
Routing Algorithms: Architecture Driven Routability Enhancement for FPGAs

Abstract
The routing channels of today’s FPGAs consist of wire segments of
various types, which allow the use of new techniques to enhance the
routability of net segments in channels.

In this paper we present an optimal greedy algorithm to switch the
tracks that net segments are assigned to. This allows us to enhance the
routability by capturing the features of the routing architecture. The
goal of this algorithm is to increase the number of routable segments for
a given number of tracks in channels. This is a good feature for sup-
porting Engineering Change Order(ECO) type of routing. We used the
routing architecture of VirtexII FPGAs from Xilinx as our target routing
architecture and integrated our algorithm into the VPR FPGA routing
tool. The experimental results show that our algorithm reduces the total
number of tracks by 9% on average. It allows 28.4% more rerouting
than the existing VPR router, which is based on Dijkstra’s maze routing
algorithm.

Keywords
FPGA CAD, Routing, Greedy algorithm, Left Edge Algorithm.

1. Introduction
The problem of routing in FPGAs is a very challenging problem due

to the different types of wire segments, and the limited number of con-
nections in channels. Traditionally, routing is done in two stages of
global routing and detailed routing sequentially [13, 11, 12, 8]. In the
two stage routers, the global router abstracts the details of the routing
architecture and performs routing on a coarser architecture. Then, the
detailed router refines the routing done by the global router in each chan-
nel. Although this approach can be applied to large circuits, the global
router may not be able to exploit an accurate abstraction of the routing
architecture. This may lead to a degradation of the routing quality. This
problem may emerge specifically in FPGAs. The important issue is not
only the finding of a routing path, but also the assignment of different
wire types to each net segment and the order of this assignment. To
alleviate this problem, in [1] a wire type assignment algorithm was pre-
sented that is based on iteratively applying the min-cost maximum flow
technique to simultaneously route many nets.

Another approach to solve the problem of routing is to use the one-
stage detailed routing algorithms [10, 9, 5, 2]. Although this approach
is not able to handle very large routing architectures, it is more accurate,
since it can embed all the features of the routing architecture using the
detailed routing graphs. In [2], VPR an FPGA placement and routing
tool, was introduced which is based on the Pathfinder negotiation-based
router for FPGAs [5] that uses Dijkstra’s algorithm(i.e. a maze router
[15]). This router uses an iterative algorithm that converges to a solu-
tion in which all signals are routed while achieving close to the optimal
performance allowed by the placement.

In this paper we address the FPGA detailed routing problem. We in-
troduce a technique to enhance the number of routable nets within each
segment type of one channel. The problem to consider is that given a
detailed routed circuit, we want to pack intervals in tracks of one wire
type as much as possible in order to maximize the number of empty
spots in tracks. This is shown in Figures 6 and 7. These empty spots

can accommodate more net segments. In fact, we capture the features of
routing architecture of the framework and use them to enhance routabil-
ity. In this way, we are able to support ECO(Engineering Change Order)
requirements for routing.

In order to enhance the routability of a circuit, we define an optimiza-
tion problem, present a very simple optimal greedy solution for it, and
prove the correctness of it. We applied our technique on the VPR, FPGA
placement and routing tool, and present the effect of it on the experimen-
tal section of the paper. The main contribution of this paper is that for
the given number of tracks in the channels, we can route more segments
than VPR. On average, we enhance the routability by 28.4% for short
net segments we added to the benchmarks.

2. Preliminaries
The model we used for FPGA in this paper is an array based FPGA

similar to Xilinx VirtexII architecture [7].
A new generation of programmable routing resource called Active

Interconnect Technology interconnects all of the elements it consists of,
which are configurable logic blocks(CLB), basic select RAM memory,
multiplier blocks, and digital clock manager blocks. The general routing
matrix (GRM) is an array of routing switches. As shown in Figure 4 [7]
each programmable element is tied to a switch matrix, allowing multiple
connections to the general routing matrix.

