
Using Spatial-Correlation to Deal With PVT Variations
During Clock-Tree Synthesis

[Blind Review Version]

ABSTRACT
With the rapid rising process, voltage, and temperature (PVT)
variations impact to the interconnect performance, it is cru-
cial to consider process-variation during clock tree synthesis.
Although there are several remedies to lessen the variations
impacts to clock such as link insertion or mesh-tree struc-
ture, the basic structure of clock topology plays the most cru-
cial role to determine the variation caused skew due to the
spatial-correlation nature of PVT variation.

In this paper, we propose to consider spatial-correlation
during clock tree construction to take advantage of locality.
During the clock topology construction, the clock sinks with
tight timing constraints will be clustered or partitioned to-
gether and therefore increases the spatial-correlation to re-
duce clock skew. With the reduction of clock skew, the algo-
rithm can recover the margin from clock-skew uncertainties
and reallocate the slacks to the path-delay and their uncer-
tainties. Therefore, the total negative slacks are significantly
improved. The experimental result shows that our algorithm
can significantly reduce the total negative slack and speedup
the timing convergence of a design. For ISCAS89 bench-
mark circuits, our algorithm achieves up to 32% total neg-
ative slack reduction compared to a traditional balanced bi-
partition algorithm.

1. INTRODUCTION
As technologies move into deep sub-wavelength era, pro-

cess, voltage, and temperature (PVT) variation effects grad-
ually become serious. As pointed out by Sani Nassif from
IBM [1], the interconnect variation effects may dominate
the gate delay in the future technology. Since clock net
are interconnect-dominated circuit structure, the process-
variation impacts to clock will soon be significant. As a re-
sult, it is very important to consider PVT variation effects
during clock synthesis.

We now classify the variation impacts to clocks. The
process-variation induced clock-skew is the clock-skew in-
troduced by manufacturing processes and varies from chip
to chip. The environmental variation induced clock-skew is
caused by supply voltage and temperature variations and
varies over time on the same chip. The design-inherited
clock-skew can be eliminated using various zero-skew (zero
design-inherited clock-skew) clock-tree optimization techniques
[1, 2, 3, 4, 5]. The environmental variation induced clock-
skew is usually tackled by design methodologies, such as

.

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

(a) (b)

Non-common path length = 12 Non-common path length = 8

1

Figure 1: Two clock-tree topologies for the same set
of clock sinks.

placing clock buffers near power/ground sources and avoid
routing clock nets through hot spots.

In vision of this effect, there are several algorithms pro-
posed to to balance or fine-tune the variation impacts to
clock such as link insertion after clock tree construction [8].
However, since the basic structure of clock topology plays
the most crucial role in determining the variation caused
skew due to the spatial-correlation nature of PVT varia-
tions. There is a need to develop an clock tree topology
generation algorithm to consider this effect. Velenis et al.
[6, 7] proposed a greedy clustering-based algorithm to re-
duce process-variation induced clock-skews on timing criti-
cal paths. The algorithm creates the clock-tree topology by
first clustering the source and target clock sinks of the most
timing critical path together, then clustering the two clock
sinks of the second most timing critical paths, and so on
so forth. However, the clustering based algorithm lacks the
global view and has practical limitations. For example, the
algorithm will cluster the two clock sinks of the most timing
critical path together even if the two clock sinks are located
at the opposite corners of the chip.

It is observed that the maximum process-variation in-
duced clock-skew of a clock-tree is positively correlated to its
clock-delay. Previous works [3, 4, 5] reduce the maximum
process-variation induced clock-skew by clock-delay mini-
mization using combinations of routing, buffer-insertion, buffer-
sizing, and wire-sizing techniques. Although these works
reduce the maximum process-variation induced clock-skew,
they do not necessarily reduce the total clock-skew uncer-
tainty on timing critical paths and the total slack require-
ment of a design. This is because these works all start from
a given clock-tree topology that is not aware of the loca-
tions of timing critical paths. For example, Figure 1 shows

two clock-trees for the same set of clock sinks from two dif-
ferent starting clock-tree topologies. The arc in Figure 1
indicates the most timing critical path of the circuit. Al-
though the two clock-trees have the same maximum process-
variation induced clock-skew (assuming clock-trees are sym-
metric and process-variations are uniform), the clock-tree
in Figure 1(a) requires more slack and can slow down the
timing convergence, hence the clock-tree in Figure 1(b) is a
preferred topology.

