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Abstract 
 

Given a set of timing-driven routing trees for all the 
interconnection nets, a new multilevel timing-constrained 
full-chip routing(MTFR) in a dynamic hierarchical quad-
grid model is proposed to complete full-chip routing in 
reasonable time. The experimental results show that the 
proposed MTFR approach uses less CPU time to obtain 
100% timing-constrained routing results for all the tested 
benchmark circuits. 
 
 
1. Introduction 
 

Basically, the concept of multilevel designs has been 
successfully applied to VLSI physical design. For 
example, multilevel partitioners, ML[1], hMETIS[2], and 
HPM[3], multilevel placer, mPL[4] and multilevel 
floorplanner, MB*-tree[5]. It is assumed that multilevel 
technique is implemented in a two-stage process: 
coarsening and uncoarsening. The coarsening stage 
iteratively groups a set of circuit components until the 
number of considered components is smaller than a given 
threshold, and a given problem is solved in the final size. 
Furthermore, the uncoarsening stage iteratively ungroups 
a set of previously clustered circuit components and 
refines the solution by using an improvement method. As 
similar to the concept of multilevel routing, Lin Hsu and 
Tsai[6] presented a hybrid hierarchical approach with the 
bottom-up(coarsening) and top-down(uncoarsening) 
technique for global routing. Recently, Cong, Fang and 
Zhang[7] proposed a multilevel approach for large-scale 
full-chip routability-driven global routing. Again, Cong, 
Xie and Zhang[8] presented an enhanced multilevel 
routing system, named MARS, which incorporates 
several new techniques of resource reservation for local 
nets during the coarsening process, congestion-driven 
graph-based Steiner tree construction during the initial 
routing and multi-iteration refinement with the congestion 
history to improve the quality of the multilevel routing 
algorithm[7]. However, these proposed multilevel 
routing[6-8] mainly focus on global routing. Recently, 

Lin and Chang[9] proposed a novel framework, named 
MR, for multilevel full-chip routing. 

Based on a probabilistic congestion estimation model 
and two kinds of timing-constrained routing flexibilities: 
movable Steiner-points and wire detours, Yan and Lin[10] 
proposed a timing-constrained congestion-driven global 
routing(TCGR) approach to obtain an initial timing-
constrained congestion-driven global routing result 
without destroying the timing constraint of any routing 
net. Finally, a simulated-annealing-based timing-
constrained rip-up-and-reroute (STRR) approach is 
proposed to guarantee to obtain better timing-constrained 
global routing result. However, the flat approach must 
take much computation time to obtain a timing-
constrained global routing result for any larger routing 
design. 

In this paper, according to the result of a set of timing-
driven routing trees for all the interconnection nets, a new 
multi-level timing-constrained full-chip routing (MTFR) 
in a dynamic hierarchical quad-grid model is proposed to 
complete full-chip routing in reasonable time. In the 
proposed MTFR, the global paths of all the routing trees 
can be assigned by using the timing–constrained 
flexibility of Steiner points in a top-down timing-
constrained congestion-driven global routing (TCGR) 
process in a quad-grid model. If the global path of any 
routing tree is successfully not assigned in a top-down 
TCGR process, a simulated-annealing-based timing-
constrained rip-up-and-reroute(STRR) process in a 
hierarchical quad-grid model will improve the routing 
tree to complete the global paths of the overflow wires in 
a hierarchical quad-grid model. Furthermore, all the 
global paths of the routing trees in a routing plane can be 
physically assigned by using pattern routing in a bottom-
up timing-constrained pattern-driven detailed routing 
(TPDR) process in a quad-grid model. If the physical path 
of any routing tree is successfully not assigned in a 
bottom-up TPDR process, a timing-constrained maze 
routing(TMR) process in a routing plane will improve the 
routing tree to assign the timing-constrained physical 
paths of the failed wires in a uniform grid model. Finally, 
the experimental results show that the proposed MTFR 



approach obtains 100% timing-constrained routing results 
for all the tested benchmark circuits. 
 
2. Problem Formulation 
 

Basically, the success of any complicated chip 
seriously depends on the routability of a used full-chip 
routing methodology. In general, full-chip routing is 
divided into full-chip global routing and full-chip detailed 
routing. It is known that a final full-chip global routing 
result can be obtained by collecting the routing results of 
a given set of routing trees in a routing plane. In order to 
maintain the routability of the full-chip routing 
methodology, full-chip global routing must focus on the 
congestion control among all the routing trees. Hence, 
full-chip global routing must be treated as congestion-
driven global routing in a routing plane. Based on a full-
chip global routing result and physical design rules in a 
routing plane, full-chip detailed routing must focus on the 
physical assignment of global paths for all the routing 
trees. If the timing constraint of any routing tree is 
maintained in full-chip global and detailed routing, the 
full-chip routing process can be further treated as a 
timing-constrained full-chip routing process. Hence, the 
timing-constrained full-chip routing(TFR) problem can be 
formulated as follows: Given a set of routing trees, T = 
{T1, T2,…, TN}, in a routing plane, each routing tree, Ti, is 
described by a set of pins, Pi = { ip1 ,…, i