Figure 1 (white squares denote CLBs and black squares denote route
switch boxes) shows types of routes that occur in VirtexII family of Xil-
inx devices. Long lines are bidirectional wires that distribute signals
across the device. Vertical and horizontal long lines span the full height
and width of the chip. Hex lines route signals to every third or sixth CLB
in all four directions. Double lines route signals to every first or second
CLB in all four directions. Direct lines connect signals to neighboring
blocks: vertically, horizontally, and diagonally.

3. Problem Modeling
Basically, the goal is to maximize the number of empty spots of length

2, 3, and 6 that are inevitably made after doing routing with segments
of length 1. These empty spots can be used for routing other nets which
could not be routed previously. The reason that we choose these kinds of
segments is the routing architecture of today’s FPGAs which has been
shown in Figure 1. This routing architecture mostly consists of net seg-
ments with length less than 6. We define some notations and prove some
lemmas based on them to adjust our goal to the optimization problem we
want to solve. For every net of lengthi we defineOdouble(i), Otriple(i),
andOhex(i) as the maximum possible number of double, triple(hex line
used to connect each CLB to a CLB three spots further), and hex lines a
segment with lengthi can occupy.

Lemma1. The number of spots of length 2, 3, and 6 which a segment
of lengthi occupies is equal toi+1, i+2 andi+5, respectively.

Proof. Figure 2 shows how theOdouble for a segment of lengthi can
be calculated asi+1. This means that if we put a segment of lengthi in
a track, it may take away the opportunity from each ofi+1 double wire
segments which have overlap with this net segment for later routing. The
other parameters can be calculated in the same way. So, we define those
parameters as follows:

Fig. 1: VirtexII device route

Fig. 2: Odouble for a segment of length i

Fig. 3: Gain achievement for two segments of gap 1

Odouble(i) = i+1.

Otriple(i) = i+2.

Ohex(i) = i+5.�

Lemma2. The number of total occupied spots by two consecutive net
segments are less than the sum of occupied spots by each of them.

Proof. Let us consider two segments of lengthi and j that are non-
overlapping. If these two segments have a distance gap of 0(i.e. the end
point of one of them is the start point of the other), the total number of
segments of lengths 2,3, and 6 which they occupy is less than the sum of
their O’s values. The reason is that some of those occupied spots at the
end-points of segmentsi and j are calculated twice, once for segmenti
and once for segmentj. �

The difference between these two values is the gain that we can achieve
by putting these two segments closer to each other as much as possible.
Figure 3 shows how we can achieve gain for two segments with gap 1
by calculating the overlapping spots just once. In Table 1, the gain that
we can make for different gaps is calculated.

segment length Gap 0 Gap 1 Gap 2 Gap 3 Gap 4
Double 1 0 0 0 0
Triple 2 1 0 0 0

Hex 5 4 3 2 1
Total 8 5 3 2 1

Table 1: The Gain achieved for each segment type based on Gap
between two net segments

A trivial observation shows that the less the gap between the seg-
ments, the more we can pack the segments, the more the gain we can
achieve, and thus the greater the number of empty spots with lengths
2,3, and 6 that can be created.

4. Problem Definition
Segment Track Switch problem (STS): Given a list of routed net

segments and number of available tracks of segments of length 1, we
want to switch the place of these routed segments through the tracks
in order to maximize the number of empty spots of length 2,3, and 6
created after routing, meaning maximizing the total amount of gain we
get for all channels which can be computed by Table 1.

One very important point to consider when switching net segments is
dealing with vertical constraints. Net segments cannot be switched eas-
ily since vertical constraints exist. As shown in the Figure 4, the number
of switches between vertical and horizontal wires, and the connections
between CLB inputs/outputs to wires inside tracks are limited. In the
next section, we show how to solve the STS problem and also deal with
vertical constraints.

5. Algorithm
In this section we model the STS problem as a greedy routing problem

and simply assign intervals to the tracks considering the cost function
defined in the previous section.

5.1 Greedy Algorithm
First we present a greedy algorithm which is a version of the Left

Edge algorithm to solve the STS problem and then we prove the correct-
ness of it. The greedy algorithm for STS is shown in Algorithm 1.