In current design flows, slacks are reserved for timing un-
certainties to ensure correct functionality of manufactured
chips. However, the increasing timing uncertainties and de-
mand on slacks can slow down the timing convergence. The
timing convergence status is usually monitored by two pa-
rameters: Worst Negative Slack (WNS) and Total Negative
Slack (TNS). While WNS indicates the design effort that
is needed to fix the worst timing violation, TNS indicates
the aggregated design effort that needs to be done to achieve
timing closure. In modern VLSI system designs, clock dis-
tribution networks and logic designs are usually done in
separate steps. Therefore, separate slack requirements are
imposed for path-delay uncertainty and clock-skew uncer-
tainty.

In this paper, we propose to consider spatial-correlation
during clock tree construction to take advantage of local-
ity. During the clock topology construction, the clock sinks
with tight timing constraints will be clustered or partitioned
together and therefore increases the spatial-correlation to re-
duce clock skew. With the reduction of clock skew, the algo-
rithm can recover the margin from clock-skew uncertainties
and reallocate the slacks to the path-delay and their uncer-
tainties. Therefore, the total negative slacks are significantly
improved. The experimental result shows that our algo-
rithm can significantly reduce the total negative slack and
speedup the timing convergence of a design. For ISCAS89
benchmark circuits, our algorithm achieves up to 32% total
negative slack reduction compared to a traditional balanced
bipartition algorithm.

The rest of the paper is organized as follows: in Section 2,
we review clock-tree design issues and study general proper-
ties of a buffered clock-tree. In Section 3, we present details
of our clock-tree topology generation algorithm. Experi-
mental results are presented in Section 4. Finally, Section 5
concludes this work.

2. PRELIMINARIES
The maximum and minimum path-delays between FFi

and FFj are Dij and dij , respectively. Let CP be the clock-
period, and Tsetup and Thold be the setup-time and hold-time
of a flip-flop. Define the clock arrival time to FFi as Ti and
the clock-skew between FFi and FFj as sij = Ti − Tj . By
absorbing the flip-flop delays as part of the path-delays, the
hold-time and setup-time constraints can be written as:

sij + dij ≥ Thold + κ[σ(sij) + σ(dij)]. (1)

CP − Dij − sij ≥ Tsetup + κ[σ(sij) + σ(Dij)]. (2)

The terms κ[σ(sij) + σ(dij)] and κ[σ(sij) + σ(Dij)] in (1)
and (2) are the hold-time and setup-time slack requirements
for sij , which depend on the choice of κ. Due to the increas-
ing design size, a 6σ slack, or κ = 6, is required for each
timing constraint to guarantee a reasonable yield. However,
the soaring clock frequency (decreasing CP) and increasing

Ti Tj

Pij
com

Pi - Pij
com Pj - Pij

com

Figure 2: Clock-skew uncertainty and clock distri-
bution paths.

process-variations(increasing σ(·)) have made it more diffi-
cult to achieve timing closure. It is necessary to reduce the
slack requirement of a design to speedup timing convergence.

If the hold-time slack δh
ij = sij + dij − Thold or the setup-

time slack δs
ij = CP−Dij−sij−Tsetup of sij are smaller than

its slack requirements, the differences need to be counted
toward the total negative slack. The total negative slack
of a design can be reduced by minimizing the total clock-
skew uncertainty on the paths with negative slack. This can
be done by improving the clock-tree topology generation
process. Let Pi and Pj be the clock distribution paths of
FFi and FFj . Velenis et al. [6, 7] observe that the common
part of Pi and Pj , or P com

ij , do not contribute to the clock-
skew uncertainty of sij . As shown in Figure 2, σ(sij) is likely
to reduce if we reduce the lengths of the non-common part
of Pi and Pj , Pi −P com

ij and Pj −P com
ij . A greedy algorithm

that clusters source and target clock sinks of timing critical
paths is likely to reduce the total clock-skew uncertainty and
total slack requirement. However, this greedy approach can
also result in an increase on total wire length of the clock-
tree, which in turn increases the total clock-skew uncertainty
and cancels the benefit.

