
1

Buffer Insertion for Combinational Circuits

Abstract- We propose a buffer insertion algorithm
for combinational circuits. The algorithm finds a
buffering solution for the entire circuit such that the
buffer cost is minimized and the timing requirements
are satisfied. The algorithm iteratively partitions
the circuit along the most critical path to arrive
at smaller subcircuits. The core of the algorithm
is the procedure that finds an optimal solution for
the subcircuits in an efficient manner. Experimental
results on ISCAS85 circuits show our algorithm can
reduce the number of buffers by 90% compared
with the traditional net-based algorithms.

I. INTRODUCTION

Buffer insertion is an effective technique for reducing
interconnect delay. As interconnect delay is posing a
limit to the performance of VLSI circuits, cost of re-
quired buffering resources to meet the timing constraints
is exploding [1]. Consequently, optimizing buffer cost
has become paramount. For buffer insertion at the
net level, van Ginneken [2] proposed an O(n2) time
dynamic programming algorithm to maximize the slack.
Lillis et al. [3] extended it to minimize the buffer
cost while satisfying the timing requirements. A great
amount of research has been done in the past few years,
such as [6], [7], [9], [8].

In real application, however, the objective is to reduce
path delay in combinational circuits. Therefore, buffer
insertion should be performed at the circuit level. A
simple minded approach is to apply the net-based
van Ginneken algorithm to circuit, one net at a time
from primary output to primary input. Although this
approach guarantees the slacks at the primary input
nodes are maximized, too many buffers will be used
since van Ginneken’s algorithm does not control buffer
cost. To use Lillis’ net-based algorithm that controls
buffer resources will also run into problem, due to the
reconvergence in the combinational circuit, and the fact
that Lillis algorithm has exponential time complexity
even for a single net. A Lagrangian relaxation algorithm
for circuit level buffer insertion was proposed in [4],
[5]. However, both works have a restrictive assumption
that buffers must be inserted at every Steiner node. In
practice, whether or not buffers are inserted at certain
node depends on timing constraints and availability of

space. Furthermore, their algorithms do not scale very
well. In [4], the CPU time explodes for larger test cases.

The rest of the paper is organized as follows. Sec-
tion II presents notations and gives an overview of
the algorithm. Later sections describe the steps of the
algorithm in detail. Section III describes the procedure
to solve the smaller subcircuits optimally. Section IV
describes the criterion for deleting certain nets from the
circuit for reducing the problem complexity. Section V
describes the procedure to partition the circuit in smaller
subcircuits. The experimental results and conclusions
are presented in Section VI.

II. PRELIMINARIES AND OVERVIEW

We represent a combinational circuit as a Directed
Acyclic Graph (DAG) G = (V, E). The set of nodes
V = Vpi ∪ Vpo ∪ Vgi ∪ Vgo ∪ Vt, where Vpi, Vpo, Vgi

and Vgo are the sets of nodes for primary input, primary
output, gate input and gate output, respectively, and Vt

is the set of nodes in the interconnect routing tree. The
set of edges E = Ew ∪ Eg, where

Ew ⊂ (Vpi ∪ Vgo ∪ Vt)× (Vpo ∪ Vgi ∪ Vt)

is the set of interconnect wires and Eg ⊂ Vgi × Vgo is
the set of input-to-output paths within the gates. Fig. 1
shows an example combinational circuit.

We are given a buffer library B. The locations where
buffers can be inserted are given as a function f : Vt →
2B. Under this definition, each node in the interconnect
routing tree allows certain types of buffers, or no buffer.
Each buffer type bi ∈ B is modeled by intrinsic delay
K(bi), driving resistance R(bi), input capacitance C(bi)
and cost W (bi). The cost of a buffer can be either the
area or the power or other criteria, depending on our
optimization objective.

Each interconnect wire is modeled as a π type RC
circuit: each edge e ∈ Ew is associated with resistance
R(e) and capacitance C(e). Each gate in the circuit is
modeled similar to the buffers. Thus each edge e ∈ Eg

is associated with intrinsic delay K(e), each node v ∈
Vgi is associated with input capacitance C(v) and each
node v ∈ Vgo is associated with driving resistance R(v).

