
An Efficient Algorithm for Buffer Insertion in Large
Networks Based on Min-cut

ABSTRACT
With shrinking VLSI feature sizes and increasing overall
chip areas, buffering has emerged as a potential solution
to the problem of growing interconnect delays in modern
designs. The problem of buffer insertion in a single net has
been the focus for most researchers. However, efficient algo-
rithms for buffer insertion in large networks are required. In
this paper, we propose an algorithm based on length zoom
and min-cut for timing constrained minimal buffer insertion
in a large network. We compare our approach to a tradi-
tional approach based on Lagrangian relaxation. Experi-
mental results demonstrate that the traditional approach is
inefficient and significantly sub-optimal. Our approach is
found to be efficient and on the average, achieves 39% re-
duction on the number of buffers inserted in comparison to
the traditional approach.

1. INTRODUCTION
Interconnect delays have become dominant in modern deep

sub-micron designs with shrinking VLSI feature sizes and in-
creasing chip areas. Buffer insertion is widely used to reduce
interconnect delays [1–4, 7, 9–11, 14, 16–18]. Recent projec-
tions of historical scaling trends by Saxena et al. [15] predict
synthesis blocks to have 70% of their cell count dedicated to
interconnect buffers within a few process generations. Con-
sequently, there is an increasing demand for efficient buffer
insertion approaches.

Van Ginneken [17] proposed a dynamic programming method
to buffer insertion in distributed RC-tree networks for mini-
mal Elmore delay [6]. Shi and Li [16] presented an O(n log2 n)
algorithm for the optimal buffer insertion problem, where n
is the number of legal buffer positions. Chen and Zhou [4]
presented a flexible data structure to get a universal speed
up in buffer insertion. However, all these approaches con-
sidered the buffer insertion problem only in a single net.

In reality, it is often required to insert buffers in a large
network under a given timing constraint. It is not necessary
to optimally buffer each net to get the minimal delay, that is,
nets on the non-critical paths are not required to have min-
imal delays. Therefore, optimally buffering each net leads
to over-buffering. If the given timing constraint is larger
than the minimal delay that can be achieved by buffering,
assignment of various timing budgets on the critical paths
in addition to the others would give multiple buffering so-
lutions. We thus need to insert buffers considering a global
view instead of a local view. Liu et al. [13] presented a
Lagrangian relaxation based algorithm to solve the buffer
insertion problem in large networks. It was extended to

consider multiple buffer types and feasible buffer locations
in [12]. However, Lagrangian relaxation is inefficient in solv-
ing large constrained optimization problems. It is therefore
impractical to use their technique to solve the buffer in-
sertion problem in large networks. Further, the coefficients
used in the object function of Lagrangian relaxation are sen-
sitive and may greatly influence the final results. To the
best of our knowledge, there is no good coefficient selection
method to obtain the best solution, and our experiments
show that the results obtained using a Lagrangian relax-
ation based technique is significantly sub-optimal in some
cases.

In this paper, we present an efficient and timing con-
strained minimum buffer insertion algorithm for large net-
works. We assume that the buffers are of a fixed size, and
that no forbidden buffer locations exist. The basic idea is
to insert more buffers into wires on the min-cuts of the net-
work. Experimental results show that the number of buffers
inserted by our algorithm is always less than the number of
buffers inserted by [13] under the same timing constraint,
and that our algorithm is more efficient than [13].

The rest of this paper is organized as follows. Section 2
presents the problem formulation. In Section 3, the delay
models for the interconnects, modules and buffers are pre-
sented. In Section 4, we present our buffer insertion al-
gorithm, which is based on length zoom and min-cut tech-
niques. In Section 5, we report experimental results. Finally,
the conclusions are drawn.

2. PROBLEM FORMULATION
The input to our problem is a placed and routed netlist of

modules with drivers and loads. Our objective is to insert
buffers into wires in large networks such that the timing
constraint is met and the number of buffers is minimized.

