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Abstract
The flip-chip package gives the highest chip density of

any packaging method to support the pad-limited Application-
Specific Integrated Circuit (ASIC) designs. In this paper, we pro-
pose the first router for the flip-chip package. The router can
redistribute nets from wire-bonding pads to bump pads and then
route each of them. The router adopts a two-stage technique of
global routing followed by detailed routing. In global routing, we
use the network flow algorithm to solve the assignment problem
from the wire-bonding pads to the bump pads, and then create the
global routing path for each net. The detailed routing consists of
three stages, cross point assignment, net ordering determination,
and track assignment, to complete the routing. Experimental re-
sults based on seven real designs from the industry demonstrate
that the router can reduce the total wirelength by 10.2%, the crit-
ical wirelength by 13.4%, and the signal skews by 13.9%, com-
pared with a heuristic algorithm currently used in industry.

1 Introduction
1.1 Flip-Chip Design

Due to the increasing complexity and decreasing feature size
of Very Large Scale Integration (VLSI) designs, the demand of
more I/O pads has become a significant problem of package tech-
nologies. Hence a relatively new packaging technology, the flip
chip (FC) package, as shown in Figure 1, is created for higher in-
tegration density and rising power consumption. Flip-chip bond-
ing was first developed by IBM in 1960’s. It gives the highest
chip density of any packaging method to support the pad-limited
ASIC designs.
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Figure 1: (a) A Flip Chip. (b) A Flip Chip Package.

Flip-chip is not a specific package, or even a package type
(like PGA or BGA). Flip-chip describes the method of electri-
cally connecting the die to the package carrier. The package car-
rier, either a substrate or a lead-frame, provides the connection
from the die to the outside devices of the package. The die is

attached to the carrier face up, and later a wire is bonded first to
the die, then looped and bonded to the carrier. In contrast, the in-
terconnection between the die and carrier in the flip-chip package
is made through a conductive bump ball that is placed directly on
the die surface. Finally, the bumped die is flipped over and placed
face down, with the bump balls connecting to the carrier directly.
The flip-chip technology is the choice in high clock speed ap-
plications because of the following advantages: reduced signal
inductance (high speed), reduced power/ground inductance (low
power), higher signal density, die shrink, reduced package foot-
print, and lower thermal effect. However, in recent IC designs, the
I/O pads are still placed along the boundary of the die. This place-
ment does not suit for the flip-chip package. As a result, we use
the top metal or an extra metal layer, called Re-Distributed Layer
(RDL) as shown in Figure 2, to redistribute the wire-bonding pads
to the bump pads without changing the placement of the I/O pads.
Since the RDL is the top metal layer of the die, the routing angle
in RDL cannot be any-angle. Bump balls are placed on RDL and
use RDL to connect to wire-bonding pads by bump pads.

Figure 2: Cross Section of RDL

The flip-chip package is generally classified into two types:
the peripheral array as shown in Figure 3(a) and the area array
as shown in Figure 3(b). In peripheral array, the bump balls are
places along the boundary of the flip-chip package. The disad-
vantage of the peripheral array is that we only have the limited
number of bump balls. In area array, the bump balls are placed in
the whole area of the flip-chip package. The advantage of the area
array is that the number of bump balls is much more than that of
the peripheral array, so it is more suitable for modern VLSI de-
sign. Since the flip-chip design is for high speed circuits, the
issue of signal skews is also important. So a special router, the
Redistribution Layer (RDL) router [15], is needed to reroute the
peripheral wire-bonding pads to the bump pads and then connect
the bump pads to the bump balls. An RDL router also needs to
consider the routing of multi-pin nets and the minimization of to-
tal wirelenth and the signal skews. Figure 3(c) shows one RDL
routing result for an area-array flip chip.
1.2 Previous Work

To the best knowledge of the authors, there is no previ-
ous work in the literature on the routing problem for flip-
chip design. Similar works are the routing for ball grid array
(BGA) packages and pin grid array (PGA) packages, includ-
ing [5], [12], [13], [14], [16], [18] and [19]. The work [18] used
the geometric and symmetric attributes of the pin positions in the
BGA packages to assign pins of the BGA. However, in flip-chip
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Figure 3: (a) Peripheral Array. (b) Area Array. (c) A RDL Routing Result.

