
Routing Tree Construction with Concurrent Performance, Power and Congestion
Optimization

Abstract— We present a routing-tree construction algorithm
that considers multi-objectives of performance, power and con-
gestion concurrently. Congestion is measured with balanced us-
age of routing resources among layers. Simultaneous buffer in-
sertion and layer assignment tends to produce routing trees with
shorter overall length. Applying the proposed algorithm on a sub-
set of routes on a commercial 64-bit microprocessor yielded 9%
less repeater usage and 1.5% shorter overall routing tree length
with improved overall performance at the same time, compared
to other routing tree construction algorithms.

I. INTRODUCTION

The scaling to the Deep Sub-Micron (DSM) feature sizes for
CMOS VLSI has led to decreased device cost and increased
performance. But, starting from the 250nm process technol-
ogy node, the interconnect delay dominates the gate delay [22]
due to poor scalability of interconnects. The performance of
future VLSI chips will no longer be determined by gate delays
rather by interconnect delays. Consequently, such rapid scal-
ing requires performance-driven layout techniques. Routing-
Tree (RT) synthesis is an increasingly important part of inter-
connect design.

The typical goal of performance-driven RT construction is
to eliminate the Delay Violation (DV) to any sink node. The
delay violation is defined as the difference between the actual
delay and the required delay for a given interconnect. When
RT construction is performance-driven, layer assignment and
buffer insertion has to be considered concurrently within the
RT construction process since they also have a significant im-
pact on delay. Traditionally, layer assignment and buffer inser-
tion are often performed on the finished RT [3, 23, 18, 4, 9, 20],
and RT is constructed without the knowledge of buffer inser-
tion and layer assignment. This can yield suboptimal solutions.
A performace-driven RT construction algorithm without either
buffer insertion or layer assignment or both will try to elim-
inate the delay violations by trading-off the minimum length
RT topology resulting in star-like and longer routing-trees. At-
tempts have been made recently to incorporate buffer insertion
into RT construction [2, 5, 10]

The proposed algorithm incorporates buffer insertion and
layer assignment as dual objective in RT construction to
achieve delay and power improvement over existing methods.
Each step of the RT construction takes advantage of partially
constructed, but layer and buffer optimized, RT to construct
the next routing segment. While the primary objective of the
proposed method is delay reduction, the secondary objectives

include minimization of tree length to reduce the routing re-
source usage; and equal utilization of layer resources to pre-
vent crowding.

Routing Tree construction is NP-Hard [21] and various
heuristics are usually employed. Iterative 1-Steiner algorithm
[21, 15] starts from a Minimum Spanning Tree (MST) and iter-
atively modifies the original tree each time introducing a new
edge which minimize the total tree length. Minimum Rectalin-
ear Steiner Tree (MRST) minimizes the total tree length which
is preferable in terms of routing resource demand. But, they
won’t necessarily satisfy the timing constraints due to the fact
that minimum length routing-tree doesn’t necessarily mean the
length from source to the critical sink node is minimized.

Jaewon proposed a Linear Programming (LP) based algo-
rithm [13] which has constraints on the source-sink lengths.
Even with the minimum critical source-sink path length, the
routing tree may not be suitable for VLSI routing since the de-
lay at any sink is not only the function of source-sink length
but also the topology of the rest of the tree.

Critical sink routing tree construction algorithms [17, 23,
16] progressively builds the routing tree which, at each iter-
ation, a node is connected (or modified if the starting tree is
a sub-optimal tree) so that the maximum delay is minimized
(or maximum delay violation or total delay is minimized).
Since the delay of a routing tree has to be calculated in or-
der to decide which connection is next in the suboptimal (or
partially completed) tree, resistance and the capacitance of the
tree edges should be known which is a function of the routing
metal layer that tree is being routed. Therefore, layer assign-
ment is generally done without the knowledge of routing tree
topology resulting in suboptimal layer assignment.

RTs generated without respect to buffer insertion also yield
suboptimal star-like tree topologies. Q-Trees [10] attempts
to further optimize the suboptimal buffered trees by han-
nan grafting with a possible buffer replacement. Other algo-
rithms such as P-Tree [24] and C-Tree [25] incorporate multi-
objectives of wire sizing, delay/area tradeoff simultanesouly,
but assume fixed layer asignment and ignore the impact of
buffer insertion on RT topology.

