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Abstract

This paper presents a fundamental result on buffer siz-
ing. Given an interconnection wire with n buffers evenly
spaced along the wire, we would like to size all buffers such
that the Elmore delay is minimized. It is well known that the
problem can be solved by an iterative algorithm which sizes
one buffer at a time. However, no closed form solution has
ever been reported. In this paper, we present a closed form
solution to the problem. We derive a buffer sizing function
f(x) where f(x) gives the optimal buffer size for the buffer
at position x. We show that f(x) can be expressed in terms
of the Weierstrass elliptic function℘(x) and its derivative
℘′(x).

1. Introduction

Buffer insertion, buffer sizing and wire sizing have been
shown to be effective techniques in reducing interconnect
delay [1]. This paper focuses on the buffer sizing prob-
lem under the Elmore delay model [2]. Suppose we only
have one buffer size and we want to insert a fixed number of
buffers into an interconnection wire for delay minimization,
it is well known that the buffers will be uniformly spaced in
the optimal solution [3, 4]. Clearly if we allow to size the
buffers, the overall delay will be further reduced. Therefore,
this paper considers the following buffer sizing problem:

Given an interconnection wire withn buffers evenly
spaced along the wire, we would like to size all buffers such
that the Elmore delay is minimized. It is well known that
the problem can be solved by an iterative algorithm which
sizes one buffer at a time [5, 6]. However, no closed form
solution has ever been reported.

In this paper, we present a closed form solution to the
buffer sizing problem. Without loss of generality, we may
assume that the interconnection wire is of unit length rep-
resented by the interval[0, 1] with source (driver) at0 and
sink (load) at1. Let xi = i

n+1 be the position of bufferi,
for 1 ≤ i ≤ n. We derive a continuous functionf(x) such
thatf(xi) gives the optimal buffer size for bufferi, for all i.
The buffer sizing functionf(x) can be expressed in terms
of the Weierstrass elliptic function℘(x) and its derivative

℘′(x) as follows:

f(x) = a +
b℘′(x) + c℘(x) + d

2(℘(x)− e)2
, (1)

wherea, b, c, d, ande are constants.
The reminder of the paper is organized as follows. Sec-

tion 2 presents our circuit model and derives a recurrence
relation for optimal buffer sizing. Section 3 shows that the
recurrence relation for optimal buffer sizing implies an or-
dinary differential equation. In Section 4, we give a brief
overview of the Weierstrass℘(x) function and its funda-
mental difference equation that will be used in Section 5 to
give our closed form expression (1). Section 6 briefly dis-
cusses an integration constant that arose during our deriva-
tions and in Section 7, we show our experimental results.
Finally we conclude the paper in Section 8.

2. The recurrence relation

This section introduces our circuit model of an intercon-
nect with several equally spaced buffers. We derive a recur-
rence relation for the buffer sizes and show that it is both a
necessary and sufficient condition to minimize the Elmore
delay on the wire.

Consider an interconnect of lengthL that has a total re-
sistance ofR and capacitance ofC. The interconnect has
a driver resistanceRD at the source and a load capacitance
CL at the sink. To minimize the propagation delay on the
interconnect, we want to insertn buffers at equally spaced
locations, thus we split the interconnect inton+1 segments;
each segment has a length ofLn+1 .

We haveRS = R
n+1 and CS = C

n+1 being the seg-
ment resistance and capacitance, respectively. (Since we
do not perform wire sizing, we can include the fringing ca-
pacitance into the unit capacitance of our wire model and
can thus avoid limitations that occured, for example, in [7]).
Each wire segment is modeled as aπ-type RC-circuit.

A buffer of sizeb is represented by a switch-level RC-
circuit as shown in Figure 1, whereRB/b denotes its out-
put resistance,CBb denotes its input capacitance andCDb
denotes its output capacitance. For the ease of presenta-
tion, we also model the driver and the load as buffers of
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Figure 1: RC switch-level model of a buffer of size
b

Figure 2: RC switch level interconnect between
buffers i and i + 1

fixed sizesb0 = λ and bn+1 = µ, respectively, so that
RD = RB/b0 andCL = CBbn+1.

The Elmore delay between bufferi and bufferi+1 is, as
shown in Figure 2,

EDi =
RB

bi
(CDbi + CS + CBbi+1) + RS(

CS

2
+ CBbi+1)

(2)
and the total delay from the driver to the load is

ED =
n∑

i=0

EDi. (3)

Clearly, (3) is only a function ofb1, b2, ..., bn since all
other parameters depend on the physical device character-
istics. As it was stated above,b0 = λ andbn+1 = µ de-
fine boundary conditions because the driver and the load
are fixed. The problem therefore consists of finding posi-
tive b∗1, b∗2, ..., b∗n that minimize (3).

