level in the H-Tree for tunable clock buffer
insertion provided the target timing yield can be achieved.

It is interesting that the number of tunable clock buffers
required to achieve the target timing yield does not necessar-
ily depend on the size of the circuit or the number of timing
critical paths included in the timing yield model. For exam-
ple, S35932 only needs three tunable clock buffers to achieve
the target timing yield. Figure 12 shows the PST clock-tree
and the timing critical path distribution of S35932. It is
clear that either the source or target flip-flops of most of
the timing critical paths are driven by one of the three clock
buffers, which explains why it only needs three tunable clock
buffers to achieve the target timing yield.

In general, Levelized uses more than 4X tunable clock
buffers than the other two methods because it needs to se-
lect a level close to the clock sink nodes to achieve the target
timing yield. On the contrary, Greedy and Batch can utilize
hierarchical tuning to reduce the number of tunable clock
buffers. Figure 13 shows the tunable clock-trees of S9234.1
generated by Greedy and Batch. On the lower left corner
of the clock-trees, both algorithms generate PST clock-trees
with three levels of tunable clock buffers. A tunable clock
buffer closer to the clock root node can affect many timing
paths simultaneously while a tunable clock buffer closer to
the clock sink nodes can adjust the timing of specific timing
paths. By allowing multiple levels of tunable clock buffers,
we can explore the correlation between timing critical paths



Circuit # Candidate # Tunable clock buffers CPU Time
Buffers Levelized Greedy Reduction Batch Reduction Levelized Greedy Batch

S9234.1 149(75) 32 8 75% 8 75% 1.7m 16.9m 4.6m
S13207.1 417(210) 256 16 94% 18 93% 1.9m 35.8m 6.8m
S15850.1 641(321) 128 17 87% 21 84% 13.2m 1.4h 21.6m
S35932 541(271) 16 3 81% 3 81% 1.5h 14.7h 3.1h

S38584.1 1591(796) 512 - - 162 68% 14.3m > 2 day 8.9h

Table 3: Comparison on number of tunable clock buffers and runtime among three design methods.

(a) Greedy (b) Batch Selection

Figure 13: Tunable clock-trees of S9234.1 generated
by Greedy and Batch.

and use fewer tunable clock buffers to achieve the target tim-
ing yield.

The comparison on the number of tunable clock buffers
used by Greedy and Batch show that Batch has compara-
ble solution quality to Greedy. Moreover, Batch provides
∼ 4X speedup on average. Therefore, Batch is a preferred
algorithm for solving large PST-N problems.

8. CONCLUSION AND FUTURE WORK
We present two optimization algorithms to solve the PST

clock-tree synthesis problems. By allowing hierarchical tun-
ing, our algorithms achieve up to 90% area or tunable clock
buffer count reduction.

The paper suggests that minimum area PST clock-tree
synthesis problem for large circuits remains a difficult prob-
lem due to the lack of a closed-form timing yield model. Fu-
ture researches include developing closed-form timing yield
models and post-silicon clock tuning algorithms.
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