Yildiz’s preferred steiner trees [12, 1] assign the edges of the
routing tree based on the length. The upper layers become cost
effective for long wires while the shorter wires are routed on
lower layers due to the additional cost of vias. Although this
scheme is desirable, it is not really performance-driven. It is
conceivable that a short net can be critical. Furthermore. it can
result in overcrowded layers since it doesn’t consider conges-
tion. Cho’s layer assignment algorithm [7] uses a Network In-



terface Graph (NIG) to model the potential cross-talk between
nets. Hence, the nets with high probability of interference are
placed on separate layers. NIG doesn’t consider timing, hence
it can assign critical nets to disadvantaged layers. Saxena [11]
suggests assigning the nets that failed timing to the upper rout-
ing layer based on layer area quotas during routing process.
Most of the existing RT construction algorithms use Ginneken-
type dynamic programming based algorithms [18, 9, 8] for re-
peater insertion during or after RT construction.

In summary, traditional routing flow first builds a routing-
tree topology. Layer assignment is performed before or af-
ter the routing process. Buffers are usually inserted last for
any nets with a delay violation. Some attempts were made
[12, 8, 17, 19, 5, 2, 10, 11, 20] to incorporate buffer insertion or
layer assignment into the routing process. But no attempt has
been made so far to integrate both buffer insertion and layer as-
signment into the RT construction. Therefore, routing trees are
constructed with incomplete information about layer assign-
ment or buffer insertion. The resulting routing trees are often
suboptimal. Thus, performance-driven routing tree construc-
tion tends to increase the length with star-like tree structures
in order to meet the timing requirements. This will greatly
increase the routing resource demand and potentially increase
use of repeaters. Moreover, the resulting routing-tree topol-
ogy may also uneven layer resource usage due to failed nets
being reassigned to other layers during the rip-up and reroute
process.

In this paper, we present a new routing tree construction
algorithm that concurrently performs layer assignment and
buffer insertion during the process of routing tree construction.
The proposed algorithm generates more compact routing trees
with less buffers and less congestion at different layers while
producing better delays. Delay calculation during RT construc-
tion uses AWE-based methods [14] for accuracy.

The remaining part of this paper is organized as follows:
Section II describes the proposed routing tree construction al-
gorithm with simultaneous layer assignment and buffer inser-
tion. Experimental results using a 64-bit microprocessor core
is given in Section III. Finally summary and concluding re-
marks are presented in Section IV.

II. ROUTING-TREE CONSTRUCTION WITH SIMULTANEOUS
LAYER ASSIGNMENT AND BUFFER INSERTION

The algorithm of RT construction with Layer Assignment
and Buffer Insertion (LABI) is shown in Figure 1. For a given
netlist, the algorithm starts from the source node of each net
and iterates through every sink node until the entire tree is
constructed for every net in the netlist. At each iteration, Build-
PartialTree chooses the most timing critical sink node from the
unconnected sink nodes. If a net is a non critical net, i.e. there
is no delay violation, BuildPartialTree chooses the sink node
which minimize the total tree length. The most critical sink
node is decided by tentatively connecting every sink node to
the partial tree, and by calculating the maximum delay viola-
tion of the tree. BuildPartialTree joins the critical sink node

1 LABI(S)
2 begin
3 S = All Nets
4 InitialLayerAssignment(S)
5 nnet = unconnectedSinks(net), net ∈ S
6 while (nnet! = φ, ∀ net ∈ S)
7 #Start BuildPartialTree
8 foreach net ∈ S
9 mnet = partialTree(net)

10 nnet = unconnectedSinks(net)
11 if (net is critical)
12 s = criticalSink(mnet, nnet)
13 else
14 s = minLengthSink(mnet, nnet)
15 mnet = mnet + s;
16 nnet = nnet − s;
17 GrowTree(mnet, s)
18 #End BuildPartialTree
19 do
20 AdjustLayerAssignment(S)
21 foreach net ∈ S
22 mnet = BldpartialTree(net)
23 InsertBuffer(mnet)
24 while (Buffer inserted for any net in S)
25 foreach net ∈ S
26 foreach buf ∈ net
27 RemoveBuffer(net, buf)
28 if (DVnet > 0)
29 ReinsertBuffer(net, buf)
30 end