ip )(δ }, a set of 
Steiner-points, Si = { iS1

,…, i
iS )(θ
} and a set of wires, Wi = 

{ iw1
,…, i

iw )(ε
}, where )(iδ represents the number of given 

pins, )(iθ represents the number of generated Steiner-
points and )(iε  represents the number of connecting wires 
in Ti, respectively. Based on the timing-constrained 
routing flexibilities of all the routing trees, the timing-
constrained full-chip routing (TFR) problem is to reassign 
the Steiner-points of all the routing trees in T onto 
feasible timing-constrained positions and further assign 
the physical paths of all the routing trees without 
destroying the required timing constraints in T. 
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Fig. 1 Timing-constrained full-chip routing 

 
As shown in Fig. 1(a), given a set of seven routing 

trees, T = {T1, T2,…, T7}, with a generated Steiner-point, 1
1S , in T1 and a generated Steiner-point, 2

1S , in T2. The 
TFR problem is to reassign two Steiner-points, 1

1S  and 2
1S , 

onto feasible timing-constrained positions and further 
assign the physical paths of all the routing trees without 
destroying the timing constraints in T as shown in Fig. 
1(b). 
 
3. Hierarchical Quad-grid Model 
 

In order to understand the routability of all the routing 
nets in a routing plane, a routing plane can be partitioned 
into a set of uniform grid cells in a static uniform-grid 
model and the routability of any grid cell can be estimated 
by the congestion of the grid cell. If any grid cell in a 
routing plane has 100% routability, all the routing nets 
may be fully routed in a routing plane. In a static uniform-
grid model, a routing plane can be divided into a set of 
mxn uniform grid cells, {G1,1, 
G1,2, …G1,n,…Gm,1,…Gm,n }, where m is the number of 
horizontal grid cells and n is the number of vertical grid 
cells in a routing plane, respectively. For any grid cell, Gi,j, 
there exist a horizontal grid edge, Hi,j, on the bottom 
boundary, and a vertical grid edge, Vi,j, on the right 
boundary. Hence, there exist (m-1)xn horizontal grid 
edges, {H1,1, H1,2, …H1,n,…H(m-1),1,…H(m-1),n} and mx(n-1) 
vertical grid edges, {V1,1, V1,2, …V1,(n-1),…Vm,1,…Vm,(n-1) } 
in a routing plane. 

To our knowledge, many congestion-driven global 
routing approaches have estimated the congestion of any 
grid cell in a static uniform-grid model. For a given set of 
routing trees in a routing plane, it is assumed that all the 
given pins and its related Steiner-points in any routing 
tree are fixed. Any routing tree can be treated as a set of 
two-endpoint wires in a routing plane. In a static uniform-
grid model, some two-endpoint wires may be fully 
contained inside a grid cells if the grid size is too large, 
and the ignoring result of the inward wires will make the 
congestion estimation in some grid cells to be under-
estimated. On the other hand, many empty grid cells may 
be yielded in a routing plane if the grid size is too small, 
and the number of possible paths of any routing wire will 
make the congestion estimation of some grid cells be 
over-estimated. Hence, the uniform grid size in a static 
uniform-grid model will lead to the routability estimation 
to be less accurate and more time-consuming. 

To accurately estimate the congestion of all the routing 
trees in a routing plane, an effective dynamic quad-grid 
model has been proposed by Yan et al.[11] and used to 
estimate the routability for congestion-driven global 
routing. Basically, a dynamic hierarchical quad-grid 
model is formulated as follows: Initially, a routing plane 
can be treated as a single grid cell, G. As any wire in a 
routing tree is fully contained inside a grid cell, the 
corresponding grid cell will be geometrically divided into 
four equal-sized grid subcells and the index of the divided 
grid subcells is numbered as that of four quadrants in a 
geometrical plane. For example, the grid cell, G, is 



divided into four grid subcells, G1, G2, G3 and G4, and the 
grid cell, G1, can be further divided into four grid subcells, 
G11, G12, G13 and G14, etc.. The recursive division of a 
original routing plane cannot stop until any wire in a 
routing tree is not fully contained inside a grid cell. Hence, 
the hierarchical division of the grid cells in a routing 
plane can be modeled as a quad tree and any leaf node in 
the corresponding quad tree can represent a final resultant 
grid cell in a dynamic hierarchical quad-grid model. 