Using the same circuit representation as in [13], we use
a directed acyclic graph (DAG) G(V, E) to represent the
circuit of which the vertices correspond to the primary in-
puts, the primary outputs, tree junctions and module in-
puts/outputs. Two dummy nodes s and t are introduced:
s is connected to all the primary inputs, and t is connected
from all the primary outputs. Let ES be the set of edges
connected to s, and let ET be the set of edges connected to
t. The remaining edges are in set EI , which includes two
disjoint sets of edges EW and EM , corresponding to wires
and the input/output paths of modules, respectively. For
an edge e(u, v), let input(e) be the set of edges connected to
u.

The notations used in this paper are given in Table 1. The

Table 1: Notations
Rb the output resistance of a buffer
Cb the input capacitance of a buffer
tb the intrinsic delay of a buffer
Ke the number of buffers on wire e
Le the length of wire e
pe the wire length from the input of wire e to the first buffer of wire e
qe the wire length from the last buffer of e to the output of wire e
me the wire length between two adjacent buffers in wire e

R̂e the upstream resistance at the input of wire e

Ĉe the downstream capacitance at the output of wire e
De the delay of the wire e
Se the timing slack of the wire e
R the resistance of a unit-length wire
C the capacitance of a unit-length wire
Lth wire length threshold
Sth timing slack threshold

problem is formulated as:

min
∑

e∈EW

Ke

s.t.

ae ≤ Re ∀e ∈ ET (1)

ae′ + De ≤ ae ∀e ∈ EI ∧ e′ ∈ input(e) (2)

De ≤ ae ∀e ∈ ES (3)

Ke ≥ 0 ∀e ∈ EW (4)

where Ke is the number of buffers on edge e, De is the delay
of edge e and is influenced by Ke, ae is the arrival time at
e, and Re is the required time at e.

In the buffer insertion problem, the change of the delay of
one element influences the delays of many other elements.
As shown in Figure 1, a net is composed by wires a, b and
c. If a buffer B is inserted into wire c, the delay of c is
changed, and according to Elmore delay model, the delay
of a also change, so the delay from s0 to s2 also changes.
Actually, since the delay of the driver gate is related with
the load capacitance, it may change too.

s0 s1

s2

a

b

c

B

Figure 1: The influence of an inserted buffer.

Our idea to insert minimal number of buffers in large
networks is stimulated by the min-cut concept. As shown
in Figure 2, we want to insert minimal number of buffers
such that the maximal delay from s to t satisfies the timing
constraint. One possible solution of the buffer positions is
shown by dotted line. But actually there is a better solution
that is shown by bold line, where the buffers are inserted into
the wires on the min-cut. According to this, our basic idea
is to iteratively insert buffers into wires on min-cuts.

3. DELAY COMPUTATION

s t

Figure 2: The benefit of min-cut based technique.

We use the same models of wires, modules and buffers
with [13]. For convenience, we present the models in Fig-
ure 3.

R,C

R

C/2C/2

(a) Wire model

+
−Cb

Rb

Cb

(b) Buffer model

+
−

+
−c1

rR11

2
3

1 3D1,3

D1,3/R1

(c) Gate model (from pin 1 to pin 3)

Figure 3: Delay models of wires, buffers and gates.

Given a wire with buffers inserted, we can easily compute
the delays. In this paper, we only consider the single buffer
type, then from [13], we know that the wire lengths between
two consecutive buffers on one wire are equal. As shown in
Figure 4, when Ke > 0, the delay of wire e is equal to

De = Rpe(Cpe/2 + Cb)

+(Ke − 1)(Rb(Cb + Cme) + tb + Rme(Cb + Cme/2))

+tb + Rb(Ĉe + Cqe) + Rqe(Ĉe + Cqe/2), (5)

We need to consider the contribution of the capacitance of
e to the delay of input(e), so let

Fe = De + R̂e(Cpe + Cb). (6)

Then let
∂Fe

∂pe
= 0,

and
∂Fe

∂qe
= 0,

then we can compute the optimal values of pe and qe for a
given Ke such that Fe is minimized. The optimal values of
pe and qe are given in [13], and for convenience, we list them
again in Table 2. When we get the optimal pe and qe for
a given Ke, the delay of wire e for Ke is easily computed
according to Eq. 5.

pe qeme
OI

Figure 4: A wire with buffers.

