
Fast Multi-Layer Global Routing

ABSTRACT
Design turn-around times are decreasing rapidly, and there is a
strong need for physical design tools that run quickly, and produce
stable results. In traditional global routing methods, the maze rout-
ing techniques used to minimize congestion can be time consum-
ing, and can also increase wire lengths by introducing detours. A
mismatch between placement and global routing wire lengths can
make timing closure difficult.

In this paper, we present a new global routing approach for use
in a run time constrained physical design flow; our new tool is hun-
dreds of times faster than Labyrinth and Chi. We focus on designs
that are not space limited, which have become relatively common.
Rather than minimization of congestion through the insertion of
bends and detours, we expand the placement area to obtain addi-
tional routing resources. We obtain total wire lengths and conges-
tion levels that are comparable to traditional methods, but with far
lower run times. Our routes are detour free and explicitly minimize
bends–making wire length estimates made during placement and
gate sizing much closer to what is obtained after detail routing.

1. INTRODUCTION
As circuit sizes increase, design tool run times have become

more problematic. Low turn-around times are critical to the success
of any project. As most design flows include extensive iterative
improvement, steps within the flow which consume a great deal of
compute time can hamper optimization. Additionally, is is essential
to have accurate estimates of wire length and delay–incorrect esti-
mations can cause some portions of a circuit to be over optimized,
while other portions can fail to meet performance constraints.

In physical design, placement and global routing can dominate
run time. Recent advances in placement algorithms have produced
substantial jumps in tool speed; the tool FastPlace[12], for exam-
ple, can be a factor of 100 or more faster than other methods.

For global routing, traditional tools can be quite slow; this has
resulted in the development of congestion estimation methods[3,
7, 11, 10, 13]. While these methods are relatively fast, the esti-
mates do not necessarily correspond with global routing results.
In particular, a global router may insert detours and bends to avoid

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Submission to ICCAD’05 November 2005,San Jose, California,USA
Copyright 2005 ACM 0-89791-88-6/97/05 ...$5.00.

congestion; this can invalidate optimizations done by timing-driven
placement, gate sizing, and buffer insertion tools.

In this paper, we obtain a substantial speedup in global routing;
the approach we present here is hundreds of times faster than the
tools Chi[5] and Labyrinth[6]. Large designs which take an hour or
more for Labyrinth to complete are finished by our tool in twelve
seconds or less. While the routing congestion levels obtained by
our method are higher than those of traditional methods, the con-
gestion “hot-spots” are extremely localized.

We propose two methods to address increased congestion. First,
if additional space is inserted, congestion levels drop considerably–
total wire lengths produced by our method are comparable to the
total wire lengths from traditional tools (which have inserted de-
tours into their routes). Many modern designs are not space limited,
making this a practical alternative.

Second, in most cases the congestion “hot-spots” are extremely
small. A hybrid approach which uses our fast method for the ma-
jority of the routing surface, and more computationally intensive
methods for small congested areas, is also practical. Total run times
for global routing can be reduced, while still obtaining low conges-
tion results.

Unlike prior academic tools, our routing method also explicitly
supports three-dimensional routing. Modern designs can have a
large number of interconnect layers, with widely varying routing
capacity and performance characteristics. The increased numbers
of layers does not degrade the run time of our approach, and rout-
ings found by our method minimize vias explicitly. Our tool also
utilizes the industry standard LEF/DEF format, making it easy to
integrate into a modern design flow.

2. PREVIOUS WORK
Global routing has been studied for many years. The problem is

commonly abstracted as one of finding a multicommodity flow in
a graph. The routing surface is divided into rectangular tiles or “g-
cells;” each tile corresponds to a graph vertex, and each boundary
between adjacent tiles corresponds to a graph edge.

Rip-up and reroute methods that utilize maze routing are ex-
tremely common; recent tools to approach the problem in this way
are Labyrinth[6] and Chi[5]. An approximation algorithm for mul-
ticommodity flow was presented by Albrecht[2]; this produces ex-
cellent results, but can be extremely slow.

A common objective in global routing is to minimize conges-
tion. For each edge in the routing graph, there is a capacity (in
terms of the number of signal wires that can utilize it); routing so-
lutions that exceed this capacity are “over congested.” The actual
capacity in a design can be difficult to measure–detail routing tools
can utilize non-preferred direction routing, small open spaces on
the bottom metal layers, or even in some cases polysilicon–to com-

plete a routing problem. The effective capacity of a global routing
graph greatly depends on the quality of the detail routing tool; in
this paper, we assume a relatively simple capacity model.