Fig. 1. Simultaneous buffered routing tree construction with layer assignment

to the existing tree such that the maximum delay violation of
the tree is minimized or the total length of the tree is mini-
mized if there is no delay violation. Althought any progres-
sive RT construction can be adapted here, this scheme is sim-
ilar to the Critical Sink Routing Tree (CSRT) approach [16]
with HBest variant and without global Slack Removal (GSR)
post processing. The major difference lies in the order of
unconnected sinks to be chosen to connext to the tree: We
choose the most critical sink that minimize the delay viola-
tion whereas GSR chooses sink which minimizes the tree de-
lay is chosen. Our preliminary experiments indicated slight
improvement with our scheme. Since the timing of each net
has been changed at each iteration by growing the tree, layer
assignment of the entire netlist is readjusted and buffers are
inserted. When the buffer insertion and layer assignment are
applied to the partial tree, It will update the timing of the par-
tially constructed tree allowing the next sink node to connect
to a better location. In other words, by inserting buffers or im-
proving the delay of the tree with layer assignment, sink nodes
can potentially connect to the lower edges in the tree topology
(or to a closer edge to the sink), effectively reducing the total
tree length. The post processing phase (lines 25-29) at the end
will be discussed later.

A simple example to compare the RT construction process
is given in Figure 2 where rat is required arrival time and dv is
delay violation. The traditional methods, where RT construc-
tion, layer assignment and buffer insertion are performed sep-
arately, produce the star-like topology as shown in the Figure



2 a). The proposed method, the buffers inserted into the partial
tree in Figure 2 b), enables the subsequent connections to bet-
ter locations yielding more compact and higher performance
tree topology.

rat=2038
dv=-705

rat=320
dv=405

rat=1161
dv=373

src

rat=5235
dv=-4698

src

rat=2038
dv=-1451

rat=5235
dv=-4742

rat=320
dv=36

rat=1161
dv=-371

a)

b)

src

rat=5235

rat=320
dv=-25

rat=1161

rat=2038

src

rat=5235
dv=-4347

rat=320
dv=-0

rat=1161
dv=-378

rat=2038
dv=-1086

(b4)

(0)

(1)

(2)
(3)

(S1)

Fig. 2. a)RT construction, layer assignment and buffer insertion b)Concurrent
RT construction, layer assignment and buffer insertion

It is clear from this example that simultaneous consideration
of different objectives during RT construction can produce bet-
ter routes. No single task, i.e building tree, layer assignment,
and buffer insertion, takes in its entirely without considering
its impact on other tasks and the overall routing quality. The
following subsections give more details about different aspects
of the RT construction process.

A. Routing-Tree Construction

The proposed algorithm for BuildPartialTree shown in Fig-
ure 3 uses a greedy approach to progressively build the routing
tree with minimum delay violation. Initially, the tree includes
only the source node. At each iteration, all the unconnected
sink nodes are tentatively connected to the existing tree and the
most critical sink node is chosen and permanently connected to
the existing tree. In the proposed algorithm, the preference is
given to the most timing critical sink node to be connected first.
In the existing RT construction algorithms, preference has been
given to the least timing critical sink [16, 23]. Although there
is no clear preference based on theoretical advantages given
in the literature, our own experiments indicate a slight advan-
tage of giving preference to the most timing critical sink. This
can be seen from the example in Figure 2 b): The buffer inser-
tion (buffer 4) isolates the most critical path (path 0-1) in the

1 BuildPartialTree(T )
2 #one iteration
3 bestDV = −INF
4 bestLen = INF
5 foreach unconnected node n ∈ T
6 bestDV Pin = INF
7 bestLenPin = INF
8 foreach edge e ∈ T
9 JoinNodeAtEdge(T, n, e);

10 awe(T );
11 if (DV (T ) < 0 & Len(T ) < bestLenPin)
12 bestLenPin = Len(T )
13 bestEdge = e
14 elsif (DV (T ) < bestDV )
15 bestDV Pin = DV (T )
16 bestEdge = e
17 DisjoinNode(T, n)
18 if (DV (T ) < 0 & bestLenPin < bestLen)
19 bestLen = bestLenPin
20 bestNode = n
21 elsif (besDV Pin > bestDV )
22 bestDV = bestDV Pin
23 bestNode = n
24 JoinNodeAtEdge(T, bestNode, bestEdge)

Fig. 3. Performance driven progressive routing tree construction

early stages allowing less critical sinks (sink 2,3) to connect a
location (s1) which is not on the critical path. The progressive-
ness of the proposed RT construction allows concurrent buffer
insertion and layer assignment as an integral part of the RT
construction algorithm. The proposed algorithm falls back to
minimum length tree construction if there is no delay violation.