2

a b c d

e

f
g h i

j
k

Primary inputs

Primary outputs

l

m n o

p
q

r s

t u

v w

(a)

a b c d

e

f
g h i

j
k l

m n o

p
q

r s

t u

v w

(b)

Fig. 1. (a) DAG representation of a combinational circuit. (b) Sample
front {h, n, e}.

Timing requirements are specified in terms of Re-
quired Arrival Time RAT (v) for each primary output
node v ∈ Vpo, and Departure Time DT (v) for each
primary input node v ∈ Vpi. Following previous re-
searchers [2], [3], [6], [7], [10], [11], we use Elmore
delay for the interconnect and the linear delay for gates
and buffers. For each edge e = (vi, vj), signals travel
from vi to vj . The Elmore delay of e is

D(e) = R(e)
(

C(e)
2

+ C(vj)
)

, (1)

where C(vj) is the downstream capacitance at vj . For
any gate or buffer b at vertex vj , the gate or buffer delay
is

D(vj) = K(b) + R(b) · C(vj), (2)

where C(vj) is the downstream capacitance at vj . For
a gate or inserted buffer b, the capacitance viewed from
the upper stream is C(b).

Consider a connected subgraph G′ = (V ′, E′) where
V ′ ⊂ V , E′ ⊂ E and V ′

t = V ∩Vt. A buffer assignment
is a function α(G′) : V ′

t → B ∪ {∅} that specifies the
type of buffer inserted for each node in V ′

t . The cost
of α is denoted as W (α), which equals the total buffer
cost assigned by α.

A circuit graph with all the required parameters,
timing requirements and buffer library is the input to
our algorithm. The algorithm then recursively partitions
the circuit to smaller subcircuits until the subcircuit can
be solved efficiently.

Following is an outline of the algorithm:

1: if G is ”small-enough” then
2: Solve G directly
3: else
4: Find the most critical path P ∗

5: Insert buffers in P ∗

6: Partition G into G1, . . . , Gk

7: Recurse for each Gi

8: end if

III. SOLVING THE SUBCIRCUITS DIRECTLY

In this section, we present an algorithm that solves
the problem optimally, meaning that the algorithm finds
the buffer insertion of a combinational circuit with
minimum total buffer cost, and with all timing require-
ments satisfied. Since the worst-case running time is
exponential, we call this algorithm as a subroutine only
for circuit with no more than 30 gates.

The traditional net-based algorithms that propagate
a single node can not be applied to circuits due to
reconvergence. The main idea of this algorithm is
to propagate a front from primary inputs to primary
outputs or in the opposite direction. The front F is
defined as a cut in G such G is partitioned in in two
subgraphs G1 and G2 and all edges directed toward the
nodes in F are in G1 and all edges directed away from
F are in G2. Figure 1(b) shows a sample front (h, n, e).
In this case, G1 is the part of the circuit represented by
thick edges and G2 is represented as thin edges.

Let primary inputs to primary outputs be called a
forward direction and the opposite be called reverse
direction. Fig. 1(b) illustrates the front propagation. It
shows a sample front (h, n, e) by the dotted curve. If
this front is being propagated in forward direction, then
it has been propagated over the subcircuit represented
by thick edges. Conversely, if this front would have been
propagated in reverse direction, it would have covered
the subcircuit represented by thin edges.

As the front is propagated, we evaluate the possible
buffer assignments for the nets being covered. For a
front F = {v1, v2, . . . , vk}, any buffer assignment α(F)
while propagating in forward direction is represented as
a vector

(W (α), D(v1, α), . . . , D(vk, α)),

where D(v1, α) is the Departure Time (DT) at vi under
α. Similarly, while propagating in reverse direction, the

3

assignment is represented as a vector

(W (α), Q(v1, α), . . . , Q(vk, α)),

where Q(v1, α) is the Required Departure Time (RDT)
at vi under α.

Two assignments α1 and α2 for G′, we say α1

dominates α2 if

• α2 has higher cost: W (α2) ≥ W (α1), and
• α2 has better timing: D(v, α2) ≥ D(v, α1) for

every v ∈ F (G′) or Q(v, α2) ≤ Q(v, α1) for every
v ∈ F (G′).