Refer to the routing trees in Fig. 1, the hierarchical 
division of the grid cells in a routing plane is illustrated in 
Fig. 2(a) and its corresponding quad tree is shown in Fig. 
2(b). Clearly, all the leaf nodes in the quad tree represent 
the final resultant grid cells in a dynamic hierarchical 
quad-grid model. 
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Fig. 2 Hierarchical quad-grid model and its quad-tree 

 
In a dynamic hierarchical quad-grid model, the 

adjacent relation between two resultant grid cells can be 
defined as follows: 
Definition 1: Given two grid cells, 

)()...2()1( mG ααα
 and 

)()...2()1( nG βββ
, 1 ≤ α(i) ≤ 4, 1 ≤ i ≤ m, and 1 ≤ β(i) ≤ 4, 

1≤ i≤ n, 
)()...2()1( mG ααα
 is horizontally(vertically) adjacent to 

)()...2()1( nG βββ
 if one of the following conditions is satisfied 

as 
(1) α(i) = β(i), 1≤ i≤m-1, and (α(i), β(i)) = (2, 1) or (3, 4)[(3, 

2) or (4, 1)], if m = n, or 
(2) 

)()...2()1( mG ααα
 is horizontally(vertically) adjacent to 

)()...2()1( nG βββ
 and (α(i), β(i)) = (1, 2) or (4, 3)[(1, 4) or (2, 

3)], if m = n, or 
(3) 

)()...2()1( mG ααα
 is horizontally(vertically) adjacent to 

)()...2()1( nG βββ
 and α(i) =1 or 4(1 or 2), n+1≤ i≤m, if m > n, 

or 
(4) 

)()...2()1( mG ααα
 is horizontally(vertically) adjacent to 

)()...2()1( nG βββ
 and β(i)=2 or 3(3 or 4), m+1≤ i≤ n, if m < n. 

In general, the congestion condition on any grid edge 
seriously depends on the pin distribution and the path 
assignment of all the routing trees in a routing plane. In 
[11], a probabilistic estimation in a hierarchical quad-grid 
model is proposed to predict the congestion of the routing 
trees in a routing plane as follows: For any two-endpoint 
wire, w, in a hierarchical quad-grid model, all the 
overlapping routing grids for the wire, w, can be further 

obtained by finding all the grid cells overlapping the 
minimum routing region. According to the adjacent 
relation of the overlapping routing grid cells, in a 
hierarchical quad-grid model, an adjacent graph, Gw, can 
be constructed by assigning the routing grid cells as 
vertices and all the adjacent relations as edges. Basically, 
two grid cells including two endpoints in the wire, w, are 
treated as a start vertex and a target vertex in Gw, and the 
direction of the adjacent edges in Gw is assigned 
according to the concept of minimum routing distance 
from the start vertex to the target vertex. Clearly, an 
adjacent graph for any two-endpoint wire is acyclic. 
Initially, the number of possible paths on the start vertex 
is assigned as 1. For any vertex, v, in Gw, the number of 
possible paths can be obtained by adding all the possible 
paths on the in-degree edges of the vertex v and 
broadcasted to the out-degree edges of the vertex v. 
Finally, the number of possible paths on the target vertex 
can be easily obtained and the number, N(w), of possible 
global paths for the wire, w, can be defined as the number 
of possible paths on the target vertex. 

For any two-endpoint wire, w, with two endpoints 
located inside Gs and Gt, the wire through the grid edge, 

)()...2()1(),()...2()1( nmV βββααα
 or 

)()...2()1(),()...2()1( nmH βββααα
, between the grid 

cells, 
)()...2()1( mG ααα
 and 

)()...2()1( nG βββ
, can be divided into the 

first wire, w1, from Gs to 
)()...2()1( mG ααα
, the second wire, w2, 

from 
)()...2()1( mG ααα
 to 

)()...2()1( nG βββ
, and the third wire, w3, 

from 
)()...2()1( nG βββ

 to Gt. Hence, the number, 

)()()...2()1(),()...2()1( wN nm βββααα
, of possible global paths through 

)()...2()1(),()...2()1( nmV βββααα
 or 

)()...2()1(),()...2()1( nmH βββααα
, can be obtained 

as N(w1)x N(w2)x N(w3). Since N(w2) = 1, 
)()()...2()1(),()...2()1( wN nm βββααα

is equal to N(w1)xN(w3). 

Furthermore, it is assumed that the routing probability of 
any possible path is equal, the probability, 

)()()...2()1(),()...2()1( wP nm βββααα
, of the global paths through  

)()...2()1(),()...2()1( nmV βββααα
 or 

)()...2()1(),()...2()1( nmH βββααα
, can be obtained 

as  

)(
)()(

)( 31
)()...2()1(),()...2()1( wN

wxNwN
wP nm =βββααα

 

Given a set of two-endpoint wires, {w1, w2,…, wk} in a 
hierarchical quad-grid model, and the routing capacity, 

)()...2()1(),()...2()1( nmCap βββααα
, on the grid edge, 

)()...2()1(),()...2()1( nmV βββααα
 

or 
)()...2()1(),()...2()1( nmH βββααα

, the probabilistic congestion, 

)()...2()1(),()...2()1( nmC βββααα
 on the grid edge, 

)()...2()1(),()...2()1( nmV βββααα
 

or 
)()...2()1(),()...2()1( nmH βββααα
, can be further defined as 

)()...2()1(),()...2()1( nmC βββααα
 = 

)()...2()1(),()...2()1(

1
)()...2()1(),()...2()1( )(

nm

k

i
inm

Cap

wP

βββααα

βββααα∑
=  

 