Unlike most conventional global routers, our tool utilizes a 3-D
routing graph as shown in Fig. 1. Each layer has a preferred rout-
ing direction and the routing resources are controlled by the capac-
ity of the cell edges perpendicular to the routing direction. The
three dimensional model more accurately reflects modern routing
instances–there can be an abundance of metal layers, the capacity
on each layer differs greatly, and the insertion of vias to change
layers impacts both the routability of the design, and the delay of a
wire.

��������	
��

�������������

���
�	�������

Figure 1: The 3-D routing model.

3. GLOBAL ROUTING APPROACH
With traditional global routing methods, there is an assumption

that silicon area is extremely limited–and thus, the placement is as
dense as possible to minimize area. To complete routing in this
environment, extensive detours are sometimes required, and the
routes may have many bends. Maze routing is extremely effective
at congestion minimization–but can require high run times. The de-
tours introduced to minimize congestion can increase wire length
substantially; it is not uncommon to see routed wire lengths that are
30% or more above the Steiner tree lengths of the nets.

With modern designs, there can be an abundance of silicon area–
and thus, there is no need for extremely dense placement. In this
work, we assume that the placement area can be expanded if con-
gestion is encountered, and focus on a method that can perform
global routing extremely quickly, without introduction of detours
or additional bends. While expansion of the placement region in-
creases interconnect lengths, we find that this increase is compara-
ble to the increase caused by detours from traditional routing tools.

We contrast our new approach to the traditional methods in Fig-
ure 2. We utilize “pattern routing” ideas implemented in Labyrinth,
a linearly increasing cost function developed by Linsker[9] (and
later implemented in Chi), and an efficient “lazy” update scheme.
To enable our method to be extremely fast, we avoid maze routing
entirely.

Our method decomposes interconnect nets into a set of two-pin
tree edges; we then find paths for each edge through the global rout-
ing graph. For planar routing problems, we use the FLUTE Steiner
tree heuristic[4]. For three-dimensional routing problems, we use
a layer balancing Steiner heuristic[1]. The layer balancing heuris-
tic determines the locations and layer assignments for all Steiner
points and edges.

Tree edges in our routing solutions are restricted to have at most
two bends, and are detour-free. Some of the possible routing paths
for an edge are shown in Fig. 3. Depending on the amount of rout-
ing resource, the restriction on routing paths may or may not in-
crease congestion. In some designs, only a very small portion(1.2%
in [13]) of 2-pin nets have more than two bends. In the experiments
we perform here, we find that this restriction can sometimes lead to

Labyrinth Linsker Chi Ours

Pattern
Routing

Maze
Routing

Linear
cost function

Congestion
estimation

Lazy
update

X

X X

X

X

X

X

X

X

X

3D graph
model

X

Figure 2: A comparison of our approach to other recent global
routing tools. By eliminating maze routing, and utilizing an
efficient update scheme, we obtain routing results extremely
quickly.

high congestion levels–but this is normally extremely localized.

Figure 3: The L- and Z-shaped routing paths.

Our approach is as follows. For each interconnect edge in turn,
we enumerate all the L- and Z-shaped paths and select the one with
minimal cost. This path is added to the routing graph, and the rout-
ing demands are updated accordingly. We iteratively rip-up and
reroute all edges until solution quality converges; this normally oc-
curs within 6 passes. The pseudo-code of one iteration is shown in
Fig. 4.

While the basic structure of our approach is similar to that of
Labyrinth or Chi, we obtain orders of magnitude speed-up through
careful calculation of path costs and updates to the routing graph.

3.1 L- and Z-shaped Routing
When a route is strictly horizontal or vertical, it is inserted into

the graph, and is not modified; as there is only one possible path,
there is no point to perform rip-up an reroute.

For cases where one or more bends must be introduced, we have
to determine the L or Z-shaped path with minimum cost. We do
this by enumerating the possible paths; as our global router works
in a three-dimensional model, we may need to determine the cost
of multiple segments on different interconnect layers. This is illus-
trated in Figure 5. The cost of a path is the sum of the costs for
individual edges in the routing graph (shown with dark lines in the
figure).