4. MIN-CUT BASED BUFFER INSERTION
Satisfying the given timing constraints at the primary out-

puts of a circuit using minimal number of buffers requires
minimizing the maximal delay of the critical paths by buffer-
ing. However, given a network, we do not know the critical
paths before we get the final buffer insertion solution. As
a result, we need to push down the arrival time at node
t iteratively until it meets the timing constraint. In each
iteration, we find the critical paths and insert buffers into
them. As illustrated earlier, the non-critical paths influence
the delays on the critical paths. As a result, we need to
insert decoupling buffers into non-critical branches.

A subgraph containing only the critical paths in the circuit
is called the critical subgraph of the circuit. We need to
insert a minimal number of buffers in the critical subgraph
while maximally pushing down the arrival time at node t.
We define the gain of one buffer insertion activity to be the
timing reduction at node t when that activity is performed.
We thus need to find the best buffer insertion positions to
maximize the summation of the gains in a sequence of buffer
insertion activities.

We have two observations:

• The gain in inserting a buffer in a wire is likely larger
for a longer wire in comparison to a shorter one. Based
on this, we select a length threshold, denoted as Lth,
such that all wires satisfying

Le/(Ke + 1) ≤ Lth

are ineligible for the buffer insertion. In each iteration
Lth is decreased. This technique, called length zoom
(LZ), can always keep a small number of wire candi-
dates for buffer insertion. This greatly reduces the size
of the buffer insertion problem.

• When more critical paths pass through a wire e than
another wire e′, the number of buffers inserted in e is
expected to be less than the number of buffers inserted
in e′ for the same gain. Based on this, we insert the
buffers into the wires in the min-cut of the critical
subgraph.

We next present our timing constrained algorithm called
CutBIN for minimal buffer insertion. The flow of CutBIN
is shown in Figure 5. We assume no buffers in the circuit at
the start of our algorithm.

Algorithm CutBIN(G)

1 maxdelay ← ComputeTimingAndSlack(G);
2 Lth ← half of the maximal wire length;
3 SetCapacity(G);
4 while maxdelay>REQ TIME and Lth > lower bound
5 do Find the min-cut of G;
6 Insert buffers into the nets in the min-cut;
7 if no buffers inserted in this iteration
8 then Lth ← Lth/α (α > 1);
9 else maxdelay ← UpdateTimingSlack(G);

10 UpdateCapacity(G);

Figure 5: Min-cut based buffer insertion algorithm

4.1 Min-cut based buffer insertion
In CutBIN, we do not explicitly extract the critical sub-

graph of G. The critical subgraph here contains not only the
wires on the critical paths, but also the wire candidates to
be critical in next iterations. First, we compute the slacks
and timing information in ComputeTimingAndSlack. We
use the given timing constraint REQ TIME as the criterion
to compute slacks.

Then we set the capacities of edges. For any edge e, if
Se > Sth, it should be excluded from the critical subgraph,
so we set the capacities of the modules and the wires satisfy-
ing Se > Sth to be 0. Modules should be excluded from the
min-cut, so the capacities of the other modules are set to
be INFINITY. Each net can be considered as a tree. The
algorithm to set the capacities of wires in a net is shown
in Figure 6. The argument root is the root of the net. The
pseudocode of the subroutine RecursiveSetNetCapacity
is shown in Figure 7. Before the call of SetNetCapacity,
the capacity of any wire e satisfying Se > Sth is set to be 0,
and the capacities of other wires are set to be INFINITY,
which is done in the timing and slack computation or up-
date step. At the end of SetNetCapacity, the capacities
of wires in a net satisfy the following condition: if all the
branches of the net are not in the current critical subgraph,
the capacity of the root of the net is 0; otherwise if there
exists a wire e satisfying Le/(Ke + 1) > Lth and Se ≤ Sth,
the capacity of the root of this net is 1. This setting guaran-
tees that the found min-cut contains only the roots of nets
with branches on the critical subgraph. Also, the integer
property of the capacities can speed-up the execution of the
max-flow algorithm [8].