designs the positions of wire-bonding pads and bump pads do
not always have these geometric and symmetric attributes. The
works [5] and [13] presented PGA routers while [14] provided a
BGA router. These three routers are the any-angle and multi-layer
routers without considering the pin assignment problem. They
did not consider single-layer routing and total wirelength mini-
mization. The works [16] and [19] applied the min-cost network
flow algorithm to solve the I/O pin routing problems. All these
routers focused only on routability and did not consider multi-
pin nets and signal skews. Furthermore, they assumed that wires
can be any-angle, so their methods are not suitable for the RDL
routing, typically with 90-degree angle routing.
1.3 Our Contributions

To our best knowledge, this paper is the first work to propose
an RDL router to handle the routing problem of flip-chip designs
with real industry applications. We propose a unified network-
flow formulation to simultaneously consider the assignment of
the wire-bonding pads to the bump pads and the routing between
them. Our algorithm consists of two phases. The first phase is
the global routing that assigns each wire-bonding pad to a unique
bump pad. By formulating the assignment as a maximum flow
problem and applying the min-cost maximum-flow algorithm, we
are able to guarantee 100% routing completion after the assign-
ment. The second phase is the detail routing that efficiently dis-
tributes the routing points between two bump pads and assigns
wires into tracks. In addition to the traditional single-layer rout-
ing with only routability optimization, our RDL router also tries
to optimize the total wirelength and the signal skews between a
pair of signal nets under the 100% routing completion constraint.
Experimental results based on seven real designs from the indus-
try demonstrate that the router can reduce the total wirelength by
10.2%, the critical wirelength by 13.4%, and the signal skews
by 13.9%, compared with a heuristic algorithm currently used in
industry.

The rest of this paper is organized as follows. Section 2 gives
the formulation of the RDL routing problems. In Section 3, we
detail our algorithm, including the global routing and the detailed

routing. Section 4 shows the experimental results. Finally, con-
clusions are given in section 5.

2 Problem Formulation
We introduce the notations used in this paper and formally de-

fine the routing problem for flip-chip package. Figure 4 shows
the modeling of the routing structure of the flip-chip package.
Let P be the set of wire-bonding pads, and B be the set of
bump pads. For practical application, the number of wire-
bonding pads is larger than or equal to the number of bump
pads, i.e., |B| ≥ |P |, and each bump pad can be assigned to
more than one wire-bonding pad. Let R b = {rb

1, r
b
2, .., r

b
m} be a

set of m bump pad rings in the center of the package, and let
Rp = {rp

1 , rp
2 , .., rp

k} be a set of k wire-bonding pad rings at
the boundary of the package. Each bump pad ring r b

i consists
of a set of q bump pads {bi

1, b
i
2, .., b

i
q}, and each wire-bonding

pad rp
j consists of l wire-bonding pads {pj

1, p
j
2, .., p

j
l }. Let N

be the set of nets for routing. Each net n in N is defined by
a set of wire-bonding pads and a set of bump pads that should
be connected. Thus n can be a multi-pin net. Since the RDL
routing for current technology is typically on a single layer, it
does not allow wire crossings, for which two wires intersects
each other in the routing layer. As shown in Figure 4, based
on the two diagonals of the flip-chip package, we partition the
whole package into four sectors: East = {PE, BE , RE

p , RE
b },

West = {PW , BW , RW
p , RW

b }, South = {PS, BS , RS
p , RS

b },
and North = {PN , BN , RN

p , RN
b }. For practical applications,

the wire-bonding pads in one sector connects only to the bump
pads in the same sector.
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Figure 4: Four Sectors in a Flip-Chip Package.