In this algorithm, first we sort all net segments based on their start
points. We start from the first net segment, assign it to the first track

Fig. 4: VirtexII routing switches and connections

Algorithm 1 Greedy Segment Track Switch Algorithm
Input: Detailed routed netsN of one channel with single wire type,
Output: Track assignment for∀ni ∈ N
sort all the net segments in non-decreasing order based on their left
endpoints (start points).
assign the first net segmentn1 to the first track with no CVC(Conflict
with Vertical Constraints) from either endpoints.
AlreadyAssignedSegments=[n1].
removen1 from N.
markn1 as the last segment of that track.
for all net segmentni = (si, li) ∈ N do

find the biggestl j such thatnj = (s j, l j) is marked
as the last assigned segment of each track,lj ≤ si,
si − l j ≤ 4 , and no CVC exists.
if ∃ l j and no CVC to assignni to the same track asnj then

assingni to the same track asnj.
else

assignni to the the first available track with no CVC.
end if
markni as the last segment of that track.
addni to the AlreadyAssignedSegments set.
removeni from N.

end for

Fig. 5: Examples, demonstrating the greedy choice a and the non-
greedy choice b

which has no conflict with its vertical constraints, and put it into the
set of already assigned segments. For all other net segments, among all
available tracks(i.e. are not occupied or make no conflict with vertical
constraints), the greedy choice is to pick the one that the previous net
segment assigned to it has smaller gap with this new net segment with
the condition that this gap is less than 4. If such a net segment does not
exist, we pick the first available track. This technique is very similar to
Left Edge algorithm for interval packing [14]. The only difference oc-
curs when there is more than one available track. In Left Edge algorithm
there is no difference among available tracks, but in this algorithm our
decision to pick a suitable track is based on the right endpoint of the last
assigned net segment of that track.

5.2 Proof of correctness

Theorem1. The greedy algorithm given in Algorithm1 can solve the
STS problem defined in the previous section.

Proof by contradiction: Assume there is an optimal solution which
is not greedy. Let us consider the first point where the difference be-
tween this solution and the greedy solution emerges(i.e. the first seg-
ment which is assigned to two different tracks in these solutions). We
easily alter the non-greedy choice to the greedy one in this way. We
swap the assignment of the segments of the two tracks from the start-
ing point of the segment which makes the difference all over to the end
of the track. The gain we achieve will increase at the starting point of
that segment, and will not change at the other points. So, total gain will
increase. For all other points where the segments are assigned to differ-
ent tracks, the same alteration can be done. This shows that the greedy
choice is always a better choice. So, the given solution was not optimal
and the greedy choice gives us the optimal algorithm.�

5.3 Demonstration of the proof

Some example cases are shown in Figure 5:

1. Case 1: PointP is the place where the non greedy choice emerges
in the optimal solution. We can simply swap tracks(a) and(b)
from the pointP onwards, so we will gain 8 based on the Gain
function C defined in Table 1. The number 8 is the sum of the
number of doubles, triples and hexes which are not destroyed by

greedy choice. So the solution which is not greedy could not be
optimal, since in every step greedy choice is the better choice.

2. Case 2: We can simply swap the tracks(a) and(b) from the point
P all over to the end, so we will gain 8− 5 = 3. So the given
solution is not optimal.

3. Case 3: In this case there is no matter where we put the new net
segment since none of the tracks makes a better gain. So every
choice is the same as greedy choice.

For all other permutations of net segments the cases can be resolved
like those mentioned above.

The time complexity of this algorithm isO(nlogn + nT), wheren is
number of net segments andT is the number of tracks in each channel.
Sorting all net segments takesO(nlogn)[6]. In each iteration of the for
loop we assign one net segment by considering all of the tracks. This
contributes to the second term of the time complexity which isO(nT).

6. Experimental Results
The greedy approach has been implemented using the VPR 4.30 source

code and manual [3]. VPR is an academic FPGA routing tool created to
do placement and routing for FPGAs. We modified the source code of
VPR and embedded our technique in it. VPR uses the Pathfinder nego-
tiated congestion algorithm. This algorithm is based on ripping up and
rerouting methods.