Recently, a new approach for reducing clock-skew uncer-
tainty is proposed [8]. The principle is that if we add a
link, an extra wire segment, to connect a pair of nodes in
the clock-tree with equal clock-delay, the clock-skew uncer-
tainty between these two nodes may be reduced. This is
a post processing approach and still relies on a good clock-
tree topology. For example, a better clock-tree topology will
require fewer link insertions. Therefore, there is a need to
investigate clock-tree topology generation algorithms.

3. SPATIALCORRELATIONDRIVENCLOCK
PINPARTITIONINGANDCLUSTERING
FOR CLOCK SYNTHESIS

We use recursive bipartition to generate a binary clock-
tree topology. Our algorithm can easily be extended to gen-
erate k-ary tree topologies by replacing bipartition with k-
way partition. In each recursion step, a partition graph is
created from the given clock sinks and their timing con-
straints. A min-cut algorithm is then used to partition the
graph into two balanced graphs with minimum partition
cost.

We first discuss practical design issues for clock-tree topol-
ogy generation and define bipartition objectives. We then
briefly review the steps of our algorithm. The details of each
step are then presented.

FF7

FF5

FF1

FF3

FF6
FF8

FF2

FF4

Cut-line FF7

FF5

FF1

FF3

FF6
FF8

FF2

FF4

Cut-line

Figure 3: Total clock-skew uncertainty increases due
to non-common clock distribution path reduction.

3.1 Topology Design Objectives
The principle for reducing the clock-skew uncertainty on

a timing critical path is to reduce the non-common part of
the clock distribution paths to its source and target clock
sinks. However, the total clock-skew uncertainty as well as
total clock power may increase if non-common clock dis-
tribution path reduction is not conducted carefully. Figure
3(a) shows the partitioning of eight clock sinks using a tradi-
tional balanced bipartition algorithm. The two solid arcs in
Figure 3(b) show the two most timing critical paths of the
circuit while the three dashed arcs show the timing paths
with slightly more slacks. In Figure 3(b), FF2 and FF3 are
moved to the left and right partitions to reduce clock-skew
uncertainties on the most timing critical paths. However,
this results in an increase on clock-skew uncertainties of s31,
s35, and s37. As a result, the partitioning in Figure 3(b)
may actually be worse than the partitioning in Figure 3(a).

Based on the above observation, we believe that biparti-
tion objectives should include the followings.

• Balanced loading
Balanced loading ensures that no excessive snaking
or buffering is required to balance the clock-delays of
both partitions. This not only prevents unnecessary
increase on clock power but also reduces the clock-
delay of the final clock-tree, which in turn prevents an
increase on total clock-skew uncertainty.

• Small extra wire length
The minimum achievable clock-delay is likely to in-
crease when the total wire length of a clock-tree in-
creases by a large amount. Therefore, bipartitioning
should not cause an excessive wire length increase.

• Short non-common clock distribution paths
The clock-skew uncertainty between a pair of clock
sinks is likely to decrease if the non-common clock dis-
tribution paths to both clock sinks are short. There-
fore, clock sinks of timing critical paths should be par-
titioned into different groups as late as possible.

3.2 Overview
Our clock-tree topology generation algorithm is based on

a recursive bipartition framework. In each iteration, mul-
tiple partition graphs are created and partitioned using a
min-cut algorithm. The partitioning that has the lowest
partition cost is then selected. Figure 4 shows the steps for
determining the best partitioning in each iteration. Each
step is explained in detail in following sections.

3.3 Reference Set

BestCost = ∞,
BestPartitioning = φ

Add attractors and attraction edges to the partition graph

Add clustering edges to the partition graph

Min-Cut bipartition

Generate a pair of reference sets

Update BestCost and BestPartitioning

More reference set pairs
yes

no
Return BestPartitioning

Figure 4: The steps in each bipartition iteration.

A1 A2

p

dist(p, A2) dist(p, A1)

∞

∞

∞

∞

∞

Clock sinks Attractors

Figure 5: Illustration of bounding octagon, attrac-
tors and attraction edges.

A common technique for partitioning a set of nodes into
multiple partitions is to first find the reference set of each
partition [9] [2]. A reference set is a set of nodes that will
most likely fall into the same partition. For example, the
two clock sinks, which are far apart, are likely to belong
to different partitions. Therefore, we can start with two
reference sets where each set contains one of the two clock
sinks. The remaining clock sinks can then be partitioned
based on which reference set they are closer to.