4. Multilevel Timing-Constrained Full-Chip 
Routing 
 

Because of a large number of routing nets in a modern 
complicated chip, the TFR problem is always solved by a 
timing-consuming flat approach. To complete a full-chip 
routing process in a reasonable time, the multilevel 
approach can be proposed to reduce the computational 
time for the TFR problem. The proposed multilevel 
timing-constrained full-chip routing(MTFR) approach is 
divide into four phases: (1) Top-down timing-constrained 
congestion-driven global routing(TCGR) in a quad-grid 
model, (2) Simulated-annealing-based timing-constrained 
rip-up-and-reroute (STRR) improvement in a hierarchical 
quad-grid model, (3) Bottom-up timing-constrained 
pattern-driven detailed routing(TPDR) in a quad-grid 
model and (4) Timing-constrained maze routing(TMR) 
improvement in a uniform grid model. As illustrated in 
Fig. 3, given a set of routing trees with their timing 
constraints in a routing plane, the global paths of all the 
routing trees can be assigned by using the timing–
constrained flexibility of Steiner points in a top-down 
TCGR process. If the global path of any routing tree is 
successfully not assigned, a STRR improvement process 
will help the overflow routing tree to complete the 
assignment of its global path in a hierarchical quad-grid 
model. Furthermore, all the global paths of the routing 
trees in a routing plane can be physically assigned by 
using the technique of pattern routing in a bottom-up 
TPDR process. If the physical path of any routing tree is 
physically not assigned, a TMR improvement process in a 
routing plane will help the failed routing tree to assign its 
timing-constrained physical path in a uniform grid model. 

 

G11 G12 G13 G14 

G1 G2 G3 G4

G 

G31 G32 G33 G34

G321 G322 G323 G324

(1) Top-down TCGR 
   in a Quad-Grid Model 

(2) STRR Improvement in a Hierarchical Quad-Grid Model 

(3) Bottom-up TDPR 
   in a Quad-Grid Model 

(4) TMR Improvement 

 
Fig. 3 Hierarchical timing-constrained full-chip routing 

 
4.1. Top-Down TCGR in Quad-Grid Model 
 

Given a set of routing trees with their timing 
constraints in a routing plane, first, it is assumed that all 

the Steiner-points in the routing trees are located on fixed 
positions and any routing tree is decomposed into some 
two-endpoint wires. Basically, the original routing plane 
can be treated as an initial grid cell. If any two-endpoint 
wire is fully contained in the initial grid cell, the grid cell 
will be geometrically partitioned into four quadrants as 
four grid subcells by using a “+”-type partitioning line. 
Basically, two-endpoint wires across the “+”-type 
partitioning line are further divided into straight wires and 
diagonal wires. Two endpoints in any straight wire are 
located in two adjacent quadrants, and two endpoints in 
any diagonal wire are located in two diagonal quadrants. 
According to the lengths of four horizontal and vertical 
grid edges in the “+”-type partitioning line and the width 
of a routing pitch in the design rule, the horizontal and 
vertical routing capacities, 

HCap  and 
VCap , between two 

adjacent grid subcells can be obtained by estimating the 
number of pitches on the horizontal and vertical grid 
edges. Clearly, there is only one possible global path for 
any straight wire, and there are only two global paths for 
any diagonal wire. Hence, the routing probability of any 
straight wire through its horizontal or vertical grid edge 
can be obtained as 1, and the routing probability of any 
diagonal wire through its horizontal or vertical grid edge 
can be obtained as 0.5. Furthermore, the probabilistic 
congestion of any horizontal(or vertical) grid edge in the 
“+”-type partitioning line can be estimated by computing 
the ratio of the sum of total routing probabilities on any 
horizontal(or vertical) grid edge and the horizontal(or 
vertical) routing capacity, 

HCap (or 
VCap ). In Fig. 4(a), 

the straight wires and the diagonal wires in a quad-grid 
model are shown. Refer to the routing trees in Fig. 1, it is 
assumed that the horizontal or vertical routing capacity, 

HCap  or 
VCap , is 4, the probabilistic congestion of two 

horizontal grid edges in the “+”-type partitioning line are 
0.25 and 0.75, and the probabilistic congestion of two 
vertical grid edges in the “+”-type partitioning line are 0.5 
and 0.75 as shown in Fig. 4(b). 
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Fig. 4 Probabilistic congestion estimation in a quad-grid model 