A neccessary condition is that the partial derivatives of
ED with respect to allbi are equal to zero, i. e.,

∂

∂bi
ED = 0 ∀i = 1...n. (4)

Since bi only appears in the expressions ofEDi−1 and
EDi, we get

RSCB +RBCB
1

bi−1
−RBCS

1
b2
i

−RBCB
bi+1

b2
i

= 0. (5)

Solving forbi yields our basic recurrence relation for opti-
mal buffer sizing,

b2
i =

bi+1 + CS/CB

b−1
i−1 + RS/RB

∀i = 1, ..., n. (6)

To simplify the notation in the following sections, we define

α

n + 1
=

CS

CB
=

C

(n + 1)CB
(7)

and
β

n + 1
=

RS

RB
=

R

(n + 1)RB
. (8)

Then (6) becomes

b2
i =

bi+1 + α/(n + 1)
b−1
i−1 + β/(n + 1)

. (9)

Note that (9) gives a recurrence relation for the buffer sizes
with bi expressed as a function ofbi−1 andbi+1with bound-
ary valuesb0 = λ andbn+1 = µ. Furthermore, it is both a
necessary and sufficient condition to minimize the Elmore
delay expression (3). To see this, we note that (3) is of the
form

ED(b1, ..., bn) =
T∑

i=1

ai

n∏
j=1

b
cij

j (10)

where theai are non-negative,bj are positive andcij

are real numbers. Equation (10) is a posynomial withT
terms andn variables. Under a change of variablesbi =
edi , ED(d1, ..., dn) is a convex function of(d1, ..., dn).
Therefore, the local optimum determined by (9) is simul-
tanously a global optimum.

3. ODE Formulation

In the following sections, we derive our closed form ex-
pressionf(x). First, we show that the recurrence relation
for optimal buffer sizing (9) implies a second order ordi-
nary differential equation. We will use this ODE then in
Section 5 to find the buffer sizing functionf(x).

In a first step, we replacebi in (9) byf(xi) and have

f(x)2 =
f(xi+1) + α/(n + 1)

f(xi−1)−1 + β/(n + 1)
(11)

Next we setxi = x and∆x = 1
n+1 . We havexi+1 =

x + ∆x, xi−1 = x − ∆x, and 1
n+1 ·

1
n ≈ ∆x2. Equation

(11) becomes

f(x)2 =
f(x + ∆x) + ∆x2nα

f(x−∆x)−1 + ∆x2nβ
. (12)

To show that the RHS of (12) effectively defines a second
order ordinary differential equation, it is useful to substi-
tutef(x) = eg(x) and to perform a Taylor expansion of the



resulting exponential terms on the RHS, so we have

eg(x+∆x) =

eg(x) + ∆xg′eg +
1
2
∆x2eg(g′′ + g′2) + O(∆x3) (13)

for the numerator and a similar expression for the denom-
inator. Collecting terms, (12) becomes the quotient of two
polynomials in∆x,

f(x)2 = e2g(x) =

eg(1 + ∆xg′ + ∆x2( 1
2g′2 + 1

2g′′ + αne−g)) + O(∆x3)
e−g(1 + ∆xg′ + ∆x2( 1

2g′2 − 1
2g′′ + βneg)) + O(∆x3)

=
P (∆x)
Q(∆x)

= A(∆x). (14)

It is now our goal to findA(∆x) = a0 + a1∆x + a2∆x2 +
O(∆x3) so thatf(x)2 = A(∆x). Theai are determined by

(a0 + a1∆x + a2∆x2 + ...)(q0 + q1∆x + q2∆x2 + ...)

= p0 + p1∆x + p2∆x2 + O(∆x3). (15)

and we simply have to compare coefficients to get

a0 =
p0

q0
= e2g (16)

a1 =
1
q0

(p1 − a0q1) = e2gg′ − e2gg′ = 0 (17)

a2 =
1
q0

(p2 − a0q2 − a1q1)

= g′′e2g + αneg − βne3g

= e2g(g′′ + αne−g − βneg). (18)

Hence, (14) becomes

A(∆x) = e2g(1 + ∆x2(g′′ + αne−g − βneg)) + O(∆x3)

= e2g(x) = f(x)2 (19)

For the last step, we drop the terms of third and higher
order and require thatg(x) satisfies the differential
equationg′′ = βneg − αne−g.

An intermediate result is that the buffer sizing function
f(x) must satisfy

f(x) = eg(x), x =
i

n + 1
∀i = 0, ..., n + 1 (20)

whereg(x) is a solution to the second-order ordinary differ-
ential equation

g′′ = βneg − αne−g (21)

with the boundary conditions

g(0) = ln(λ) andg(1) = ln(µ). (22)

4. Weierstrass elliptic function

Our buffer sizing functionf(x) will be obtained by solv-
ing an elliptic integral and has the form of a rational func-
tion in terms of the Weierstrass℘-function and its deriva-
tive ℘′. Before we solve the ODE from the last section, we
briefly state important properties of the Weierstrass elliptic
function.