Chao et al. [2] observe that the clock sinks that fall on the
bounding octagon are usually partitioned into two groups
with consecutive elements. Let S be the set of clock sinks to
be partitioned and Oct(S) be the set of clock sinks that are
on the bounding octagon, there are |Oct(S)| ways to create a
pair of reference sets with � 1

2
|Oct(S)|� and � 1

2
(|Oct(S)|+1)�

clock sinks. For each pair of reference sets, we create a
partition graph and use a min-cut algorithm to find the best
partitioning. Figure 5 shows the bounding octagon of eight
clock sinks with |Oct(S)| = 5.

3.4 Attractor and Attraction Weight
To ensure that the clock sinks in a reference set are grouped

together, we introduce two artificial attractors, A1 and A2,

0

100

200

300

400

0 2000 4000 6000 8000 10000 12000 (um)

(ps)

L0

s0

slope=χ

Figure 6: Diameter of S versus maximum clock-skew
uncertainty in s35932.

for reference sets REF1 and REF2, then add an attraction
edge with an infinite attraction weight from each reference
set element to its attractor. For each of the remaining clock
sinks, we create an attraction edge to each attractor. The
attraction weight is calculated based on the distance mea-
sure from the clock sink to the reference set of the attractor.
The distance measure should reflect the wire length increase
if the node is grouped with the reference set. Chao et al. [2]
use

dist(p, REFk) = min
r∈REFk

dist(p, r) + max
r∈REFk

dist(p, r) (3)

to measure the distance between clock sink p to reference set
REFk, where dist(p, r) is the Manhattan distance between
clock sinks p and r. We use the same metric as our distance
measure.

One of the major improvement of our algorithm is that,
instead of assigning clock sinks to reference sets greedily
based solely on the distance measure, we keep the distance as
the attraction weight. This enables wire length and timing
constraints to be considered simultaneously as described in
the next section.

We prefer to preserve the edges with smaller distance mea-
sure during partitioning. This can be done by using the neg-
ative distance measure for the edge weight. Alternatively,
we use dist(p,REF2) and dist(p, REF1) as the edge weights
for the edges from clock sink p to A1 and A2. Figure 5 shows
the reference sets, attractors, and attraction edges of eight
clock sinks.

3.5 Clustering Weight
The most important enhancement of our algorithm over

previous algorithms is that we consider both clock sink po-
sitions and timing constraints for partitioning. By introduc-
ing a clustering edge between the two clock sinks of a timing
path and controlling the clustering weight, we can control
when those two clock sinks will be partitioned into different
groups.

During the topology generation phase, it is difficult to
predict what will be the clock-skew uncertainty on a clus-
tering edge being partitioned. However, we can estimate
which clustering edge can introduce a larger negative slack
if it is partitioned. Let the diameter of S be the maximum
distance of two clock sinks in S, or

Dia(S) = max
p,q∈S

dist(p, q). (4)

Figure 6 shows Dia(S) versus the maximum clock-skew un-

Figure 7: The partition graph after adding cluster-
ing edges.

certainty within S, where S is extracted from a zero-skew
buffered clock-tree of s35932. The clock-skew uncertainty is
approximated by 30% clock-delay of the non-common clock
distribution path. It is shown that the minimum achievable
clock-skew uncertainty increases linearly as the distance of
two clock sinks increases. The minimum clock-skew uncer-
tainty of a clock sink pair within 900µm is negligible.

From the above analysis, the best-effort clock-skew uncer-
tainty of a clock sink pair is defined as follows.

βij = max{0, χ[dist(i, j) − L0]} (5)

Likewise, the worst clock-skew uncertainty of S is approxi-
mated as follows.

α(S) = s0 + χDia(S). (6)

The parameters s0, L0 and χ depend on the clock sink den-
sity of the chip as well as interconnect and clock buffer pa-
rameters. They can be obtained by analyzing a zero-skew
clock-tree generated by zero-skew buffered clock-tree opti-
mization algorithms as illustrated in Figure 6.

Let the equivalent slack of sij be

uk
ij = max(δk

ij, βij), k ∈ {h, s}. (7)

When δk
ij < uk

ij , a negative slack of uk
ij − δk

ij is unavoidable.
Therefore, the maximum clock-skew uncertainty that may
be avoided by keeping a clustering edge is α(S)−uk

ij . Thus,
the clustering weight function is defined as follows.