 
Second, it is assumed that all the Steiner-points in any 

routing tree in a routing plane are movable and the 
structure of any Steiner-point and its related wires 
constructs a Y-type wire. According to the discussion of 
the timing-constrained location flexibility of Steiner-point 
in any Y-type wire[10], the Steiner-point in any Y-type 
wire has its TSLR in the routing plane. Without 
destroying the timing constraints of all the routing trees, 



any Steiner-point in a routing tree can be located on the 
feasible position inside its TSLR to balance the local 
congestion of all the horizontal and vertical grid edges in 
the TSLR. Intuitively, if any Steiner-point is located on 
the feasible position, the local congestion balance in all 
TSLRs will lead to the global congestion balance in a 
routing plane. Refer to the probabilistic congestion of 
four horizontal and vertical grid edges in Fig. 4, the 
Steiner-point movement in a routing tree can reduce the 
maximal probabilistic congestion of four horizontal and 
vertical grid edges from 0.75 to 0.5 as shown in Fig. 5.  
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Fig. 5 Timing-constrained Steiner-point Assignment in a quad-

grid model 
 

Finally, it is again assumed that all the Steiner-points 
in any routing tree are fixed, and two-endpoint wires in 
any routing tree are divided into straight wires and 
diagonal wires. Since there is only one possible global 
path for any straight wire, the global paths of all the 
straight wires can be directly assigned through their 
horizontal or vertical grid edges. After assigning the 
global paths of all the straight wires, the probabilistic 
congestions and the routing capacities on four horizontal 
and vertical grid edges must be further modified. Since 
there are only two possible global paths for any diagonal 
wire, the global path of any diagonal wire can be assigned 
by selecting a global path with minimal probabilistic 
congestion. After assigning the global path of any 
diagonal wire, the probabilistic congestions and the 
routing capacities on four horizontal and vertical grid 
edges must be dynamically modified. Until the global 
paths of all the diagonal wires are assigned, the global 
assignment of the routing trees across the “+”-type 
partitioning line will stop. Refer to the routing trees in Fig. 
5, the assignment of the global paths of all the straight 
wires and all the diagonal wires is shown in Fig. 6(a) and 
Fig. 6(b), respectively.  
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Fig. 6 Assignment of the global paths of the routing trees in a 
quad-grid model 

 
Given a set of routing trees with their timing 

constraints in a routing plane, if any two-endpoint wire is 
fully contained in the routing plane, the routing plane will 
be geometrically partitioned into four quadrants as four 

routing subplanes by using a “+”-type partitioning line. 
Furthermore, the global paths of all the two-endpoint 
wires across the “+”-type partitioning line can be 
assigned by running a TCGR process in a quad-grid 
model. Similarly, the global paths of all the two-endpoint 
wires inside four routing subplanes can be recursively 
assigned by running a TCGR process in a quad-grid 
model. Hence, the global paths of the routing trees with 
their timing constraints in a routing plane can be assigned 
by using a top-down TCGR algorithm, TopDown_TCGR, 
in a quad-grid model and the TopDown_TCGR algorithm 
can be described as follows:  
TopDown_TCGR (T, G) 
Input: a set of routing trees, T, with their timing constraints in a 
routing plane, G; 
{    Partition the grid cell G into four uniform subgridsG1, G2, 

G3 and G4; 
Compute the probabilistic congestions of all the grid edges 

for T in a quad-grid model;  
 Assign the Steiner points of the routing trees in T onto 

feasible positions inside the related TSLRs; 
 Assign the congestion-driven global paths of all the straight 

and diagonal wires on the grid edges; 
for (i=1;i<=4;i++) 

if (any wire in T is fully contained in Gi) 
TopDown_TCGR(T, Gi); 

Output the assignment of the global paths of all the routing 
trees in T; 

} 
 
4.2. STRR Improvement in Hierarchical Quad-
Grid Model 
 

As the global paths of all the routing trees in a routing 
plane are assigned by running a top-down TCGR process 
in a quad-grid model, the recursive partition of a routing 
plane in a quad-grid model will form the concept of a 
routing plane in a hierarchical quad-grid model. Given the 
routing capacity, 

)()...2()1(),()...2()1( nmCap βββααα
, on the grid edge, 

)()...2()1(),()...2()1( nmH βββααα
 or 

)()...2()1(),()...2()1( nmV βββααα
, between 

)()...2()1( mG ααα
 and 

)()...2()1( nG βββ
 in a hierarchical quad-grid 

model, the number of wires across the grid edge, 
)()...2()1(),()...2()1( nmH βββααα
 or 

)()...2()1(),()...2()1( nmV βββααα
, is designated as 

the edge demand, 
)()...2()1(),()...2()1( nmd βββααα
, of the grid edge, 

)()...2()1(),()...2()1( nmH βββααα
 or 

)()...2()1(),()...2()1( nmV βββααα
. Hence, the edge 

overflow, 
)()...2()1(),()...2()1( nmOverflow βββααα

, of the grid edge, 

)()...2()1(),()...2()1( nmH βββααα
 or 

)()...2()1(),()...2()1( nmV βββααα
, is defined as 

⎪
⎩

⎪
⎨

⎧
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−
=
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Furthermore, the global overflow, Overflow , in a routing 
plane in a hierarchical quad-grid model is defined as the 
summation of the edge overflows of all the grid edges as 



∑=
edgesgridallfor

nmOverflowOverflow )()...2()1(),()...2()1( βββααα

 

If the global overflow, Overflow , is equal to 0 in a 
routing plane in a hierarchical quad-grid model, the 
assignment of the global paths of all the routing trees in a 
routing plane will be completed by using a top-down 
TCGR process in a quad-grid model. In contrast, if the 
edge overflow of any grid edge is larger than 0, an STRR 
improvement process in a hierarchical quad-grid model 
must be proposed to release the overflow condition of any 
grid edge by reassigning the global paths of all the 
overflow wires in a routing plane. 