We define an interval to be the segment between two adjacent
bump pads in the same ring rb

i or the segment between two ad-
jacent wire-bonding pads in the same ring rp

j . Given a flip-chip
routing instance, there are two types of routing, the monotonic
routing and the non-monotonic routing. A monotonic routing can
be formally defined as the follows:

Definition 1 A monotonic routing is a routing such that for each
net n connecting from a wire-bonding pad p to a bump pad b,
n intersects exactly one interval in each ring rb

i and exactly one
interval in each ring rp

j .

2



As showing in Figure 5(a), the nets n2 and n4 are monotonic
routes. If we exchange the positions of two bump pads b 2 and b4,
the routing of n2 and n4 are non-monotonic routing as shown in
Figure 5(b). A good flip-chip package routing should be a mono-
tonic routing because the monotonic routing results in smaller
total wirelength and higher routing completion, compared to the
non-monotonic routing.
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Figure 5: (a) Monotonic Routing. (b) Non-monotonic Routing.

Based on the definition above, the routing problem can be for-
mally defined as the follows:

Problem 1 The single-layer flip-chip routing problem is to con-
nect a set of p ∈ P and a set of b ∈ B so that no wire crosses
each other and the routing is monotonic, the total wirelength is
minimized, and the signal skew is minimized.

3 The Routing Algorithm
In this section, we present our routing algorithm. First we give

the overview of our algorithm. Then we detail the methods used
in each phase.
3.1 Algorithm Overview

According to the routing flow shown in Figure 6, our algo-
rithm consists of two phases: (1) the global routing based on
min-cost max-flow (MCMF) algorithm [4], and (2) the detailed
routing based on the cross point assignment, net ordering deter-
mination, and the track assignment.

In the first phase, we construct four flow networks GE , GW ,
GN , and GS , one for each sector, to solve the assignment of
the wire-bonding pads to the bump pads. Since we only have
one layer for routing, the assignment should not create any wire
crossings. We avoid the wire crossings by restricting the edges in
the networks not to intersect each other. We first consider 2-pin
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Add Intermediate Nodes 
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Figure 6: The RDL Routing Flow

nets and then multi-pin nets. The reason is that 2-pin nets have
less freedom to choose the routing path, so it needs to be consid-
ered first. After applying MCMF, we obtain the flows denoting
the routes from wiring-bonding pads to bump pads for the nets.
Those flows give the global paths for the nets.

In the second phase, we use the cross point assignment, net or-
dering determination, and the track assignment to achieve fast de-
tailed routing. A cross point is the point for a net to pass through
an interval. First, we find the cross points for all nets passing
through the same interval. For all nets that pass through the same
interval, we evenly distribute these cross points. Second, we use
the net ordering determination technique presented in [7] to create
the routing sequence between two adjacent rings so that we can
guarantee to route all nets. Finally, we assign at least one track
to each net based on the routing sequence obtained from the net
ordering determination algorithm. Figure 7 shows the overview
of our routing algorithm.

3.2 Global Routing
In this subsection, we first show the basic flow network formu-

lation. Then we detail the capacity of each edge, the intermediate
nodes, the tile nodes, and the cost of each edge. Finally, we dis-
cuss how to handle the multi-pin nets.

3.2.1 Basic Network Formulation

We describe how to construct the flow network GS to perform
the assignment for the South sector. The other three sectors
can be processed similarly. As shown in Figure 8 (a), we
define DS = {dS

1 , dS
2 , .., dS

h} to be a set of h intermediate
nodes. Each intermediate node represents an interval (b i

x, bi
x+1)

((pj
y, p

j
y+1)) in a bump pad ring (wire-bonding pad ring). T S =

{tS1 , tS2 , .., tSu} is a set of u tile nodes. Each tile node represents a
tile (bi