W k
ij = max{0,

Dia(S)

M
× α(S) − uk

ij

α(S)
}, k ∈ {h, s}. (8)

We take the average of W h
ij and W s

ij as the clustering weight.

It is also possible to put more weight on W h
ij or W s

ij to
target specifically on negative hold-time or setup-time slack
reduction.

The relative importance of timing constraints over wire
length is controlled by M . The optimal M depends on how
much TNS the design has and the amount of wire length
increase designers are willing to tolerate. It can be deter-
mined empirically by running our algorithm repeatedly with
an increasing M . In our experiments, we find that M = 10
gives good results without introducing too much extra wire
length.

3.6 Min-Cut Bipartition
The set of clock sinks S, two attractors, attraction edges,

and clustering edges form a partition graph. The complete

Circuit # F.F. s0 L0 χ
(ps) (µm) (ps/µm)

s5378 263 10 500 0.036
s9234.1 286 10 550 0.044
s13207.1 852 10 700 0.041
s35932 2083 20 800 0.034

s38584.1 1768 20 900 0.045

Table 1: Analysis results of the clock-trees gener-
ated by a traditional balanced bipartition algorithm.

partition graph of the example circuit in Figure 1(b) is
shown in Figure 7. The topology generation problem be-
comes a sequence of standard min-cut problems on partition
graphs. The balanced loading objective is handled by as-
signing vertex weights according to clock sink capacitances
(attractors have zero vertex weight) and enforcing a cut-
ratio close to one. We use an efficient and publicly available
partition tool, METIS [10], to find the cut line for a parti-
tion graph. The complete clock-tree topology is obtained by
recursive bipartitioning.

4. EXPERIMENTAL RESULTS
We implement our algorithm in C++ and run it on a

1.7GHz 512MB Pentium-M laptop computer. We use SIS
[11] to synthesize ISCAS89 benchmark circuits using a 0.13µm
cell library, then use Dragon [12] for placement. We take
the clock-tree topologies from both our algorithm and a
traditional balanced bipartition algorithm [2] and construct
zero-skew unbuffered clock-trees using the Deferred Merge
Embedding algorithm [2]. The clock-trees are then opti-
mized for minimum clock-delay using the zero-skew buffered
clock-tree optimization algorithm from [5]. We assume gate-
delays are independent Gaussian distributions with (µ, σ) =
(50ps, 10ps). We impose a 6σ slack requirement for path-
delay uncertainty and clock-skew uncertainty. For example,
the slack requirement for a path with n gates is 6

√
nσ. The

6σ slack requirement for clock-skew uncertainty is approxi-
mated by 30% clock-delay of the non-common clock distri-
bution path.

4.1 Comparison and Analysis
Table 1 shows the parameters of the clock-trees gener-

ated by the traditional balanced bipartition algorithm. The
analysis is done using the analysis method described in Sec-
tion 3.5 and the parameters are used to guide our enhanced
bipartition algorithm. We also found that in s9234.1, the
TNS is contributed by only a few timing constraints. More-
over, many circuits have a predominant negative hold-time
or setup-time slack.

Figure 8 shows the clock-trees of S13207.1 generated by
traditional and enhanced bipartition algorithms. It can be
seen that the local clock-tree structures generated by our en-
hanced bipartition algorithm are slightly different from that
of the traditional method. For example, our algorithm some-
times will generate unbalanced clock load to reduce clock
skew uncertainty. To balance the clock load at a higher level
of the clock-tree, wire snakings (shown as dark segments) are
sometimes required. However, this only increases the total
wire length by a small amount (< 6%).

As shown in Table 2, our algorithm achieves a TNS re-
duction from 2% ∼ 32% on ISCAS89 circuits. Although our
algorithm also causes a slight increase on clock-tree wire

(a) Traditional Bipartition (b) Enhanced Bipartition

Figure 8: The clock-trees of S13207.1 using tradi-
tional and enhanced bipartitions.

0.0

0.2

0.4

0.6

0.8

1.0

S5378 S9234.1 S13207.1 S35932 S38584.1

(TNS) Balanced bipartition Our algorithm

setup-time

hold-time

Figure 9: TNS improvement analysis.

length and switching capacitance, this does not necessarily
increase the minimum clock-delay. In fact, we even achieve
better clock-delays on s9234.1, s13207.1 and s38584.1. There-
fore, wire length is more correlated to clock-power than to
clock-delay.