The set of nonredundant assignments for G′, denoted as
N(G′) is a set of assignments such that no assignment
in N(G′) dominates any other assignment in N(G′)
and any buffer assignment for G′ is dominated by some
assignment in N(G′).

The direction of front propagation is determined by
the size of nets in the circuit under consideration. If
total number of buffer locations on 2-pin nets are more
than the total number of buffer locations on multi-pin
nets, forward direction is chosen. Otherwise, reverse
direction is chosen.

The following subsections describe the algorithm
for propagation in forward direction. Similar scenarios
apply to propagating in reverse direction as well. The
flow of this algorithm is as shown below.

1: Let Front F = ∅
2: Non-redundant assignments N(F) = ∅
3: while Complete circuit is not traversed do
4: Select a subcircuit G to grow the front
5: Propagate F over G
6: Update N(F).
7: end while
8: return candidate with minimum cost in N(F)

A. Propagating the front

Consider a subcircuit G′ with set of fan-in nodes
I(G′) = (i1, . . . , il) and fan-out nodes O(G′) =
o1, . . . , om. Given departure time values for each node
in I , any buffer assignment α(G′) can be expressed as
α(G′) = {W (α), D(o1, α), . . . , D(om, α)}

Consider a front F to be propagated over subcircuit
G′ such that I(G′) ⊆ F . Then, front after propagation
F ′ = {F \ I(G′)} ∪ O(G′). Also an assignment α(F)

will have an arrival time value at each node in I(G′).
Let α(G′) be the assignment for G′ with arrival time
values in α(F). Then the resultant assignment for F ′

is computed as follows:

W (α(F ′)) = W (α(F)) + W (α(G′))

D(u, α(F ′)) =

∅ if u ∈ I(G′)
D(u, α(G′)) if u ∈ O(G′)
D(u, α(F)) otherwise

The subcircuit G′ for propagating the front can be
simply be a single net. G′ can be chosen such that the
assignments in the subcircuit and resultant propagated
front can be pruned efficiently.

B. Computing non-redundant candidates for a net

Consider a net represented as a tree T with root node
r and leaf nodes l1, l2, . . . , lk. A 2-pin net is a special
case tree with only one leaf.

A set of non-redundant candidates N(T) is com-
puted with a framework similar to (Q,C,W) frame-
work [3], [9]. This framework is represented as
(W (α), D(l1, α), . . . , D(lk, α)) Basic operation of this
framework is same as (Q,C, W) framework except the
computation of delay values while propagating the can-
didates. Similar to the (Q,C, W) framework, candidates
are generated by traversing the net from the leafs toward
the root. Also, the three basic operations during the
traversal are adding a wire, adding a buffer and merg-
ing two branches. When propagating the candidates in
these scenarios, W (α) and C(α) are computed in the
exact same manner as the (Q, C,W) framework. To
propagate the D(vi, α) values, while adding a wire
or a buffer, delay values are incremented by wire or
buffer delay respectively. In merging operations, the
delay values remain unchanged.

C. A* pruning techniques

We define Qbest(vi) as maximum value of Required
Departure Time that can be achieved at node vi with all
possible buffer assignments. Also Qworst(vi) is defined
as RDT at node vi when no buffers are inserted in the
circuit.

Basic mechanism for pruning the assignments is
comparing the assignments for the same front F against
each other and deleting the inferior ones by the pruning
criterion described in section II earlier. Here we discuss

4

following additional techniques that help in pruning
more assignments.

• Qbest based filtering:

An assignment α(F), where F = {v1, v2, ..., vk}, can
be deleted if:

D(vi, α) > Qbest(vi).

It can be easily seen that such an assignment certainly
won’t satisfy the timing requirement. This operation
is called filtering because this condition is checked in
propagation step itself and generation of such assign-
ments having insufficient buffering is prevented. Also,
whenever the wave-front engulfs a primary output node
vi, all the assignments that survive Qbest based filtering
satisfy the RAT at node vi. Hence node vi can be
dropped from the front so that the exact value of D(v)
will be disregarded while comparing the assignments
with each other resulting in additional pruning.

To find Qbest we run van Ginneken’s algorithm [2]
on each net from primary output towards primary input,
using the RAT for all primary output nodes.