x, bi
x+1, b

i+1
x′ , bi+1

x′+1) ((pj
y, p

j
y+1, p

j+1
y′ , pj+1

y′+1)) between two
adjacent bump pad rings (wire-bonding pad rings). We construct
a graph GS = (PS ∪ DS ∪ BS ∪ TS , E) and add a source node
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Algorithm: RDL Routing(P , B, N )
P : set of all wire-bonding pads;
B: set of all bump pads;
N : set of all nets;
1 begin
2 Construct four graphs GE , GW , GN , GS with only
3 2-pin nets;
4 Apply MCMF to find the assignment of each p ∈ P to b ∈ B
5 in the same sector and the global path for each 2-pin net;
6 Add additional edges to represent the multi-pin net in the
7 four graphs;
8 Apply MCMF to find the assignment of each p ∈ P to b ∈ B
9 in the same sector and the global path for each multi-pin net;
10 Find all cross points in all intervals for each net n ∈ N ;
11 for the outermost ring rp

i to the innermost ring rb
j

12 S ← Net Ordering Determination();
13 // S contains the routing sequence;
14 Assign track(S);
15 end

Figure 7: Overview of the RDL Routing Algorithm.

s and a target node t to GS . Each intermediate node has a ca-
pacity K , where K represents the maximum number of nets that
are allowed to pass through an interval. Each tile node has a ca-
pacity L, where L represents the maximum number of nets that
are allowed to pass through a tile. We will detail how to handle
the capacity of the intermediate nodes and the tile nodes so that
MCMF can be applied in Section 3.2.2. There are eight types of
edges:

1. edges from a wire-bonding pad to a bump pad,

2. edges from a wire-bonding pad to an intermediate node,

3. edges from an intermediate node to a bump pad,

4. edges from an intermediate node to another intermediate
node,

5. edges from an intermediate node to a tile node,

6. edges from a wire-bonding pad to a tile node,

7. edges from a tile node to a bump pad, and

8. edges from a tile node to an intermediate node.

The source s has an edge to every node in PS , and there is an
edge from every node in BS to the target t. Each edge is associ-
ated with a (cost, capacity) tuple to be described in the follow-
ing subsections. Recall that we do not allow wire crossings for all
wires. Since E represents the possible global paths for all nets,
we can guarantee that no wire crossings will occur if there are
not any crossings in edges. Thus, we construct all the edges and
avoid crossings of all edges at the same time. Figure 8(b) shows
an example flow network GS for the South sector. We can solve
MCMF in time O(V 2E

1
2 ) [4].

Theorem 1 Given a flow network with the vertex set V and edge
set E, the global routing problem can be solved in O(V 2E

1
2 )

time.
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Figure 8: (a) Intermediate Nodes and Tile Nodes. (b) Flow Network for the
South Sector.

3.2.2 Capacity Assignment and Node Construction

Now we introduce the capacity of each edge, the intermediate
nodes, and the tile nodes. For an edge e, if e is from a wire-
bonding pad to a bump pad or an intermediate node or a tile node,
the capacity of e is set to 1. If e is from an intermediate node or
a tile node to a bump pad, then the capacity of e is set to M ,
where M is the maximum number of nets that are allowed to
connect to the bump pad. Recall that an intermediate node has
the capacity of K , where K is the maximum number of nets that
are allowed to pass through this intermediate node. This means
that the summation of all outgoing edges of an intermediate node
d is equal to K . The same condition holds for all incoming edges
of d. As shown in Figure 9, in order to model this situation, we
decompose each intermediate node d into two intermediate nodes
d′ and d′′ and an edge is connected from d ′′ to d′ with capacity K .
All outgoing edges of d are now connected from d ′ with capacity
K , and all incoming edges of d are now connected to d ′′ with
capacity K . In Figure 10, a tile node is also decomposed into
two tile nodes t′ and t′′, and the capacity of a tile node is set to
L, where L is the maximum number of nets that are allowed to
pass through this tile node. The capacity of the edges from the
source node to the wire-bonding pads is set to 1, and the capacity
of the edges from the bump pads to the sink node is set to M .
There are three worst cases of congestion in a tile, as shown in
Figure 11. The four nodes in the three figures are all bump pads.
In Figures 11(a) and (b), the maximum number of nets passing
through the tile is 2K . In Figure 11(c), the maximum number of
nets passing through the tile is 3K . If we do not use the tile node,
the maximum number of nets in Figures 11(a), (b), and (c) could
exceed the capacity of a tile (2K > L or 3K > L). Since the
capacity of each tile node is well modeled in our flow network,
we can totally avoid this congestion problem.
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Figure 9: Capacity and Cost on Intermediate Nodes.
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Figure 10: Capacity and Cost on Tile Nodes.