3.2 Routing Costs

�����

�����

��

�����

�����

��

�����

�����

��

��	
�
�������
���� ��	
���
�����
��
���

����������
�����

��	
���
�����
��
���

��������
�����

Figure 5: An example of a Z-shaped path and the computation of cost.

for net ni do
rip-up net ni and release the routing demands;
MinCost = ∞;
for candidate path p j do

compute the cost Cost(p j) of path p j;
if Cost(p j) < MinCost

then MinCost = Cost(p j);
choice = p j;

endif
endfor
update the routing demands;

endfor

Figure 4: The Basic Algorithm.

Following the strategy presented in [5], we assign unit cost to
each routing graph edge until its demand reaches 80% of its capac-
ity. The cost of using a graph edge increases linearly until it reaches
40% above its capacity. Fig. 6 shows the function of routing cost
vs. routing demand.

�
�
�
��
�
�
�	
�

�

�������������

��� ����

Figure 6: Routing cost is a function of the demand for graph
edges.

When routing an interconnect edge, we enumerate the different
possible paths, and select the path with minimum cost. After find-
ing this path, we insert it into the routing graph, and increase the
utilization on the edges that the path traverses.

3.3 Algorithmic Speedups
There are several factors that allow our approach to be signifi-

cantly faster than prior tools.
First, because we restrict our routes be monotonic with at most

two bends, we eliminate the need to utilize a maze routing algo-

rithm entirely–there is no need to maintain a priority queue, and
the total area searched to find a route is much smaller than would
be explored by Dijkstra’s algorithm.

Second, in the path-based computation above, most of the time
is spent on computing the cost for traversing an edge. The cost for
the same edge might be examined many times for different nets;
we precompute a number of values to simplify cost calculations for
a series of global routing graph edges. Each routing graph edge
at location (x,y) in layer l is assigned a value Suml(x,y) which
indicates the cost for traversing a row(column) of edges between
the left(top) boundary and the edge in question:

Suml(x,y) =

{

∑x
i=1 Edge Cost l(i,y) for horizontal layer

∑y
i=1 Edge Cost l(x, i) for vertical layer

Here Edge Cost l(i, j) means the cost of traversing the left edge
of the routing graph(if l is a horizontal layer) or upper edge(if l is
a vertical layer) to graph edge (i, j) on layer l. By using this, we
can find the cost of any series of routing graph edges by a simple
subtraction. The cost of a path can be obtained by only 3 sub-
tractions and 2 additions. For example, for a path in Fig. 5, the
cost of the path is (Sumh(xk,yi)− Sumh(xi,yi))+ (Sumh(x j,y j)−

Sumh(xk,y j))+ (Sumv(xk,y j)−Sumv(xk,yi)). Only the Sum value
of the 6 cells(the dark cells in the figure) are examined for compu-
tation.

In short – if we wish to know the cost for moving in a particular
row from column i to column j, this can be computed easily if we
maintain correct partial sums. The computational complexity for
determing the minimum cost path is related to the perimeter of the
bounding box of a tree edge, rather than the area of the bounding
box.

A third element of our approach to improve tool speed is “lazy
update” of the routing costs. We allow the value of Suml(x,y) to
be incorrect–and update this only when required. Once the demand
of one edge is changed due to adding or ripping-up a route, all
the Sum values succeeding it on the same row(horizontal layer) or
column(vertical layer) become invalid. If we were to update the
whole row or column immediately after the route is laid, we will
have to spend much more time on the updating, thereby eliminating
the advantage of row/column-sum.

By marking portions of a row or column invalid, we can delay
this update, and frequently avoid it completely. For this purpose,
a flag for every row(horizontal layer) or column(vertical layer) is
used to indicate the boundary between obsoleted Sum values and
the up to date ones. When we need to determine the cost of a seg-
ment, the flag is checked–and only then is the data brought up to

date if needed. Further, only the required portion of the graph is
brought up to date–we do not update the entire row or column.

To summarize, consider the following example. Suppose a tree
edge spans m global routing cells horizontally and n cells vertically.
We will have m+n−2 possible ways to route the edge, and for each
path we have to compute the cost of a single edge for m + n− 2
times if we were to simply follow each possible path. In total,
O(m×n) computations would be required for this edge. By using
the lazy-update approach, we still have m + n− 2 routes, we need
only 6 math operations to compute the value of each – and thus,
the complexity is (O(m + n)). We must also update the Sum data;
by sorting the edges from left to right, the amortized complexity of
updating becomes close to linear in our experiments.