• Qworst based filtering:

Consider an assignment α(F) such that

D(vi, α) ≤ Qworst(vi)

In a way, this condition suggests that sufficient buffers
have been added in the transitive fan-in of node vi

under α such that even minimum buffering in the net
rooted at node vi is sufficient for α to meet the timing
requirements. Thus α(F) is propagated only with the
minimum cost assignment on the net rooted at node
vi. This condition is also checked in propagation step
itself and generation of such unnecessarily buffered
assignments is prevented.

• Using minQW pairs:

A minQW pair represented as a (Q(vi),W) doublet
at any node vi means to satisfy the timing requirements
when DT (vi) = Q(Vi), at least W amount of buffer-
cost has to be spent in the transitive fan-out cone of
node vi. A set of such minQW pairs at a node helps
prune more candidates. Following example illustrates
this.

Consider two assignments α1(F) and α2(F) for a
particular wave-front F = {v1, v2, ..., vk} such that,

W (α1) = 50, D(v1, α1) = 1010,

W (α2) = 55, D(v1, α2) = 1000,

and D(vi, α1) ≤ D(vi, α2)fori = 2, 3, ..., k. Since α2

has better arrival time value at node v1, it will not get
pruned by the basic pruning criterion . If suppose there
are two minQW pairs at node v1 namely

(W = 10, Q(v1) = 1000)

(W = 11, Q(v1) = 1100)

This means α1 will make a better candidate in future
even though presently it has inferior arrival time value
at node v1. Hence α2 can be pruned even though it has
a better arrival time at node v1.

We compute the minQW pairs only for the nodes not
having reconvergence in their transitive fan-out cone.
To find a set of minQW pairs, we run (Q,C,W)
framework on each net from primary output towards
primary input, using the RAT for all primary output
nodes. Also, for a particular front, transitive fan-out
cones of the nodes on the front may overlap with each
other. Therefore, the minQW data can be used only for
a subset of front nodes such that transitive fan-outs of
any two nodes in this subset do not overlap with each
other.

D. Processing the circuit in reverse direction

Processing the circuit in reverse direction is similar
to the forward direction approach described in detail
above. While propagating a front over a multi-pin
net, (Q,C,W) framework is used. The counterpart of
minQW pairs is minDW pairs. Similarly counterpart
of Qbest based filtering is based Dbest filtering. Note
that there is no counterpart of the Qworst based filtering.
This is because the assignment required to satisfy the
timings may demand a higher value of arrival time at
some leaf vi of a multi-pin net that is more than the
arrival time at vi when no buffers are inserted in the
circuit.

Also an important difference about computation of
Dbest as opposed to computation of Qbest is that it is
affected by the reconvergence in the circuit and can
not be exactly computed by using Van Ginneken [2]
like procedure. But note that we do not require the
exact value of Dbest. Suppose that Dbest is assigned
an approximate value that is lesser than its exact value,
the effectiveness Dbest based filtering is reduced but
it does not result in deletion of an assignment that
should not have been deleted. Such an approximate
value lesser than the exact value represents an infeasible

5

Dbest but it does not affect the final solution and it can
be computed effectively by disregarding the effect of
reconvergence and just following a similar procedure
used for computing Qbest.

IV. TRIM CIRCUIT

We define Dworst(u) for node u as the RDT (u)
when no buffers are inserted in the circuit. Also a
trimming condition is defined as follows.

Dworst(u) < Qworst(u)

Any node u satisfying the trimming condition indi-
cates that the arrival time as well as slack at node u
are not critical for satisfying the timing requirement of
the circuit. Thus, the value Qworst(u) can be assigned
as RAT at node u. Such a value of RAT may not
be satisfiable in case a buffer assignment necessary to
satisfy the timing requirements has arrival time at u
more than Dworst(u). But such a case is unlikely to
occur in a circuit.

Thus, if node u satisfies the trimming condition as
well as an assignment RAT (u) = Qworst(u) is satis-
fiable for the whole circuit, then this value is assigned
as RAT (u). A buffer assignment α̃ is fixed for the net
T rooted at u such that,

W (α̃) = min
α∈N(T)

{W (α)}

Also net N is deleted from the circuit since RAT (u)
is assigned and buffer assignment for N is fixed.