Figure 9 shows the composition of the TNS using both
the traditional balanced bipartition algorithm and our al-
gorithm. We separate TNS into total negative hold-time
and setup-time slacks, TNSh and TNSs, and normalize
the results with respect to that from the traditional algo-
rithm. It shows that our algorithm is especially effective in
reduce TNSh. This is because the source and target clock
sinks of a hold-time critical path are usually close to each
other and our algorithm is able to reduce clock-skew un-
certainties on those paths without introducing much extra
wire length. However, those of a setup-time critical path
are usually separated far apart and there is not much room
for improvements. The result that the total negative hold-
time slack is easy to reduce is very exciting because hold-
time violations are more serious than setup-time violations.
While setup-time violations can be removed by increasing
the clock-period CP (sell the chip at a lower frequency),
hold-time violations can not be fixed after the chip is man-
ufactured. Therefore, our algorithm is especially versatile
for addressing hold-time problems in modern high speed de-
signs.

4.2 Enhancements
In our experiments, we incorporate several heuristics to

improve the results of our algorithm and discover a few areas
that can provide further improvements.

4.2.1 Handling Reference Set Elements

Circuit Delay (ns) Cap. (pF) Wire Length (mm) TNS (ns) CPU
Old New Old New Old New Increase Old New Reduce New

s5378 0.218 0.218 10.89 11.45 38.018 40.245 5.9% 3.507 3.315 5.5% 31s
s9234.1 0.291 0.218 12.33 13.82 47.636 49.433 3.8% 6.124 5.989 2.2% 42s
s13207.1 0.436 0.363 33.19 35.52 120.651 124.752 3.4% 29.484 28.742 2.5% 118s
s35932 0.727 0.727 106.14 107.46 370.873 391.947 5.7% 478.915 445.95 6.9% 295s

s38584.1 0.872 0.727 84.71 87.32 321.803 329.340 2.3% 47.659 32.217 32.4% 255s

Table 2: Experimental results of a traditional balanced bipartition algorithm.

s38584.1 TNSs TNSh TNS Improvement
(ns) (ns) (ns) (%)

Traditional 5.480 42.197 47.659 -
Our(setup+hold) 5.277 26.940 32.217 32.4%
Our(hold only) 5.186 10.970 16.155 66.1%

Table 3: Further TNS reduction by targeting only
hold-time constraints.

There can be a large number of clock sinks lying on one of
the the bounding octagon edges. For example, many clock
sinks may be placed on one edge of the chip. In this case,
we only pick the first and the last clock sink on this edge
into Oct(S). This heuristic avoid creating a pair of reference
sets that are dis-proportional in their diameters.

Setting the clustering weight to infinity for edges from
reference set elements to their attractors can cause unsat-
isfactory results. This is because we do not take timing
constraints into account when we break Oct(S) into two ref-
erence sets. A simple heuristic provides significant improve-
ment: We determine reference sets as described in Section
3.3 and treat clock sinks in Oct(S) the same way as we treat
other clock sinks in S.

4.2.2 Targeting Hold-Time Constraints
We have shown that negative setup-time slacks are more

difficult to reduce through clock-tree topology generation.
Therefore, clustering edges and weights for setup-time con-
straints can introduce redundant information to the parti-
tion graph and degrade the partitioning quality. We con-
duct a separate experiment on s38584.1 by considering only
hold-time constraints. As shown in Table 3, this improves
the TNS reduction from 32.4% to 66.1%.

4.2.3 Approximate Worst Clock-Skew Uncertainty
In this paper, we use a simple linear approximation to

estimate the worst clock-skew uncertainty of S based on s0,
χ and Dia(S). This can be too optimistic in some cases and
too pessimistic in other cases. It is possible to use both the
number of clock sinks and clock sink density besides Dia(S)
to give better approximations and results.

4.2.4 Alternative Min-Cut Algorithms
We found that sometimes METIS does not produce very

good partitionings. In other words, clock sinks may be
grouped to wrong partitions and cause unnecessary wire
length increases. We are currently incorporating MLPart
[13] with our code and we expect to see an improvement on
wire length.