When the size of the bounding boxes is relatively small, the run
time for our tool when we follow individual paths is comparable
to the lazy update method. For problems which have large edge
bounding boxes, lazy update can provide a significant advantage.

4. EXPERIMENTAL RESULTS
To evaluate our approach, we compared the performance of our

approach to that of Labyrinth and Chi. We also use a mode of Chi
that implements the approach by Linsker. These tools support only
a planar routing model, so we restrict our tool in a similar manner.
As our tool only routes individual tree edges, we first decomposed
all nets into planar Steiner trees using FLUTE[4]. The Steiner de-
composition takes at most a few seconds for all test cases.

For routing benchmarks, we obtained the placements of mPL-R
from [8]. The circuits have been mapped to a commercial standard
cell library, placed by mPL-R, and have white space allocation by a
cut line shifting method. The commercial tool Cadence WarpRoute
was able to perform global and detail routing on all designs with-
out errors. As these circuits have been widely used for routability
driven placement, and in most cases Cadence WarpRoute cannot
find acceptable solutions, we consider these benchmarks to be dif-
ficult but not impossible.

Inspection of the WarpRoute result shows that in many cases,
some routing capacity on the first metal layer was used–but in gen-
eral, the layer is heavily congested with internal cell wiring. As
routing capacity of the first metal layer is difficult to estimate, we
assume that it is completely blocked, and only use the capacity
of the upper layers in our global routing model. We assume that
slightly exceeding routing grid capacity does not necessarily imply
a routing failure.

As all three routing tools have the same capacity at their disposal,
the comparisons between them are level. We cannot directly com-
pare to WarpRoute, as it performs both detail and global routing,
and utilizes routing capacity on the first metal layer.

An overview of the experiments performed is shown in Figure 7.

4.1 Planar Routing Comparisons
Routing results for the “easy” and “hard” versions of the bench-

marks are shown in Tables 1 and 2. Our routing tool is hundreds of
times faster than traditional methods, with run times of at most 12
seconds (compared to nearly 1.5 hours for Labyrinth). The “easy”
benchmarks have more routing space–this causes an increase in run
time for the traditional tools, as they are based on maze routing
methods.

When given equal routing areas, our method has higher conges-
tion; from the reduction in run time, this should not be surprising.
When additional space is available, however, results can be some-
what surprising. To evaluate the impact of additional space for rout-
ing, we “stretch” the circuit horizontally by 20%, thereby obtaining
an increase in vertical routing capacity.

Placement
(mPL-R + WSA)
in LEF/DEF
format

Labyrinth
format
conversion
(2-D planar
graph)

Labyrinth

Chi

Table 1,2, Column 1

Table 1,2, Column 3

FLUTE planar
Steiner tree
decomposition

Layer balanced
3D Steiner
decomposition

Our Router

Table 1,2, Column 4

Table 1,2, Column 5
(assumes additional
space insertion)

Linsker Table 1,2, Column 2

Table 3Our Router

Figure 7: Overview of experiments performed.

Consider, for example, the last entry from Table 1. By expanding
the routing space by 20%, our fast router was able to find a solution
with better total wire length and lower congestion than Labyrinth –
and did so nearly 500 times faster.

For modern designs where space is abundant, increasing the rout-
ing resource can dramatically reduce congestion, thereby elimi-
nating routing detours. The wire length increase caused by this
“stretch” is offset by the elimination of detours. Because no de-
tours are required, the simple pattern-based approach can find a
good solution with low run times.

4.2 Three Dimensional Routing
In Table 3, we show congestion levels and run times for our tool

when applied to a multi-layer routing graph. We assume that metal
1 is completely blocked, and route on metal 2 through 5.

Because we utilize pattern routing, run times do not increase;
congestion and routing demand is distributed across all layers.

4.3 Congestion Distribution
In all cases, while our method produced higher congestion lev-

els, the number of graph edges that were congested was relatively
small–at most 25%, and normally much less.

Thus, our method is suitable as a fast initial routing solution;
large portions of the routing surface do not require extensive rip-up
and reroute with maze routing to find an acceptable solution.

We are currently developing a hybrid approach that utilizes our
fast method for the majority of the routing problem. We will apply
maze-based techniques to only the portions of the routing graph
that exceed capacity constraints.