Based on the timing-constrained location flexibility of 
Steiner-point in any Y-type wire and the timing-
constrained detour flexibility in any two-endpoint wire, 
three timing-constrained rip-up-and-reroute operations, 
Steiner-point assignment-and-reroute, Steiner-point 
deletion-and-reroute and Detour assignment-and-reroute, 
in the STRR improvement approach[10] are proposed to 
release the overflow conditions of all the grid edges in a 
hierarchical quad-grid model. According to the estimation 
of the probabilistic congestion in a hierarchical quad-grid 
model[11], the probabilistic congestions of all the 
horizontal and vertical grid edges and the horizontal and 
vertical routing capacities in a hierarchical quad-grid 
model must be computed. Furthermore, the ripped wires 
after running any timing-constrained rip-up-and-reroute 
operation can be rerouted by running the assignment of 
global paths in a hierarchical quad-grid model. For the 
assignment of the global path of any ripped wire in a 
hierarchical quad-grid model, any grid cell in the timing-
constrained routing region of the ripped wire is treated as 
a vertex, the adjacent relation between two adjacent grid 
cells in the timing-constrained routing region of the 
ripped wire as an edge, and the probabilistic congestion 
on the horizontal or vertical grid edge as an edge weight 
to construct a path-connection graph. Furthermore, the 
shortest path between two endpoints in the ripped wire in 
the path-connection graph can be found and the global 
path of the ripped wire can be assigned by following the 
connecting vertices in the resultant shortest path. After 
assigning the global path of any ripped wire, the 
probabilistic congestions of the horizontal and vertical 
grid edges and the horizontal and vertical capacities in a 
hierarchical quad-grid model must be dynamically 
modified. Hence, the global paths of all the ripped wires 
can be assigned to release all the overflow conditions in a 
hierarchical quad-grid model. 

Refer to the global paths of the routing trees in Fig. 6. 
Clearly, there exist an edge overflow between two grid 
cells, G321 and G322, in Fig. 7(a). By using the Detour 
assignment-and-reroute operation in a hierarchical quad-
grid model, the global path of the ripped wire is 
reassigned and the final global routing result is obtained 

by running a STRR improvement process in a hierarchical 
quad-grid model and shown in Fig. 7(b). 

 

(a) (b)  
Fig. 7 STRR improvement in a hierarchical quad-grid model 

 
In the proposed STRR improvement in a hierarchical 

quad-grid model, the set of all the timing-constrained 
global routing results is defined as the solution space and 
the global overflow, Overflow , of the timing-constrained 
global routing result is defined as the cost function. By 
using three timing-constrained rip-up-and-reroute 
operations, Steiner-point reassignment-and-reroute, 
Steiner-point deletion-and-reroute for the Steiner point in 
any Y-type wire and Detour assignment-and-reroute in 
any S-type wire, to perturb the solution space in a 
hierarchical quad-grid model, the overflow conditions of 
all the grid edges in a hierarchical quad-grid model will 
be gradually released. As the global overflow, Overflow , 
of any timing-constrained global routing result is equal to 
0 or the simulated temperature is converged, a final 
timing-constrained global routing result will be obtained.  
 
4.3. Bottom-Up TPDR in Quad-Grid Model 
 

Since the grid cells in a hierarchical quad-grid model 
are represented as a quad tree, the routing result in the 
four adjacent grid cells partitioned by a “+”-type line can 
be further integrated into the routing result in a larger grid 
cell in a bottom-up manner. Until the final integrated grid 
cell corresponds to a full routing plane, the routing result 
in the final grid cell will be the final routing result in a 
routing plane. In integrating four adjacent grid cells into a 
larger grid cell in a bottom-up manner, the partial or full 
global paths of all the routing trees in the four adjacent 
grid cells must be physically assigned onto the horizontal 
and vertical grid edges and routed as special wiring 
patterns by running a bottom-up TPDR process in a quad-
grid model. If all the grid cells in a quad tree are 
integrated into a full routing plane and the global paths of 
all the routing trees are physically assigned by using 
special routing patterns, a final detailed routing result will 
be obtained. 

In a bottom-up TPDR process in a quad-grid model, it 
is assumed that all the Steiner-points in the routing trees 
are located on fixed positions and any routing tree is 
decomposed into some two-endpoint wires. First, any 
two-endpoint wire across a “+”-type partitioning line is 
represented as a straight line connecting two endpoints. 