We added the greedy code mentioned in Algorithm 1 to the VPR
source code after the point that the Pathfinder procedure finds paths for
nets. By this point for each channel we know exactly which net seg-
ments are going to be routed on which tracks and on what kind of wire
type. So, for all channels we applied Algorithm 1 on net segments lo-
cated in each channel that are routed on segments of tracks of single
wire type. We switch them in a way that we can pack them as much as
possible. Figures 6 and 7 show the routing for one channel of one of the
benchmarks without and with our technique. It is obvious that the rout-
ing after applying our technique is more dense and it has more empty
spots of higher length, while before that the net segments are scattered
in the channel. The number of used tracks in this example before the
greedy technique is 9 and after it is 5. In this way we can reduce the to-
tal number of empty tracks throughout the circuit. We tested this idea on
20 MCNC benchmarks. From table 2 we can see that the total number
of empty tracks on the circuit is increased by the average of 9%.

To measure how well our technique can enhance the routability of the
circuit by taking advantage of routing architecture, for each channnel
we created some randomly generated nets with length less than 6 and
add them all to that channel. Then we tried to route them along with
the existing nets before and after our technique. The results for both
cases is given in table 2. It shows that by applying our technique the
total number of unroutable nets of those randomly generated nets can be
reduced by 28.4% on average. This means that given the same number
of tracks in channels, our algorithm can route more segments than VPR.

In some very few benchmarks which are denser ones, this reduction
is less than that. The amount of increase of running time is less than 12
percent of the total running time of program which is totally acceptable
in comparison to the amount of enhancement of routability.

7. Engineering Change Order(ECO) Enabling
The presented algorithm has a motivative potential to be used for ECO

purposes. An ECO is a request to make design changes, typically late in
the design process [4]. The ECO problem involves the ability to(i) spec-
ify the incremental design changes,(ii) implement the design changes
and(iii) update all design databases to reflect the changes. This makes
the framework very useful for the ECO type of routing, since we pre-
sented a way to change the detailed routing to be capable of enhancing
the result in case the number of routing nets rise up later.

8. Conclusion
In this paper we studied the detailed routing of FPGAs and defined

a problem to enhance the routability of a circuit. We showed that a
greedy algorithm can solve the problem optimally, and we proved its
correctness.

We modified the VPR routing tool, and integrated our greedy algo-
rithm into it. We found that our technique reduces the total number of
used tracks all over the chip by 9%. Also, it allows more rerouting to
be done compared with the original Pathfinder algorithm which VPR
uses. The percentage of unroutable nets before applying this technique
on average is 13.4%, while with our algorithm on average is 41.8%. Our
technique is very useful for someone who is developing a routing tool
to enhance the routability power of his/her tool. Also, it is very useful
for supporting ECO, to activate the ability to apply modification to the
circuit, later.

9. References
[1] S. Lee,H. Xiang, D. F.Wong and R. Y.Sun. “Wire Type

Assignment for FPGA Routing”. InProc. of International
symposium on Field-Programmable Gate Arrays, pp:61–67, 2003.

[2] V. Betz, and J. Rose. “VPR: A New Packing, Placement and
Routing Tool for FPGA Research”. InProc. of Seventh
International Workshop on Field Programmable Logic and
Applications, pp:213–222, 1997.

[3] V. Betz. “VPR and T-VPack User’s Manual(Version 3.40)”.
March 27, 2000.

[4] J. Cong, J. Fang, and K. Y.Khoo. “An Implicit Connection Graph
Maze Routing Algorithm for ECO Routing”. InProc. of
International Conference on Computer Aided Design,
pp:163-167, 1999.

[5] L. McMurchie, and C. Ebeling. “PathFinder: A
Negotiation-Based Performance-Driven Router for FPGAs”. In
Proc. of International symposium on Field-Programmable Gate
Arrays, pp:111-117, 1995.

[6] T. H.Cormen, C. E.Leiserson, R. L.Rivest, and C. Stein.
“Introduction to Algorithms”.The MIT Press, 2001.

[7] Xilinx Corporation. “Virtex-II Pro and Virtex-II Pro X Platform
FPGAs: Complete Data Sheet”, 2004.