For a partially constructed tree with i pins, the maximum
number of edges is 2i− 3 and the remaining number of pins is
n− i where n is the total number of pins. The possible permu-
tations of tree to connect the rest of the pins can be expressed
as:

n∑

i=1

(2i− 3)(n− i) (1)

Hence, the complexity of the proposed RT construction algo-
rithms is O(n3) due to the inner search loop for the most criti-
cal pin.

B. Buffer Insertion and Removal

The buffer insertion problem is NP-hard [9, 18]. Equal dis-
tance buffer insertion generally yields good delay reduction-
complexity trade-off [23]. This is due to the fact that if the
distance between buffers di is equal to one other,

∑
d2

i is min-
imized provided that

∑
di is constant [6]. The proposed al-

gorithm inserts a buffer which maximizes the delay violation
reduction by evaluating delay reduction with respect to possi-
ble buffer locations. The algorithm evaluates buffer locations
at Steiner points as well as on routing segments.

The overall buffer insertion algorithm, shown in Figures 4
and 1, consist of two phases. During the first phase, Insert-
Buffer, buffers are inserted for critical nets in the netlist. The
second phase, where excessive buffers are removed as shown



1 InsertBuffer(T )
2 bestDV = INF
3 foreach edge e ∈ T
4 b = InsertBufferAtEdge(T, e)
5 awe(T )
6 if (DV Imp(T ) > 10ps & DV (T ) < bestDV )
7 bestEdge = e
8 bestDV = DV (T )
9 RemoveBuffer(T, b)

10 InsertBufferAtEdge(T, bestEdge)

Fig. 4. Buffer Insertion

in Figure 1 (lines 25-29), re-optimizes the RTs by further trad-
ing off performance against power. At each iteration during the
first phase, a buffer is tentatively inserted into each candidate
buffer location. The buffer location with the best delay vio-
lation improvement is chosen. The iteration loop stops when
the amount of delay improvement is below a preset threshold
for all possible buffer locations, or the timing constraints for
the net are met. When the first phase is completed, the second
phase starts by re-visiting every net once to perform further
performane power and delay trade-off. This is a desirable step
due to the fact that inserted buffers on a partially built tree may
be suboptimal after the rest of the tree is completed. The com-
plexity of the overall buffer insertion algorithm is O(n).

C. Layer Assignment

Layer assignment can be used to improve routing quality in
three different ways:

• Delay for the same length wires is better on the upper
layers. Hence, critical nets can be assigned to the upper
layers to improve timing.

• Coupling is usually less between layers. Therefore,
crosstalk can be reduced by placing high-interference nets
into separate layers.

• If a routing area on a particular layer is highly congested,
some nets can be assigned to a different layer to reduce
the congestion.

The proposed algorithm performs an initial layer assignment
for all the nets before the routing tree construction starts. Al-
though the accurate timing, congestion and cross-talk informa-
tion are not available prior to routing, an estimated metric can
be used to assign a net to a layer to improve the routing. Our al-
gorithm uses estimated layer usage to calculate the utilization
of the layer. Layer usage is defined as:

Ul =
∑

i∈B

bl
i/pitchl +

∑

j∈N+S

dl
j (2)

The layer usage incurred from blockages is calculated as the
sum of the track lengths covered by the blockage. bl

i is the
area of the blockage i at layer l. pitchl is the distance between
routing tracks at layer l. Layer usage incurred from existing

routing N and current routing S is simply calculated by adding
the horizontal (or vertical) distance dl

j of the routing tree edges
of each net. The proposed assignment algorithm relies on sort

1 LayerAssginment(S)
2 #S=net list
3 #initialize layer usages
4 Ul = 0, l ∀ layers
5 Ul = Ul + addBlockages()
6 Ul = Ul + addExistingRouting()
7 do
8 x = S.end()
9 y = x− 1