3.2.3 The Cost of Edges
The cost function of each edge is defined by the following equa-
tion:

Cost = α × WL, (1)

where WL denotes the Manhattan distance between two termi-
nals of an edge, and α is an adaptive parameter to adjust the cost
of different types of edges. We assign the smallest α to the edge
that connects an intermediate node and a bump pad to assure that
the intermediate nodes are assigned to bump pads first. The edges
which connect a tile node and a bump pad are also assigned the
smallest α. The edge that connects two intermediate nodes or an
intermediate node to a tile node is assigned the largest α. By ad-
justing the value of α, we can control the wirelength of each net
to avoid large signal skews between different nets. The cost of
the edges from the source node to the wire-bonding pads and the
cost of the edges from the bump pads to the sink node are both
set to 0. Figure 12 shows the capacity and cost for all four types
of edges.
3.2.4 Multi-pin Net Handling
Finally, we describe how to deal with the multi-pin nets. As stated
before, we first assign the 2-pin nets and then the multi-pin nets.
We only construct the edges that are associated with the 2-pin
nets and apply MCMF for the assignment. After the assignment,
we delete all edges from the source node s and all edges to the
target node t. The global paths of the 2-pin nets are not deleted
and considered as the blockages F when we construct the edges
for the multi-pin nets. Recall that if there are no edge crossings

(a) (b)

(c)

K

K K

K

K K

K

Figure 11: Three Kinds of Congestion in a Tile.
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Figure 12: Capacity and Cost on Edges.

in the flow network, then there are no wire crossings in the final
routing solution. When we construct the edges for the multi-pin
nets, an edge e exists only if e does not intersect any blockages.
Then we add the edges from the source node to the wire-bonding
pads associated with the multi-pin nets and the edges from the
bump pads associated with the multi-pin nets to the target node.
Figure 13 illustrates an example. Assume that a multi-pin net n
consists of ((p2, p4, p5), (b3, b9)), which means that p2, p4, and
p5 are free to be assigned to one of the two bump pads b 3 and b9.
Redundant edges are deleted by Fi. For example, the edge from
p2 to the intermediate node between b8 and b9 is deleted because
it intersects the blockage (p3, b8). By using MCMF, the wire-
bonding pads and bump pads are grouped into two sets: {p 2, b3}
and {p4, p5, b9}.

Since MCMF is optimal and we will never assign nets to ex-
ceed the capacity of an interval or a tile, we will never violate the
design rules. Also because we do not allow edge crossings dur-
ing flow network construction, the final routing solution will not
generate wire crossings. So after the assignment, all global paths
are routable. Based on above discussions, we have the following
theorem.
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Theorem 2 Given a set of wire-bonding pads, a set of bump
pads, and a set of nets, if there exists a feasible solution com-
puted by the MCMF algorithm, we can guarantee 100% routing
completion.

Group 1: {p2, b3}

Group 2: {p4, p5, b9}

2 31 4

1 532 4

E

P

B

D

s

t

5 6 7 8 9 10

iF

T

Redundant 
Edge

Figure 13: Group Multi-pin Nets.

3.3 Detailed Routing
In this subsection, we detail the three methods used in our ef-

ficient detailed routing. As shown in Figure 14, after the global
routing, each global path contains only wire-bonding pads, in-
termediate nodes, and bump pads. The two global paths <
dk, t, dl > and < dk, t, bx > which pass trough the tile node t
are redefined into < dk, dl > and < dk, bx >. Hence tile nodes
are not needed for the final expression of the global paths because
a tile node is just used to avoid the congestion of a tile.

⇒
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iF

T

t

kd

ld xb ld

kd

xb

Figure 14: Redefined Global Paths.