After the setting of capacities, we use Ford-Fulkerson
algorithm [8] to compute the maximal flow of G and then
to find the min-cut of G.

As shown in Figure 8, the delay of the module G1 is equal
to

tG1 + rC(Le1 + CG2) + r(Cpe2 + Cb),

where tG1 is the intrinsic delay of G1, r is the output resis-
tance of G1, and CG2 is the input capacitance of G2. When
pe2 is larger, the delay of G1 increases, so the delay of the
critical path increases greatly. In order to minimize this
influence, we need to insert decoupling buffers into the non-
critical branches.

Now we insert buffers into the nets with their roots in
the min-cut. We use a recursive procedure to insert buffers.

Table 2: Optimal pe and qe for a given Ke > 0
pe = 0 0 < pe ≤ Le

qe = 0
pe = 0 pe = Le+(Ke−1)(Rb−R̂e)/R

Ke

qe = 0 qe = 0

0 < qe ≤ Le
pe = 0 pe = Le+Ke(Rb−R̂e)/R−(Cb−Ĉe)/C

Ke+1

qe = Le+(Ke−1)(Cb−Ĉe)/C
Ke

qe = Le−(Rb−R̂e)/R+Ke(Cb−Ĉe)/C
Ke+1

Procedure SetNetCapacity(root)

if root .slack > Sth

then root .capacity ← 0
else root .capacity ← INFINITY

if root .l /(root .k +1) > Lth

then root .capacity ← 1
if root .capacity 6= 1 and root .childnum > 0

then flag ← 0
RecursiveSetNetCapacity(root , f lag)
if flag = 1

then root .capacity ← 1

Figure 6: An algorithm to set the capacities of wires
in a net rooted at root

Procedure RecursiveSetNetCapacity(root , flag)

for each child of root
do if child .slack > Sth

then child .capacity ← 0
continue

child .capacity ← INFINITY
if child .l /(child .k +1) > Lth

then flag ← 1
return

else RecursiveSetNetCapacity(child ,flag)
if flag = 1

then return

Figure 7: Recursively set capacities of wires in a net
rooted at root.

The phseudocode is shown in Figure. 9. We perform depth-
first traversal on the net starting from the root . For each
encountered wire e, if Le/(Ke + 1) > Lth, we insert buffers
until Le/(Ke +1) ≤ Lth. Then for each child of e, if its slack
is larger than Sth, it is on a non-critical branch, so we insert
one decoupling buffer at a position near the start point of
this child, and the depth-first traversal does not traverse
the children of this child; otherwise the recursive procedure
continues the traversal. Here when we insert one buffer, we
do not fix the buffer position, actually we only record pe,
qe and Ke for each wire e, and the positions of the inserted
buffers are flexible.

It is possible that no buffers are inserted in some iteration
of CutBIN, so the arrival time at node t does not decrease,
then we decrease the length threshold Lth. If we have in-
serted new buffers, we need to update the timing, slacks and
capacities.

critical wire e1

G1

G2

non-critical wire e2

B
decoupling buffer

Figure 8: Decoupling technique.

Procedure RecursiveInsertBuffers(root)

if root .l /(root .k +1) > Lth

then Insert buffers to root until
root .l /(root .k +1) ≤ Lth

for each child of root
do if child .slack > Sth

then � (child not in the critical subgraph)
Insert a decoupling buffer at the starting

point of child if there is no decoupling
buffer in child

else RecursiveInsertBuffers(child)

Figure 9: Recursively insert buffers into a net rooted
at wire root

5. EXPERIMENTAL RESULTS

5.1 Comparison results
We have implemented the CutBIN algorithm in C. We

use the parameters from 100-nanometer technology [5]. We
got four test cases from Liu, and we generated additional
four cases using the case generator in [13]. All experiments
are run on a Linux PC with 2.4G Hz Xeon CPU and 2.0 GB
memory.