10 do
11 x = x− 1
12 y = y − 1
13 if x and y are on the same layer
14 if DVx < DVy

15 swap(x, y)
16 elsif x and y are on neighboring layers
17 if Ulx > 1.1 ∗ Uly

18 lx = ly
19 elsif Ulx < 0.9 ∗ Uly

20 lx = ly
21 elsif max(DV

xly , DVylx ) <

22 max(DVx, DVy)
23 swap(x, y)
24 updateLayerUsage(Ulx )
25 updateLayerUsage(Uly )

26 while y 6= S.begin()
27 while swapped

Fig. 5. Performance-Driven Layer Assignment

list created based on routing capacity of each metal layers as
shown in 6. Each metal pair occupies a segment of hte sort
list. Teh lower metal layers sit towards the bottom of the sort
list. Inititally, all nets are randomly inserted into the list. the
nets in the list are sorted based their delay violations (DV). If
the layer assignment of both net is the same, the net with the
higher delay violation bubbles-up, If the nets are in different
layers, layer usages are first compared:

• If the upper layer’s usage is bigger than lower layer’s us-
age, both net are assigned to the lower layer.

• If the layer usage is similar, nets are swapped tentatively
to compare the maximum delay violation. The assign-
ment that yields the best delay violation is chosen.

The process is repeated until there is no legal swap left in the
list. Fig 5 gives the layer assignment algorithm. The resulting
layer assignment moves critical nets to the upper metal lay-
ers. However, this is counter balanced by the requirement that
the layer usage distribution be as homogeneously as possible
among different layers to obtain less coupling and less conges-
tion when the routing is actually performed. It is worth noting
that nets in the list are swapped throughout the routing process
in concurrent fashion with repeater insertion and RT construc-
tion.

Althgouht the worst case complexity of the sort algorithm
is O(n2), sort is usually completed around O(n) except dur-
ing the first iteration where nets are randomly inserted into the



D
el

ay
 V

io
la

tio
n 

In
cr

ea
si

ng


Layer Pair
3-4

Layer Pair
6-7

Layer Pair
5-6

Layer Pair
4-5

net i

net j

La
ye

r u
sa

ge


fo
r a

 g
iv

en
 la

ye
r p

ai
r

Comparing neighboring nets
to determine layer assignment

Fig. 6. DV sort list for layer assignment

list since delay (hence criticality) is unknown initially. In the
subsequent iterations, list is mostly sorted and swap operation
doesn’t occur frequently.

III. EXPERIMENTAL RESULTS

The proposed algorithm was applied to construct routing
trees for a subset of the glonal nets in a 64-bit microprocessor
core. The subset has a total of 13204 unconnected nets. In or-
der to understand the behavior of the proposed RT construction
algorithm, different types of multiple-pin nets, i.e. 2-pin nets
and 3-pin nets, were extracted from the unrouted nets to form
different categories for comparison. There are a total of 9938
2-pin nets and 1339 3-pin nets. Since there are not enough
nets with more than 3 pins in the unrouted set. Therefore 1000
randomly generated 4 to 6-pin nets were used for comparison.
For the nets in the microprocessor core, the timing constraints
were extracted from a static timing database. For randomly
generated nets, the timing constraints were generated based on
timing of the corresponding minimum length Steiner tree plus
a random perturbation. The routing uses five upper metal lay-
ers.

RT constructions were performed on each set of routes. The
unrouted nets of the microprocessor core as a whole were also
considered as a test case. Since the CSRT method [16] is a
typcal sequental algorithm and is widely used for routing tree
construction, we compare the results from the proposed con-
current algorithm to those from CSRT. Because CSRT doesn’t
include buffer insertion and layer assignment, for the sake of
fairness, the proposed buffer insertion algorithm is applied to
the nets with delay violation at the end. An initial layer assign-
ment is performed based on estimation of timing criticality of
the nets. This is a typical flow in a highly hierarchical custom
design. The initial layer assignment is often performed manu-
ally.

The results were compared based on the following metrics:

• #B : number of buffers inserted.

• #DV : number of nets with delay violation.

• maxDV : maximum delay violation.

• L : total length of the routing-trees.

• CPU : CPU time.