3.3.1 Cross Point Assignment
Based on the global routing result (discussed in Section 3.2), we
use the cross point assignment algorithm to evenly distribute each
net which passes through the same interval. We use the example
of Figure 15 to describe the process for the cross point assign-
ment. As shown in Figure 15, the two nets from wire-bonding
pads p2 and p3 pass through the same intermediate node. So we
split the intermediate node into two cross points.

Theorem 3 The cross point assignment problem can be solved in
O(|B| + |P | − |Rb| − |Rp|) time.

⇒

Cross Point

1 2 3 4 1 2 3 4

Figure 15: Cross Point Assignment.

3.3.2 Net Ordering Determination
After the assignment of cross points, each net has its path to
cross each interval. For two adjacent rings, we can treat it
as a channel routing. So we use the net ordering determina-
tion algorithm presented in [7] to generate a routing sequence
S =< (ns

1, n
t
1), (ns

2, n
t
2), .., (ns

k, nt
k) > with k net segments.

Each net segment nj is represented by a pair (source, target) =
(ns

j , n
t
j). First, we generate a circular list for all terminals ordered

counter-clockwise according to their positions on the bound-
aries. Then, a stack is used to check if there exist crossovers
among all net segments. For each terminal of net n i, if it is a
source, then we push it into the stack. Otherwise, if this ter-
minal and the top element of the stack belong to the same net,
then net ni is matched. We keep searching the circular list un-
til all nets are matched. With this sequence S, we can guar-
antee that each net segment between two adjacent rings can be
routed without intersecting each other. For example, given an
instance shown in Figure 16(a), according to the net ordering
determination algorithm, we can obtain the sequence S =<
(n1, n

′
1), (n

′
10, n10), (n′

9, n9), (n′
8, n8), (n′

7, n7), (n′
6, n6), (n′

5, n5),
(n2, n

′
2), (n3, n

′
3), (n4, n

′
4) >.

Theorem 4 Given a set of nets N , the net ordering determination
problem can be solved in O(|N |2) time.

1’ 2’ 3’ 4’ 5’ 6’ 7’ 8’ 9’ 10’

2 3 5 6 8 9

Routing Sequence: {(1, 1’), (10’, 10), (9’, 9), (8’, 8), (7’, 7), (6’, 6), (5’, 5), (2, 2’), (3, 3’), (4, 4’)}
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4

Track
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(b)
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2 3
1 4Blocking Point

1

2
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Track

3q

Figure 16: (a) An example for Track Assignment. (b) Blocking Point.

3.3.3 Track Assignment
With the net ordering, we can use maze routing to route all nets
for any two adjacent rings. However, maze routing is quite slow.
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Algorithm: Track Assignment(Sj , L)
Sj : a routing sequence between ring rj and rj+1;
L: the maximum number of tracks;
1 begin
2 for each net segment ni in Sj

3 Let (xs
i , y

s
i ) ((xt

i, y
t
i)) be the coordinate of the

4 source (target) of ni;
5 if ((xs

i≥xt
i and ys

i≥yt
i) or (xs

i≥xt
i and ys

i≤yt
i))

6 Find a track l of L from the top to the bottom without
7 creating overlap of other wires;
8 else
9 Find a track l of L from bottom to top without
10 creating overlap of other wires;
11 if such l exists
12 assign l to ni;
13 else
14 for all pre-routed net nk

15 divide into two segments according to qk;
16 assign the segment not overlapping with qk

17 to the lowest (highest) possible track;
18 end

Figure 17: Algorithm for Track Assignment.