Basically, one crossing point on the “+”-type partitioning 
line can be obtained for any straight wire and two 
crossing points on the “+”-type partitioning line can be 
obtained for any diagonal wire. For two-endpoint wires 
whose global paths cross the same grid edge, the physical 
ordering of these wires can be further decided according 
to the positions of their crossing points on the grid edge. 
By finding the position of the nearest track of its crossing 
point on the grid edge, the position of the boundary pin of 
any wire on the same grid edge can be obtained. 
According to the positions of the boundary pins on the 
“+”-type partitioning line, any straight wire can be 
divided into two smaller wires and any diagonal wire can 
be divided into three smaller wires. Clearly, these divided 
smaller wires are fully contained in four grid cells in a 
quad-grid model. The smaller wires inside any of four 
grid cells can be physically routed by using an I-type, L-
type or Z-type path in a pattern routing process. Hence, 
the physical path of any two-endpoint wire can be 
assigned by using the connection of I-type, L-type or Z-
type paths in a bottom-up pattern-driven detailed routing 
process. 

Refer to the global routing result in Fig. 7, if the 
physical paths of all the two-endpoint wires in the third 
level have been assigned, the representation of a three-
level quad tree has been reduced into that of a two-level 
quad tree in a hierarchical quad-grid model. For all the 
two-endpoint wires in the second level, the crossing 
points of the wires are marked as “X” in Fig. 8(a), the 
assignment of the boundary pins of the wires is shown in 
Fig. 8(b), and the pattern-driven detailed routing result for 
a bottom-up TPDR process in a quad-grid model is shown 
in Fig. 8(c). 

 

(a) (b) (c)  
Fig. 8 Boundary pin assignment and detailed pattern routing in a 
quad-grid model 

 
 Furthermore, there may be some redundant bends in 

the physical path of any two-endpoint wire. In general, 
redundant bends in the connection of any physical path 
will yield redundant vias to increase the timing delay. 
Hence, the reduction of bends in the physical path of any 
two-endpoint wire is applied to rebuild the connection of 
the physical path with minimal vias. Furthermore, the 
detailed routing result inside four grid cells is integrated 
into the detailed routing result inside a larger grid cell by 
deleting the “+”-type partitioning line. 

Refer to the detailed routing result in the second level, 
the physical paths of all the two-endpoint wires in the 

second level can be integrated into the routing result in 
the first level, and the representation of a two-level quad 
tree is reduced into that of a one-level quad tree in a 
hierarchical quad-grid model. In Fig. 9, the physical paths 
of all the two-endpoint wires in the first level are assigned 
by assigning boundary pins, using pattern-driven detailed 
routing and reducing redundant bends. However, there 
still exists a two-endpoint wire whose physical path is not 
assigned after running a bottom-up TPDR process in a 
quad-grid model. 
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Fig. 9 Bottom-up TPDR in a quad-grid model 

 
Given the global paths of all the routing trees in a 

hierarchical quad-grid model, the physical paths of all the 
two-endpoint wires across all the “+”-type partitioning 
lines can be recursively assigned by running a bottom-up 
TPDR process in a quad-grid model and the bottom-up 
TPDR algorithm, BottomUp_PTDR, can be described as 
follows:  
BottomUp_TPDR (T, G) 
Input: the global paths of the routing trees, T, in a hierarchical 
quad-grid model; 
{   Assign the boundary pins of all the two-endpoint wires in 

the lowest level of G; 
Assign the physical paths of the wires in the lowest level of 

G by using pattern-driven detailed routing;  
Reduce the redundant bends of the physical paths of all the 

two-endpoint wires in the lowest level of G; 
Combine the detailed routing results in the lowest level of G 

and Modify G; 
If (G is not a single grid cell) 
      BottomUp_TPDR(T, G); 
Output the physical paths of all the routing trees, T; 

} 
 
4.4. TMR Improvement in Uniform Grid Model 
 

As the physical paths of the routing trees in a 
hierarchical quad-grid model are assigned by running a 
bottom-up TPDR process in a quad-grid model, the 
routing result in a hierarchical quad-grid model will be 
physically assigned and integrated into the routing result 
in a final routing plane according to the recursive 



integration of the grid cells in a hierarchical quad-grid 
model. Based on the size of a routing pitch, the final 
routing plane can be further divided into uniform grid 
cells in a uniform grid model. As the physical path of any 
two-endpoint wire across a “+”-type partitioning line is 
not assigned by running a bottom-up TPDR process in a 
quad-grid model, the timing-constrained region of the 
unassigned wire in a uniform grid model will be found. 
Furthermore, the physical path of the unassigned wire 
inside its timing-constrained region can be assigned by 
running a TMR improvement process in a uniform grid 
model. Refer to the detailed routing result in Fig. 9, it is 
clear that there exists a two-endpoint wire whose physical 
path is not assigned after running a bottom-up TPDR 
process in a quad-grid model. In Fig. 10, the timing-
constrained region of the unassigned wire can be found 
and the physical path of the unassigned wire can be 
further assigned by running a TMR improvement process 
in a uniform grid model. 
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Fig. 10 TMR improvement in a uniform grid model 

 
5. Experimental Results 
 

The proposed MTFR approach has been implemented 
by using standard C++ language and run on a Pentium IV 
2.8G machine with 512M memory. The first set of ten 
benchmark circuits, a9c3, ac3, ami33, ami49, apte, hc7, 
hp, playout, xc5 and xerox, and the second set of six 
benchmark circuits, S5378, S9234, S13207, S15850, 
S38417 and S38584 are applied to test the proposed 
MTFR approach.  