Apart from being a prototype for all elliptic functions,
the Weierstrass℘-function has the fundamental property
that it satisfies the differential equation

(℘′(x))2 = 4℘3(x)− g2℘(x)− g3. (23)

℘(x) and its derivative℘′(x) have two parameters,g2

and g3, which are calledinvariants. We will use the
shorter notation℘(x) and℘′(x) instead of℘(x; g2, g3) and
℘′(x; g2, g3) in this paper.

The elliptic integral

x =
∫ ∞

y

(4t3 − g2t− g3)−
1
2 dt (24)

implicitely definesy as a function ofx and cannot be solved
using elementary functions. However, differentiating leads
to

(
dy

dx
)2 = 4y3 − g2y − g3 (25)

which is of the same form as (23). The solution is then given
by y = ℘(x) with g2, g3 as parameters [8]. This relation-
ship can be used to solve elliptic integrals of the form

x =
∫ y

y0

dt√
h(t)

, (26)

whereh(t) is a cubic or quartic polynomial. Provided that
y0 is a root ofh(t), the solution to (26) is given by [8]

y = y0 +
1
4h′(y0)

℘(x)− 1
24h′′(y0)

, (27)

where℘(x) is dependant on the invariantsg2 and g3 of
the polynomialh(t). However, for our purposes, the more
general formula given by Weierstrass [8] allows the lower
boundy0 of the integral (26) to be any constanta, not nec-
essarily a root ofh(t). The solution is then slightly more
complex, but it is still only a rational function involving
℘(x), ℘′(x) and some constants,

y = a +

√
h(a)℘′(x)

2(℘(x)− 1
24h′′(a))2 − 1

48h(a)hiv(a)

+
1
2h′(a)(℘(x)− 1

24h′′(a)) + 1
24h(a)h′′′(a)

2(℘(x)− 1
24h′′(a))2 − 1

48h(a)hiv(a)
. (28)

Given the invariantsg2 andg3 of h(t) as parameters,℘ and
℘′ can be calculated efficiently and are also available in



standard mathematical software such as Mathematica. The
derivations of (27) and (28) are rather lengthy and therefore
omitted from this paper.

In the rest of this paper, we derive an elliptic integral of
the form (26) from the set of recurrence relations (9). Its ex-
plicit solutionf(x) is our optimal buffer sizing expression
and has the form of (28).

5. Closed form solution

In this section, we give the closed form expressionf(x)
for optimal buffer sizing which has the form of a rational
function in terms of the Weierstrass functions℘(x) and
℘′(x). We have found so far thatf(x) = eg(x), where
g(x) satisfies the ODE (21). We will now derive an ODE
in f which finally can be solved using the Weierstrass℘-
function.

As a first step, we multiply both sides of (21) by2g′ and
apply the chain rule of differentiation backwards. Hence,

2g′g′′ = 2g′(nβeg − nαe−g) (29)
d

dx
(g′2) = 2n

d

dx
(βeg − αe−g) (30)

g′2 = 2n(βeg − αe−g) + c, (31)

wherec is a constant of integration that has to be determined
numerically. We briefly deal with this problem in Section 6.

We now undo the substitution made in (14) so that
g(x) = ln f(x) and thereforeg′ = f ′(x) · 1

f(x) . The desired
buffer sizing functionf(x) is now given as the solution to
the differential equation

f ′2 =
(

df

dx

)2

= 2nβf3 + cf2 + 2nαf. (32)

Moving all terms withf to one side and integrating gives
an elliptic integral∫

dx = x =
∫ f(x)

f(0)

dt

±
√

2nβt3 + ct2 + 2nαt
(33)

which essentially has the same form as (26). It only remains
to find the invariantsg2 andg3 in order to apply (28) to get
a solution forf(x). This can be done by a simple transform
of variables

t′ =
2

nβ
· t− c

6nβ
(34)

in (33). This changes the expression under the radical sign

2βnt3 + ct2 + 2αnt (35)

into

4t′3 − (
c2

12
− αβn2)t′ − (

1
12

αβn2c− c3

216
)

so that the invariants become

g2 =
c2

12
− αβn2, g3 =

1
12

αβn2c− c3

216
. (36)

This leads to our central result. The buffer sizing function
f(x) for optimal buffer sizing at equally spaced pointsx =
xi = i

n+1 , i = 0...n + 1, is given by

f(x) = λ +

√
h(λ)℘′(x)

2(℘(x)− 1
24h′′(λ))2

+ 1
2h′(λ)(℘(x)− 1

24h′′(λ)) + 1
24h(λ)h′′′(λ)

2(℘(x)− 1
24h′′(λ))2

, (37)

whereh(t) = 2βnt3+ct2+2αnt and the Weierstrass func-
tion has the invariants (36) as parameters.f(x) fulfills the
boundary valuesf(0) = λ andf(1) = µ.