The results in Table I show that the number of delay vio-
lations are consistently better in each test case for the pro-
posed algorithm. The number of buffers required for achieving
better delay violations are also consistently less for the pro-
posed algorithm, ranging from 9% less buffers for µP core
to around 29% for 6-pin nets. The proposed algorithm also
achieved around 1.5% shorter overall routing tree length. For
2-pin nets, the proposed algorithm is reduced to the traditional
method since there is only one possible connection for 2-pins
nets. The propsed algorithm performs better overall as the pin
count increases. This is due to fact that critical pins are op-
timized early in the routing process and less critical pins are
connected to better locations on the existing routing tree later
in the routing process. The observation has been illustrated
earlier in the paper in Figure 2.

TABLE I
SEQUENTIAL AND SIMULTANEOUS ROUTING TREE CONSTRUCTION

RESULTS

#B #DV maxDV L CPU

(ps) (m) (s)

CSRT 2339 277 205 22.6 27
9938/2-pins

Our Alg. 2339 277 205 22.6 40

CSRT 1129 184 208 6.5 1.9
1339/3-pins

Our Alg. 979 181 201 6.4 2.8

CSRT 685 63 348 16.5 2.2
1000/4-pins

Our Alg. 490 53 214 16.5 3.8

CSRT 783 53 267 19.7 3.2
1000/5-pins

Our Alg. 699 40 244 19.5 4.1

CSRT 1041 56 470 23.1 7.3
1000/6-pins

Our Alg. 735 41 309 22.5 8.2

13204 nets CSRT 3690 535 221 32.1 69

µP core Our Alg. 3335 533 201 31.7 159

Table II shows how the wires are distributed among layers
for the µP core test case. The proposed algorithm yields more
homegenous layer utilization. This can potentially yield better
congestion optimization for the global routing. Since the actual
routing has not been performed at this stage, wire lengths are
used as a congestion metric instead of overflows on routing
tiles.

IV. SUMMARY AND CONCLUSIONS

A new multi-objective based routing-tree construction tech-
nique considering performance, power and congestion has
been presented. The proposed algorithm incorporates buffer



TABLE II
WIRE DISTRIBUTION

M3 M4 M5 M6 M7

CSRT 12% 28% 23% 27% 10%

Our Alg. 17% 22% 24% 22% 15%

insertion and layer assignment simultaneously into the RT
construction process. The experiments on 2-pin to 6-pin
nets shows that the proposed algorithm consistently produces
shorter tree length, less number of buffers and less number of
delay violations. The higher fanout of a net, the better im-
provement the proposed algorithm can provide.

V. ACKNOWLEDMENT

The research presented in this paper was funded partially by
HP through an HP Graduate Fellowship. The authors would
like to thank HP for their generous support throughout this re-
search

REFERENCES

[1] Ameya R. Agnihotri, Patrick H. Madden, “Congestion reduction in tra-
ditional and new routing architectures,” Proceedings of the 13th ACM
Great Lakes Symposium on VLSI, pp. 211 - 214, April 2003.

[2] Hai Zhou; D.F. Wong; I-Min Liu; A. Aziz, “Simultaneous routing and
buffer insertion with restrictions on buffer locations,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, pp.
819 - 824, July 2000.

[3] S. Muddu; E. Sarto; M. Hofmann; A. Bashteen, “Repeater and intercon-
nect strategies for high-performance physical designs,” Integrated Circuit
Design, 1998. Proceedings. XI Brazilian Symposium on, pp. 226 - 231 ,
Oct 1998.

[4] Jiang Hu; C.J. Alpert; S.T. Quay; G. Gandham, “Buffer insertion with
adaptive blockage avoidance,” Computer-Aided Design of Integrated Cir-
cuits and Systems, IEEE Transactions on, pp. 492 - 498, April. 2003.

[5] Li-Da Huang; Minghorng Lai; D.F. Wong; Youxin Gao, “Maze routing
with buffer insertion under transition time constraints,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, pp. 91
- 95, Jan 2003.

[6] P. Saxena; B. Halpin, “Modeling Repeaters Explicity Within Analytical
Placement,” Design Automation Conference, 2003. Proceedings, pp. 699
- 704, June 2004.