Note that for a gate output node that satisfies trim-
ming condition, all the corresponding gate input nodes
satisfy the trimming condition. Every gate input node
in the circuit that satisfies this condition will become
a pseudo primary output node because of the newly
assigned RAT value. Trimming reduces the complexity
of the problem and may also partition the circuit.

V. PARTITION CIRCUIT

A. Finding Most Critical Path P ∗

The criticality of a path P (u, v), where u is a primary
input and v is a primary output, is defined as follows:

Criticality(P (u, v)) =
1

RAT (v)−D(v, α)
,

where α is a buffer assignment that maximizes the slack
at every node in the circuit to be partitioned. Note that

if RAT (v) − D(v, α) < 0, then there is no feasible
solution. Therefore we assume for now RAT (u, α) −
DT (u) ≥ 0. A path P ∗ is most critical if

Criticality(P ∗) = max
u∈Vpi,v∈Vpo

{Criticality(P (u, v))}

To find P ∗, we run van Ginneken’s algorithm [2] on
each net from primary output towards primary input,
using the RAT for all primary output nodes. At each
Steiner node, we record the branch that gives the Q to
be propagated towards the primary input.

After van Ginneken’s algorithm is finished, the most
critical path P ∗ must start from the primary input node
u that has the minimum Q(u)−DT (u). To find the rest
of P ∗, we trace the path towards the primary output
using the recorded information.

B. Inserting Buffers in P ∗

Here, we give a new buffer insertion algorithm for
the critical path. The critical path P ∗ is from a primary
input to a primary output and consists of k fanout
routing trees T1, T2, . . . , Tk. Let ni be the number of
buffer positions in Ti, ri be the root of tree Ti, and Si

be the set of sinks of tree Ti, which are gate inputs or
primary outputs driven by ri. Each routing tree Ti does
not include any other gate except the root ri and sinks in
Si. We perform buffer insertion with cost minimization
on the path P ∗ as follows.

Initially, a single candidate (Q,C,W) is assigned for
each sink s in tree Tk, where Q is the sink RAT, C
is the load capacitance and W = 0. The sink RAT is
obtained from the assignment made while finding P ∗ as
described above. Then we apply (Q,C, W) framework
on Tk. At the root rk, all nonredundant candidates
(Q,C,W) will have the same C. This will lead to
significant reduction in the number of nonredundant
candidates. If the buffer cost is the number of buffers,
there are at most nk nonredundant candidates at the root
of tree Tk. For more general buffer cost, the reduction
at the root of each tree is still significant.

Then, the set of nonredundant candidates are prop-
agated to tree Tk−1. Now for the tree Tk−1, a single
candidate (Q,C, 0) is assigned for each sink in Sk−1

except for rk, where a set of candidates with different
(Q,C,W) are given. Applying (Q,C,W) framework
again for Tk−1, we can get a set of solutions at the rk−1.
Repeat the process for trees Tk−2, . . . , T1. At the end
of the algorithm, a set of solutions with different cost-
RAT tradeoff is obtained for the primary input. Each

6

solution gives the maximum RAT achieved under the
corresponding cost bound.

Since for each routing tree, the number of solutions
associated with each sink is bounded by |W |, with the
similar analysis of Lillis et al. [3], we can get a pseudo-
polynomial time algorithm.

C. Re-assigning Timing Requirements

After we find a buffer assignment α for P ∗, we
remove gates and interconnect in P ∗ from G to partition
G into one or more subgraphs. However, since each gate
and interconnect of P ∗ may have connection with other
parts of the circuit, we need to adjust the circuit. Fig.
2 shows the relation between P ∗ and the rest of the
circuit.

For the case in Fig. 2(a), the gate in P ∗ has a side
input u. We will make node u a primary output for
the remaining circuit and let RAT (u) = AT (v, α) −
K(u, v). For the case in Fig. 2(b), the net in P ∗ has a
branch leading away from P ∗. We will make node u,
which is the first buffer/gate assigned by α downstream
from P ∗, a primary input for the remaining circuit and
let DT (u) = AT (u, α).

u

v P*

P*

u

(a) (b)

Fig. 2. (a) Creating Primary output. (b) Creating Primary input.