6. Integration constant

In the last section, we did not give a description of the in-
tegration constantc. For completeness, this section shows
that one can distinguish four non-trivial cases for the be-
haviour off(x). Each case has its different expression that
determinesc.

1. From (21),g′′ can be either purely non-negative, then
g(x) and consequentlyf(x) = eg(x) are convex func-
tions andf(x) has the shape of aU , limited by the
boundary values. Settingg′′ = 0, we find that allbi,
including b0 = λ andbn+1 = λ, must be larger than

eln
√

α
β =

√
α
β . The slopef ′ from (32) must consist of

a decreasing part fromλ to a minimum buffer and an
increasing part from the minimum toµ. It is not hard
to see that the value of this minimum is given by the

zero of (32) that lies to the right of
√

α
β which is

bmin(c) =
−c +

√
c2 − 16αβn2

4βn
(38)

We then have a simple condition that the constantc
must fulfill: integrating and summing the two parts of
the slope must be equal to one,

1 =
∫ λ

bmin(c)

dy√
2nβy3 + cy2 + 2nαy

+
∫ µ

bmin(c)

dy√
2nβy3 + cy2 + 2nαy

. (39)

2. Conversely, ifg′′ is strictly non-positive,f(x) is con-

cave and allbi are below
√

α
β . This case is analog to

the first one and leads to a similar condition.



3. Also, f ′ can have only one monotonic part and is
strictly increasing on the whole interval[λ;µ], then

λ ≤
√

α
β andµ ≥

√
α
β . We integrate the (positive)

slopef ′ from λ to µ and have a simpler condition for
c,

1 =
∫ µ

λ

dy√
2nβy3 + cy2 + 2nαy

. (40)

4. The case thatf ′ is strictly decreasing and thusλ ≥√
α
β andµ ≤

√
α
β can be handled in a similar manner

as the previous one.

5. Note that iff ′ is equal to zero,f(x) =
√

α
β follows as

a trivial case.

For the cases 1-4, one can construct simple procedures to
find c. For case 3, for example, one can interpret (40) as a
function

d(c) =
∫ µ

λ

dy√
2nβy3 + cy2 + 2nαy

− 1. (41)

It is not hard to show thatd(c) is monotonic with respect to
c and has a unique root which can be determined efficiently
by bisection, for example.

7. Experimental results

In this section, we show that our solution performs very
well in practice. We compare buffer sizes obtained by an
iterative method [5, 6] with values calculated by evaluating
(37) at equally spaced points on the interval[0, 1].

For the physical parameters, we rely on values given in
[1]. More specifically, we consider a copper wire (ρ =
2.2µΩ · cm) with a width of 130 nm, a length of 1 mm and
an aspect ratio of 2.1:1. We add unit-length area and fring-
ing capacitance together. These values are summarized in
table 1.

Table 1: Physical parameters for unit buffer and
wire

Buffer Wire
Output res. [k Ω] 4.5 resistance [ Ω

mm
] 620

Input cap. [fF] 0.425 capacitance [ fF
mm

] 58.5
intrinsic delay [ps] 45.8 length [mm] 1

Applying (7) and (8), we haveα = 137.65 and β =
0.1378. The following Figures (3) - (6) plot iteratively ob-
tained buffer sizes (dots) and those calculatd by applying
(37) (straight curve) for several combinations ofb0, bn+1

andn.
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Figure 3: n = 50, b0 = 20, b51 = 10
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Figure 4: n = 12, b0 = 35, b13 = 40
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Figure 5: n = 7, b0 = 40, b8 = 20
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Figure 6: n = 25, b0 = 15, b26 = 35

We calculated many different cases and observed that our
closed form expression shows a very good agreement with
iteratively calculated buffer sizes.

8. Conclusion

In this paper we addressed the problem of sizingn uni-
formly spaced buffers on an interconnection wire to mini-
mize Elmore delay.

Previously there was no known closed form solution to
this problem. We presented a closed-form buffer sizing
functionf(x), expressed in terms of the Weierstrass ellip-
tic function ℘(x) and its derivative℘′(x), such thatf(xi)
gives the optimal buffer size for bufferi (at positionxi),
1 ≤ i ≤ n.

We showed that the buffer sizes obtained by our closed
form expression matched very well with those obtained by
the iterative method [5, 6].
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