[8] K. Zhu, Y. -W.Chang, and D. F.Wong. “Timing-Driven Routing
for Symmetrical-Array-Based FPGAs”. InProc. of International
Conference on Computer Design, pp. 628–633, 1998.

[9] S. Lee, and D.F. Wong. “Timing-Driven Routing for FPGAs
Based on Lagrangian Relaxation”. InProc. of International
symposium on Physical Design, pp:176–181, 2002.

[10] Y. -S.Lee, and C. -H.Wu. “A Performance And Routability-Driven
Router for FPGA’s Considering Path Delay”. InProc. of Design
Automation Conference, pp:557–561, 1995.

[11] Y. -W.Chang, D. F.Wong, and C. K.Wong. “FPGA Global
Routing Based on a New congestion Metric”. InProc. of
International Conference on Circuit Design, pp. 372–378, 1995.

[12] G. G.F.Lemieux, S. D.Brown, and D. Vranesic. “On Two-Step
Routing for FPGAs”. InProc. of International symposium on
Physical Design, pp:60–66, 1997.

[13] S. Brown, M. Khellah, and G. Lemieux. “Segmented Routing for
Speed-Performance and Routability in Field-Programmable Gate
Arrays”. Journal of VLSI Design, 1996.

[14] N. Sherwani. “Algorithms for VLSI Physical Design Automation:
Second Edition.”.Kluwar Academic Publishers, Boston, 1995.

[15] C. Y.Lee. “An Algorithm for Path Connections and its
Applications”.IRE Transactions of Electron. Compute., Vol.EC=
10,pp. 346–365, 1961.

Fig. 6: Net segments order before greedy algorithm for STS

Fig. 7: Net segments order after greedy algorithm for STS

Total Used Tracks Unroutable Nets Execution Time
Benchmark Before After Improvement Before After Improvement Before After Increase

alu4 963 868 9.0% 45.7% 15.7% 30.0% 199.18 208.92 4.8%
apex2 1068 1037 3.0% 58.3% 21.3% 37.0% 247.16 261.38 5.7%
apex4 1093 945 13.0% 35.8% 11.6% 24.2% 91.49 99.13 1.1%
bigkey 865 789 8.0% 39.9% 13.5% 24.4% 175.54 190.47 8.5%
clma 2590 2376 8.1% 38.4% 3.7% 34.7% 2321.31 2468.37 6.3%
des 1136 1045 8.0% 22.7% 7.5% 15.2% 142.48 159.37 11.8%

diffeq 710 633 10.8% 49.6% 19.1% 30.5% 74.63 83.35 11.6%
dsip 741 695 6.2% 36.5% 18.8% 17.7% 285.67 298.31 4.4%

elliptic 1352 1232 8.8% 46.2% 13.5% 32.7% 822.85 862.82 4.8%
ex1010 1779 1611 9.4% 40.0% 5.4% 34.6% 483.84 538.18 11.2%
ex5p 1003 909 9.3% 47.0% 14.5% 32.5% 103.21 110.13 6.6%

misex3 1012 883 12.7% 43.5% 12.9% 30.6% 137.40 146.62 6.7%
frisc 2055 1732 15.7% 17.9% 1.0% 16.9% 368.36 411.08 11.6%
pdc 2735 2352 14.0% 25.2% 1.7% 23.5% 1003.60 1068.50 6.4%
s298 712 705 1.0% 75.6% 44.1% 31.5% 394.53 408.43 3.5%

s38417 1304 1282 1.6% 59.1% 21.8% 37.3% 754.55 836.47 10.8%
s38584 1630 1381 15.2% 20.9% 3.1% 17.8% 614.06 688.00 12.0%

seq 1020 969 5.0% 58.6% 22.2% 36.4% 258.59 271.58 5.0%
spla 1968 1728 12.2% 34.0% 4.6% 29.4% 686.00 729.00 6.2%
tseng 535 486 9.1% 57.5% 26.6% 30.9% 49.16 54.68 11.2%

Table 2: Comparison between two routings before and after greedy technique.