4.4 Congestion Maps
In Figure 8, we show congestion maps produced by our tool for

one of the benchmarks. In most cases, we found that the vertical
layers had higher congestion–and thus, the horizontal stretch was
quite effective. We show both the “normal” and “stretched” vertical
layers, with over-congested regions shown in red.

5. SUMMARY AND FUTURE WORK
In this paper, we have presented a global routing approach that is

orders of magnitude faster than prior methods. Problems that take
Labyrinth an hour or more to complete are finished by our tool in
a few seconds. Our tool is fast enough to be used for congestion
estimation in routability-driven placement, and is less error-prone
than estimation.

In most cases, the vast majority of a design is not close to con-

Bench Labyrinth Linsker Chi Our Router Our Router
mark scaled capacity

wl OC RT wl OC RT wl OC RT wl OC RT wl OC RT
ibm01 1.11e+05 0 105 1.09e+05 0 75 1.09e+05 0 98 1.08e+05 2 0 1.27e+05 0 0
ibm02 3.30e+05 79 296 3.05e+05 26 100 3.08e+05 0 149 2.85e+05 5575 1 3.33e+05 1429 1
ibm07 9.66e+05 1510 1095 7.44e+05 103 527 7.53e+05 2 666 6.61e+05 19797 4 7.73e+05 3390 4
ibm08 7.57e+05 8 945 7.44e+05 0 375 7.46e+05 0 480 7.32e+05 1396 4 8.56e+05 929 4
ibm09 6.09e+05 0 822 5.98e+05 0 269 6.04e+05 0 372 5.93e+05 420 3 6.94e+05 168 3
ibm10 1.23e+06 43 2160 1.16e+06 9 701 1.16e+06 2 930 1.13e+06 4617 7 1.32e+06 837 7
ibm11 8.89e+05 0 1419 8.71e+05 0 476 8.72e+05 0 619 8.59e+05 679 5 1.00e+06 275 5
ibm12 2.20e+06 21035 5193 1.86e+06 7044 2760 1.92e+06 5514 3456 1.63e+06 47607 12 1.91e+06 9339 12

Table 1: Routing results on the “easy” benchmarks. For each tool we report the total wire length (wl) in terms of routing grid usage,
total overcongestion (OC), and run time (RT) in seconds.

Bench Labyrinth Linsker Chi Our Router Our Router
mark scaled capacity

wl OC RT wl OC RT wl OC RT wl OC RT wl OC RT
ibm01 1.07e+05 0 138 1.05e+05 0 79 1.05e+05 0 100 1.05e+05 10 0 1.23e+05 1 0
ibm02 3.60e+05 373 245 3.09e+05 169 118 3.14e+05 28 180 2.81e+05 6725 1 3.29e+05 2207 1
ibm07 1.01e+06 4542 1412 7.54e+05 1362 650 7.74e+05 227 802 6.36e+05 35417 3 7.44e+05 10711 3
ibm08 7.88e+05 64 1043 7.36e+05 0 368 7.40e+05 0 480 7.14e+05 1604 4 8.36e+05 348 4
ibm09 6.24e+05 0 784 6.12e+05 0 312 6.15e+05 0 405 6.05e+05 589 3 7.08e+05 312 3
ibm10 1.25e+06 151 2303 1.16e+06 11 741 1.17e+06 0 1006 1.09e+06 12864 7 1.28e+06 1513 7
ibm11 9.42e+05 51 1569 8.88e+05 10 565 8.92e+05 0 734 8.42e+05 8544 5 9.85e+05 796 5
ibm12 1.95e+06 4442 3290 1.66e+06 225 1406 1.68e+06 71 1680 1.55e+06 13252 11 1.81e+06 6137 11

Table 2: Routing results on the “hard” benchmarks. For each tool we report the total wire length (in terms of routing grid usage),
total overcongestion, and run time (in seconds).

gestion limits–and thus, there is little need for computationally in-
tensive routing methods to be used across an entire design. While
our routing results have higher congestion, this congestion is ex-
tremely localized. We are currently developing a hybrid method
which utilizes our fast routing approach for the bulk of the design,
and then extracts small portions of the routing problem to be han-
dled by more robust methods.

Unlike prior academic work, and some industrial routing tools,
our method can explicitly support a three-dimensional routing model.
Different routing layers can have widely differing track pitch and
performance characteristics; by using pre-specified Steiner topolo-
gies, we can route in three dimensions without increasing run times.
As layer assignments are not altered, the delay of individual nets
should be more predictable.