In order to test the benefit of the min-cut based buffer
insertion, we got the source code of the algorithm in [13]
from Liu for comparison. The comparison results of Cut-
BIN and [13] are shown in Table 3. The 3rd column is
the ratio of the timing constraint over the minimal required
time at node t. The ”Ratio1” column and the ”Ratio2” col-
umn are the ratios of the arrival time at t got by [13] and
CutBIN over the timing constraint respectively. The ”Re-
duction” column is the reduction percentage of the number
of buffers inserted by CutBIN compared with the number of
buffers inserted by [13]. The last column is the speed-up of
CutBIN over [13]. We can see that CutBIN is much more
efficient than [13], and it can achieve 39% reduction of the
number of inserted buffers on average compared with [13].

An example to show the benefit of the min-cut based

Table 3: Comparison results of CutBIN and [13]
circuit Tightness [13] CutBIN

Reduction Speed-up
Module# Wire# of constr. Buffer# Ratio1 Time (s) Buffer# Ratio2 Time (s)

22 98 1.20 172 1.04 0 146 0.99 0 17% 1×
44 197 1.20 305 1.01 5 202 0.99 0.04 34% 125×
81 398 1.20 606 1.01 16 334 0.99 0.14 45% 17×

159 799 1.20 887 1.02 10 583 1.00 0.67 34% 15×
258 1037 1.20 1195 0.96 27 524 1.00 0.37 56% 73×
505 2039 1.20 2331 0.97 65 1367 1.00 1.8 41% 36×

2514 10039 1.20 10467 0.98 343 6265 1.00 22 40% 16×
5034 20038 1.20 20721 0.98 706 11098 1.00 69 46% 10×

Average 39% 37×

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

of

 b
uf

fe
rs

Tightness of timing constraint

CutBIN
[13]

Figure 11: The influence of the tightness of timing constraint on the number of inserted buffers.

Figure 10: A solution generated by CutBIN.

buffer insertion algorithm is shown in Figure 10. The net-
work contains four inputs, one output, and one module. We
can see that our algorithm inserts all the buffers into the
wires on the min-cut.

5.2 Analysis
Intuitively, our algorithm is more applicable for the cases

with loose timing constraints. Using the case with 505 mod-
ules and 2,039 wires as an example, we test the influence of

the tightness of timing constraint on the number of inserted
buffers. As shown in Figure 11, CutBIN is more sensitive
to the changes of the tightness of timing constraint than
the algorithm in [13]. Especially, CutBIN performs much
better when the timing constraint is looser.

In order to find the best choice for the length threshold
decreasing speed (α), we use the test case above as an ex-
ample to show the influence of α on the number of inserted
buffers and the running time. Sth is set to be 2,000 ps.
As shown in Figure 12, a good choice of α is in [1.3, 2.8],
where the running time and the number of buffers are both
acceptable. In our experiments, [1.3, 2.8] is always a good
candidate range for the selection of α.

In order to find the best choice for Sth, we use the same
test case as an example to show the influence of Sth on the
number of inserted buffers and the running time. α is set
to be 1.03. As shown in Figure 13, a good choice of Sth is
about 2,000 ps, where the running time and the number of
buffers are both acceptable. In our experiments, we select
2,000 ps as the value of Sth and get good results.

6. CONCLUSIONS
With shrinking VLSI feature sizes and increasing overall

chip areas, buffering has emerged as a potential solution to
the problem of growing interconnect delays in modern de-

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 1 1.5 2 2.5 3 3.5 4 4.5

 1.2

 1.4

 1.6

 1.8

of

 b
uf

fe
rs

ru
nn

in
g

tim
e

(s
)

α

of buffers
running time

Figure 12: The influence of α on the number of
buffers and running time in CutBIN.