VI. EXPERIMENTAL RESULTS

Table I presents the experimental results for the
new algorithm on ISCAS benchmark circuits. The wire
lengths are obtained from the actual layout and scaled
by a constant factor to create requirement for buffering.
For simplicity, buffer cost is taken as number of buffers.
The complexity of the circuit is indicated by the number
of nodes and edges in the resulting DAG and the number
of possible buffer locations.

The buffer cost obtained by our algorithm is com-
pared against a net based approach. As seen from
Table I, the reduction in the buffer cost for same delay
requirements is about 4 to 18 times. The running time
for larger circuit is not necessarily higher than a smaller
circuit since the number of partitioning cycles required
for the circuit depends on the circuit structure rather
than the circuit size.

VII. CONCLUSION

In this paper, we propose a buffer insertion algorithm
that inserts buffers into combinational circuits so that
the timing requirements are met and buffer cost is min-
imum. Unlike previous net-based buffer insertion algo-
rithms, our algorithm works with the entire circuit, and
therefore uses significantly fewer buffers. Experimental
results on ISCAS85 circuits show that our algorithm can
reduce the number of buffers by 75% to 95%, compared
with the traditional net-based algorithms. The running
time of our algorithm is reasonable. Our algorithm can
be combined with gate sizing, since both van Ginneken
style (Q,C) algorithms and Lillis style (Q,C, W) style
algorithms work for gate sizing, by specifying gate
position as a buffer position, at the cost of higher
running time.

REFERENCES

[1] P. Saxena, N. Menezes, P. Cocchini, and D. A. Kirkpatrick,
“Repeater scaling and its impact on CAD,” IEEE Trans. on CAD,
23(4):451463,April 2004.

[2] L. P. P. P. van Ginneken, “Buffer placement in distributed RC-tree
network for minimal Elmore delay,” Proc. 1990 ISCAS, 865–868.

[3] J. Lillis, C. K. Cheng and T.-T. Y. Lin, “Optimal wire sizing and
buffer insertion for low power and a generalized delay model,”
IEEE Trans. Solid-State Circuits, 31(3), 1996, 437–447.

[4] I-Min Liu, A. Aziz, D.F. Wong, Hai Zhou, “An efficient buffer
insertion algorithm for large networks based on Lagrangian
relaxation,” ICCD 1999, 210–215.

[5] I.-M. Liu, A. Aziz, and D. F. Wong, “Meeting delay constraints
in DSM by minimal repeater insertion,” Proc. of DATE, 436–441,
2000.

[6] C. J. Alpert and A. Devgan. Wire segmenting for improved buffer
insertion. In DAC, 1997.

[7] C. C. N. Chu and D. F. Wong. A quadratic programming approach
to simultaneous buffer insertion/sizing and wire sizing. IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 18(6):787–798, 1999.

[8] W. Shi and Z. Li, “An O(n log n) time algorithm for optimal
buffer insertion,” Proc. 2003 DAC, 580–585.

[9] W. Shi, Zhuo Li, C.J. Alpert, “Complexity analysis and speedup
techniques for optimal buffer insertion with minimum cost,” Proc.
2004 ASPDAC, 609–614.

[10] S. Lin and M. Marek-Sadowska. A fast and efficient algorithm
for determining fanout tree in large networks. In EDAC, pages
539–544, 1991.

7

TABLE I
SIMULATION RESULTS FOR ISCAS BENCHMARKS.

Circuit Size Cost
Circuit Nodes Edges Locations Net based New Algorithm % Reduction CPU/s
c432 687 826 868 143 37 74 7.13
c499 881 1045 1216 215 43 80 69.14
c880 1510 1795 1632 266 29 89 14.94
c1355 2193 2669 1868 348 86 75 342.99
c1908 3047 3631 4037 773 95 88 494.26
c2670 4585 5234 7328 1767 111 94 173.11
c3540 5920 7139 7729 1621 102 94 670.43
c5315 9018 10918 11403 2475 150 94 491.21
c7552 12505 14929 16758 3414 191 94 455.53

[11] H. Zhou, D. F. Wong, I. M. Liu, and A. Aziz. Simultaneous
routing and buffer insertion with restrictions on buffer locations.
IEEE Trans. CAD, 19(7):819–824, 2000.