4.3 Runtime
Although min-cut problems are NP-Complete problems,

it is usually solved very efficiently with near-optimal parti-
tion costs. For each bipartitioning, we write the partition
graph into a file, call METIS for partitioning, and read the
results back into our program. Even with the high disk I/O
overhead, the runtime of our algorithm is still less than five
minutes for the largest circuit. This runtime is much smaller
than the runtime for the subsequent clock-tree optimization
step and our algorithm scales well for large problems.

5. CONCLUSION AND FUTURE WORK
We present a novel partition-based clock-tree topology

generation algorithm. The algorithm takes into consider-
ation both positions of clock sinks and timing constraints.
As a results, the total negative slack is significantly reduced.
In the future, we plan to investigate techniques for total
negative slack reduction during clock-tree optimization for
further timing-convergence improvements.

6. REFERENCES
[1] R.-S. Tsay. Exact zero skew. In Proceedings of the

international conference on Computer-aided design,
pages 336–339, 1991.

[2] Ting-Hai Chao, Yu-Chin Hsu, Jan-Ming Ho, and A.B.
Kahng. Zero skew clock routing with minimum
wirelength. Circuits and Systems II: Analog and
Digital Signal Processing, 39(11):799–814, Nov. 1992.

[3] I-Min Liu, Tan-Li Chou, Adnan Aziz, and D. F.
Wong. Zero-skew clock tree construction by
simultaneous routing, wire sizing and buffer insertion.
In Proceedings of the international symposium on
Physical design, pages 33–38. ACM Press, 2000.

[4] Jeng-Liang Tsai, Tsung-Hao Chen, and Charlie
Chung-Ping Chen. Epsilon-optimal
minimum-delay/area zero-skew clock-tree wire-sizing
in pseudo-polynomial time. In Proceedings of the
international symposium on Physical design, pages
166–173. ACM Press, 2003.

[5] Jeng-Liang Tsai, Tsung-Hao Chen, and Charlie
Chung-Ping Chen. Zero-skew clock-tree optimization
with buffer-insertion/sizing and wire-sizing. IEEE
Transactions on Computer-aided design,
23(4):565–572, April 2004.

[6] Dimitrios Velenis, Eby G. Friedman, and Marios C.
Papaefthymiou. A clock tree topology extraction
algorithm for improving the tolerance of clock
distribution networks to delay uncertainty. In
Proceedings of the international symposium on
Circuits and systems, pages 4.422–4.425, 2001.

[7] Dimitrios Velenis, Marios C. Papaefthymiou, and
Eby G. Friedman. Reduced delay uncertainty in high
performance clock distribution networks. In
Proceedings of the conference on Design, Automation

and Test in Europe, page 10068. IEEE Computer
Society, 2003.

[8] Anand Rajaram, Jiang Hu, and Rabi Mahapatra.
Reducing clock skew variability via cross links. In
Proceedings of the 41st annual conference on Design
automation, pages 18–23. ACM Press, 2004.

[9] Antonin Guttman. R-trees: a dynamic index structure
for spatial searching. In Proceedings of the 1984 ACM
SIGMOD international conference on Management of
data, pages 47–57. ACM Press, 1984.

[10] George Karypis and Vipin Kumar. A fast and high
quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing,
20(1):359–392, 1998.

[11] Ellen M. Sentovich, Kanwar Jit Singh, Luciano
Lavagno, Cho Moon, Rajeev Murgai, Alexander
Saldanha, Hamid Savoj, Paul R. Stephan, Robert K.
Brayton, and Alberto Sangiovanni-Vincentelli. SIS: A
system for sequential circuit synthesis. Electronics
Research Laboratory, Memorandum No. UCB/ERL
M92/41, 1992.

[12] Maogang Wang, Xiaojian Yang, and Majid
Sarrafzadeh. Dragon2000: standard-cell placement
tool for large industry circuits. In ICCAD ’00:
Proceedings of the 2000 IEEE/ACM international
conference on Computer-aided design, pages 260–263.
IEEE Press, 2000.

[13] Andrew E. Caldwell, Andrew B. Kahng, and Igor L.
Markov. Improved algorithms for hypergraph
bipartitioning. In ASP-DAC ’00: Proceedings of the
2000 conference on Asia South Pacific design
automation, pages 661–666. ACM Press, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