(For example, for a small test case with 513 nets, we need 25
minutes to complete the detailed routing.) So we propose a track
assignment algorithm to assign tracks to each net segment of any
two adjacent rings. For each net segment ni in S, according to the
relative locations of ns

i and nt
i, we search a track to be assigned

to ni from the top to the bottom or from the bottom to the top. We
search the tracks from the top to the bottom if ns

i is in the top-right
side of nt

i, or ns
i is in the bottom-right side of nt

i . Otherwise, we
search the tracks from the bottom to the top. If we find a track l
and it does not create any overlap with other wires, then we assign
l to ni. As shown in Figure 16(a), n1 is assigned to track 1 first,
and n5 is assigned to track 4 first. Also we record the blocking
points Q for ni. A blocking segment is a wire on track l + 1 (if
we search from the top to the bottom) or l − 1 (if we search from
the bottom to the top) to stop ni from being assigned to l + 1 or
l−1 without creating any overlap with it. A blocking point q i is a
terminal of the blocking segment whose projection on l overlaps
with ni. As shown in Figure 16(b), the point q3 on track l2 is
the blocking point for net n3. If we cannot find such l, we rip-up
and reroute all net segments n1 to ni−1. For each net nk to be
rerouted, we use the concept of the dogleg in the channel routing
to break a segment into two segments based on the blocking point
qk such as n3 in Figure 16(b). Then we assign the segment that
will not overlap with qk on the lowest possible track (if we search
from the top to the bottom) or on the highest possible track (if
we search from the bottom to the top). After assigning tracks,
we record the new blocking points for nk. Note that since now
each net segment may be assigned with more than one track, we
may have more than one blocking point for each net. Figure 17
summarizes the track assignment algorithm.

Theorem 5 Given a set of nets N and a constant number
of tracks T , the track assignment problem can be solved in
O(|N |2T (|Rb| + |Rp|)) time.

Figure 18: RDL Routing Solution of fs900.

4 Experimental Results
We implemented our algorithm in the C++ programming

language on a 1.2GHz SUN Blade 2000 workstation with 8
GB memory. The benchmark circuits fs90b740, fsa0ac013aa,
fsa0ac015aa, fwaa281, fs900, fs2116, and fs4096 are real in-
dustry designs. In Table 1, “Case name” denotes the names of
circuits, “#Nets” denotes the number of nets, “#Rp” denotes the
number of wire-bonding pad rings, “#p” denotes the number of
wire-bonding pads, “#Rb” denotes the number of bump pad rings,
and “#b” denotes the number of bump pads. In each of fs900,
fs2116, and fs4096, the number of wire-bonding pads equals the
number of bump pads. So each wire-bonding pad needs to be
assigned to exactly one bump pad. Hence these three cases are
more difficult for routing than the other four cases.

Since there are no flip-chip routing algorithms in the litera-
ture, we compared our algorithm with the following heuristic al-
gorithm currently used in a design service company. This heuris-
tic is called the nearest node connection (NNC) algorithm. In
NNC, the wires are routed sequentially. If a wire-bonding pad p
can find a free bump pad b in a restricted area of the nearest bump
pad ring rb

m, then it connects p to b. If there are no free bump
pads in rb

m, then we search for a free bump pad in the next bump
pad ring rb

m+1. This process is repeated until we find a free bump
pad.

The experimental results are shown in Table 2. We report
the total wirelength, the critical wirelength, the maximum sig-
nal skews, and the CPU times. Since the routability is guaranteed
to be 100%, we do not report it. Compared with NNC, the ex-
perimental results show that our network flow based algorithm
reduces the total wirelength by 10.2%, the critical wirelength by
13.4%, and the signal skews by 13.9% in reasonably longer run-
ning time. Note that for fs2116 and fs4096, NNC fails to find
a routing solution. Figure 18 shows the RDL routing result of
fs900. The experimental results demonstrates the effectiveness
of our network flow based algorithm for the routing for flip-chip
designs.
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Table 2: RDL Routing Results.

5 Conclusion
In this paper, we have developed an RDL router for the flip-

chip package. The RDL router consists of the two stages of global
routing followed by detailed routing. The global routing applies
the network flow algorithm to solve the assignment problem from
the wire-bonding pads to the bump pads and then creates the
global routing path for each net. The detailed routing uses cross
point assignment, net ordering determination, and track assign-
ment to complete the routing. Experimental results show that our
router can achieve much better results in routability, wirelength,
critical wirelength, and signal skews, compared with a heuristic
algorithm currently used in industry.
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