The success of our method is based integration of the pattern
routing approach of Labyrinth with the cost functions described
by Linsker. We efficiently compute the cost of individual routes,
allowing extensive rip-up and reroute passes without a high run-
time penalty.

Our current work involves the development of a detail routing
tool. By performing detail routing on the congested regions first,
potential locations for routing failure will be identified early, short-
ening the cycle time for physical design. We are also actively col-
laborating with a placement research group to develop a fully inte-
grated placement and routing approach.

6. REFERENCES
[1] A. Agnihotri and P. H. Madden. Layer balancing for

congestion reduction. In Proc. Great Lakes Symposium on
VLSI, 2003.

[2] C. Albrecht. Global routing by new approximation
algorithms for multicommodity flow. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
20(5):622–631, May 2001.

[3] C.-L. E. Cheng. RISA: Accurate and efficient placement
routability modeling. In Proc. Int. Conf. on Computer Aided
Design, pages 690–695, 1994.

[4] C. Chu. FLUTE: fast lookup table based wirelength
estimation technique. In Proc. Int. Conf. on Computer Aided
Design, pages 696–701, 2004.

[5] R. T. Hadsell and P. H. Madden. Improved global routing
through congestion estimation. In Proc. Design Automation
Conf, pages 28–31, 2003.

[6] R. Kastner, E. Bozogzadeh, and M. Sarrafzadeh. Predictable
routing. Proc. Int. Conf. on Computer Aided Design, pages
110–113, 2000.

[7] Kusnadi and J. D. Carothers. A method of measuring nets
routability for MCM’s general area routing problems. In
Proc. Int. Symp. on Physical Design, pages 186–194, 1999.

[8] C. Li, M. Xie, C.-K. Koh, J. Cong, and P. H. Madden.
Routability-driven placement and white space allocation. In
Proc. Int. Conf. on Computer Aided Design, pages 394–401,
2004.

[9] R. Linsker. An iterative-improvement
penalty-function-driven wire routing system. IBM Journal of
Research and Development, 28(5):613–624, September
1984.

[10] Q. Liu and M. Marek-Sadowska. Pre-layout wire length and
congestion estimation. In Proc. Design Automation Conf,
pages 582–588, 2004.

[11] J. Lou, S. Krishanmoorthy, and H. S. Sheng. Estimating
routing congestion using probabilistic analysis. In Proc. Int.
Symp. on Physical Design, pages 112–117, 2001.

[12] N. Viswanathan and C. C.-N. Chu. Fastplace: Efficient
analytical placement using cell shifting, iterative local
refinement and a hybrid net model. In Proc. Int. Symp. on
Physical Design, pages 26–33, 2004.

Bench Easy Benchmarks Hard Benchmarks
mark Over capacity and Run Time Over capacity and Run Time

M2 M3 M4 M5 RT M2 M3 M4 M5 RT
ibm01 24 27 256 461 0 10 28 176 300 0
ibm02 23 168 138 1 1 36 228 412 2 1
ibm07 41 2829 506 75 3 26 3715 74 37 3
ibm08 106 33 310 0 4 33 93 424 26 4
ibm09 44 25 4 3 3 46 6 90 36 3
ibm10 36 764 713 8 6 43 1662 20 1 6
ibm11 57 109 366 62 5 45 1034 96 146 5
ibm12 214 6954 467 371 11 249 2964 15686 22 10
Avg

Table 3: Three dimensional routing results. By using layer assignments provided by the Steiner decomposition heuristic, and apply-
ing pattern routing, we find a three dimensional global routing solution quickly. Congestion results on individual layers can provide
white space insertion methods information on how to adjust a placement to improve routability. The method remains as fast as
planar congestion estimation.

Congestion on vertical layer for
a dense placement of IBM12 (hard)

Congestion on vertical layer for
a sparse (stretched) placement

Figure 8: Congestion maps for the vertical routing layer of IBM12 hard, in a “normal” configuration, and with space insertion to
reduce congestion. After space insertion, congestion is extremely localized; maze routing methods may be applied without increasing
run time excessively.

[13] J. Westra, C. Bartels, and P. Groeneveld. Probabilistic
congestion prediction. In Proc. Int. Symp. on Physical
Design, pages 204–2009, 2004.