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

of

 b
uf

fe
rs

ru
nn

in
g

tim
e

(s
)

Sth

of buffers
running time

Figure 13: The influence of Sth on the number of
buffers and running time in CutBIN.

signs. The problem of buffer insertion in a single net has
been the focus for most researchers. In this paper, we pro-
pose an algorithm based on length zoom and min-cut for
timing constrained minimal buffer insertion in a large net-
work. We compare our approach to a Lagrangian relaxation
based buffer insertion algorithm proposed by Liu et al. [13].
Experimental results demonstrate that our approach is more
efficient and on the average, achieves 39% reduction on the
number of buffers inserted in comparison to the latter.

7. REFERENCES
[1] C. J. Alpert and A. Devgan. Wire segmenting for

improved buffer insertion. In DAC, pages 588–593,
1997.

[2] C. J. Alpert, M. Hrkic, and S. T. Quay. A fast
algorithm for identifying good buffer insertion
candidate locations. In ISPD, pages 47–52, 2004.

[3] C. J. Alpert, J. Hu, S. S. Sapatnekar, and C. N. Sze.
Accurate estimation of global buffer delay within a
floorplan. In ICCAD, pages 706–711, 2004.

[4] R. Chen and H. Zhou. A flexible data structure for
efficient buffer insertion. In ICCD, pages 216–221,

2004.

[5] J. Cong and Z. Pan. Interconnect performance
estimation models for synthesis and design planning.
In Workshop Notes of Intl. Workshop on Logic
Synthesis, pages 427–433, 1998.

[6] W. C. Elmore. The transient response of damped
linear networks with particular regard to wide-band
amplifiers. Journal of Applied Physics, 19(1):55–63,
January 1948.

[7] J. Lillis et al. New performance driven routing
techniques with explicit area/delay tradeoff and
simultaneous wire sizing. In DAC, pages 395–400,
1996.

[8] J. R. Ford and D. R. Fulkerson. Flows in Networks.
Princeton University Press, 1962.

[9] M. Kang, W. W.-M. Dai, T. Dillinger, and
D. LaPotin. Delay bounded buffered tree construction
for timing driven floorplanning. In ICCAD, pages
707–712, 1997.

[10] V. Khandelwal, A. Davoodi, A. Nanavati, and
A. Srivastava. A probabilistic approach to buffer
insertion. In ICCAD, pages 560–567, 2003.

[11] J. Lillis, C. K. Cheng, and T. T. Y. Lin. Optimal wire
sizing and buffer insertion for low power and a
generalized delay model. IEEE Trans. Solid-State
Circuits, 31:437–447, 1996.

[12] I.-M. Liu, A. Aziz, and D. F. Wong. Meeting delay
constraints in DSM by minimal repeater insertion. In
DATE, pages 436–440, 2000.

[13] I.-M. Liu, A. Aziz, D. F. Wong, and H. Zhou. An
efficient buffer insertion algorithm for large networks
based on Lagrangian relaxation. In ICCD, pages
210–215, 1999.

[14] T. Okamoto and J. Cong. Buffered Steiner tree
construction with wire sizing for interconnect layout
optimization. In ICCAD, pages 44–49, 1996.

[15] P. Saxena, N. Menezes, P. Cocchini, and Desmond A.
Kirkpatrick. The scaling challenge: Can
correct-by-construction design help? In ISPD, pages
51–58, 2003.

[16] W. Shi and Z. Li. An O(nlogn) time algorithm for
optimal buffer insertion. In DAC, pages 580–585, 2003.

[17] L. P. P. P. van Ginneken. Buffer placement in
distributed RC-tree networks for minimal Elmore
delay. In ISCAS, pages 865–868, 1990.

[18] H. Zhou, D. F. Wong, I-Min Liu, and Adnan Aziz.
Simultaneous routing and buffer insertion with
restrictions on buffer locations. DAC, 1999.