[7] C.D. Cho; S. Raje; M. Sarrafzadeh; M. Sriram; S.M. Kang, “Crosstalk-
minimum layer assignment,” Custom Integrated Circuits Conference,
1993., Proceedings of the IEEE 1993, pp. 29.7.1 - 29.7.4 , May 1993.

[8] M. Hrkic; J. Lillis, “Buffer tree synthesis with consideration of temporal
locality, sink polarity requirements, solution cost, congestion, and block-
ages,” IEEE Transactions on CAD, pp. 481 - 491, April 2003.

[9] J. Lillis; Chung-Kuan Cheng; T.-T.Y. Lin, “Optimal wire sizing and
buffer insertion for low power and a generalized delay model,” Solid-
State Circuits, IEEE Journal of, pp. 437 - 447, March 1996.

[10] A.B. Kahng; Bao Liu, “Q-Tree: a new iterative improvement approach
for buffered interconnect optimization,” VLSI, 2003. Proceedings. IEEE
Computer Society Annual Symposium on, pp. 183 - 188, Feb. 2003.

[11] P. Saxena; C.L. Liu, “Optimization of the maximum delay of global in-
terconnects during layer assignment,” Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, pp. 503 - 515, April
2001.

[12] M.C. Yildiz; P.H. Madden, “Preferred Direction Steiner trees,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, pp. 1368 - 1372, Nov. 2002.

[13] Jaewon Oh; Iksoo Pyo; M. Pedram, “Constructing lower and upper
bounded delay routing trees using linear programming,” Design Automa-
tion Conference Proceedings 1996, 33rd, pp. 401 - 404, June 1996.

[14] N. Gopal; D.P. Neikirk; L.T. Pillage, “Evaluating RC-interconnect us-
ing moment-matching approximations,” Computer-Aided Design, 1991.
ICCAD-91. Digest of Technical Papers, 1991 IEEE International Confer-
ence on, pp. 74 - 77, Nov. 1991.

[15] A.B. Kahng; G. Robins, “A new class of iterative Steiner tree heuristics
with good performance,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, pp. 893 - 902, July 1992.

[16] K.D. Boese; A.B. Kahng; B.A. McCoy; G. Robins, “Near-optimal crit-
ical sink routing tree constructions,” Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, pp. 1417 - 1436,
Dec. 1995.

[17] Jiang Hu; S.S Sapatnekar, “A timing-constrained simultaneous global
routing algorithm,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, pp. 1025 - 1036, Sept. 2002.

[18] Van Ginneken, L.P.P.P., “Buffer placement in distributed RC-tree net-
works for minimal Elmore delay,” Circuits and Systems, 1990., IEEE
International Symposium on, pp. 865 - 868, May 1990.

[19] T. Deguchi; T. Koide; S. Wakabayashi, “Timing-driven hierarchical
global routing with wire-sizing and buffer-insertion for VLSI with multi-
routing-layer,” Design Automation Conference, 2000. Proceedings of the
ASP-DAC 2000, pp. 99 - 104, Jan. 2000.

[20] C.C.N. Chu; D.F. Wong, “A quadratic programming approach to simul-
taneous buffer insertion/sizing and wire sizing,” Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, pp. 787 - 798,
June 1999.

[21] J. Griffith; G. Robins; J.S. Salowe; Tongtong Zhang, “Closing the gap:
near-optimal Steiner trees in polynomial time,” Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, pp. 1351 -
1365, Nov. 1994.

[22] www.src.com, “International Technology Roadmap for Semiconduc-
tors,” Semiconductor Research Corporation, 2003.

[23] Jiang Hu; S.S. Sapatnekar, “Algorithms for non-Hanan-based optimiza-
tion for VLSI interconnect under a higher-order AWE model,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
pp. 446 -458, April 2000.

[24] J.Lillis; C.K.Cheng; T-T.Y.Lin; C-Y.Ho, “New Performance Driven
Routing Techniques With Explict Area/Delay Tradeoff and Simultane-
ous Wire Sizing,” 33th Design Automation Conference Proceedings, pp.
395 -400, June 1996.

[25] D.Wang; E.S.Kuh, “A new General Connectivity Model and Its Applica-
tions to Timing-Driven Steiner Tree Routing,” Electronics, Circuits and
Systems, 1998 IEEE International Conference on, pp. 71 -74, Sept 1998.