Table I shows the experimental results of the MTFR 
approach for the first benchmark circuit set with timing 
constraints. Basically, all of the routing trees and their 
timing constraints for any benchmark circuit are from the 
tested circuits in [10]. In this table, “Time1” and “Time2” 
denote the CPU time of the timing-constrained global and 
full-chip routing results, respectively. The experimental 
results show that the MTFR approach is faster than our 
previous approach[10] to obtain 100% timing-constrained 
routing results. 

Table II shows the experimental results of the MTFR 
approach for the second benchmark circuit set without 
any timing constraint. The routing trees in all the tested 
circuits can be constructed by using a Steiner tree 
algorithm[12]. Basically, the MR[9] approach is based on 
a static uniform grid model. The experimental results 
show that the MTFR approach in a dynamic quad-grid 

model can use less CPU time to obtain 100% timing-
constrained routing results than the MR approach. 

 
Table I Experimental Results for 1st Circuit Set 

TCGR+STRR[10] MTFR circuit #layers #Net
s #Rtd. Nets Time(s) #Rtd. Nets Time1(s) Time2(s)

a9c3 2 1148 1148(100%) 14.7 1148(100%) 3.7 4.5 
ac3 2 200 200(100%) 4.5 200(100%) 2.6 3.4 

ami33 2 112 112(100%) 3.4 112(100%) 1.2 1.6 
ami49 2 368 368(100%) 6.9 368(100%) 2.2 3.0 
apte 2 77 77(100%) 1.4 77(100%) 1.1 1.8 
hc7 2 430 430(100%) 12.5 430(100%) 2.8 3.9 
hp 2 68 68(100%) 2.0 68(100%) 1.0 1.7 

playout 2 1294 1294(100%) 13.6 1294(100%) 3.5 4.1 
xc5 2 975 975(100%) 12.7 975(100%) 2.7 3.7 

xerox 2 171 171(100%) 4.5 171(100%) 1.3 2.0 
 

Table II Experimental Results for 2nd Circuit Set 
MR[9] HTFR circuit #layers #Nets

#Rtd. Nets CPU(s) #Rtd. Nets Time(s)
S5378 3 3124 3124(100%) 11 3124(100%) 9.2 
S9234 3 2774 2774(100%) 8 2774(100%) 6.7 
S13207 3 6995 6995(100%) 38 6995(100%) 21.3 
S15850 3 8321 8321(100%) 58 8321(100%) 35.9 
S38417 3 21035 21035(100%) 138 21035(100%) 82.1 
S38584 3 28177 28177(100%) 317 28177(100%) 136.4

 
Reference 
 
[1] C. J. Alpert, J. H. Huang, and A. B. Kahng, “Multilevel circuit 

partitioning,” IEEE Trans. on Computer-Aided Design, Vol. 17, 
pp.655–667, 1998. 

[2] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, 
“Multilevel hypergraph partitioning: Application in VLSI 
domain,” IEEE Trans. on VLSI Systems, Vol. 7, pp.69–79, 
1999. 

[3] J. Cong, S. Lim and C. Wu, “Performance-driven multilevel 
and multiway partitioning with retiming,” Design Automation 
Conference, pp.274-279, 2000. 

[4] T. Chan, J. Cong, T. Kong and J. Shinnerl, “Multilevel 
optimization for large-scale circuit placement,” International 
Conference on CAD, pp.171-176, 2000. 

[5] S. C. Lee, J. M. Hsu and Y. W. Chang, “Multilevel large-scale 
module placement/floorplanning using B*-trees,” the 12th VLSI 
Dsign/CAD Symposium, 2001. 

[6] Y. L. Lin, Y. C Hsu and F. S Tsai, “Hybrid routing,” IEEE 
Trans. on Computer-Aided Design, Vol. 9, pp.151–157, 1990. 

[7] J. Cong, J. Fang and Y. Zhang, “Multilevel approach to full-
chip gridless routing”, International Conference on CAD, 
pp.396-403, 2001.  

[8] J. Cong, M. Xie and Y. Zhang, "An enhanced multilevel 
routing system," International Conference on Computer-Aided 
Design, pp.51-58, 2002.  

[9] S. P. Lin and Y. W. Chang, “A novel framework for 
multilevel routing considering routability and performance,” 
International Conference on CAD, pp.44-50, 2002. 

[10] J. T. Yan and S. H. Lin, “Timing-constrained congestion-
driven global routing,” ASP Design Automation Conference, 
pp.683-686, 2004.  

[11] J. T. Yan, Y. H. Chen and C. W. Wu, “Probabilistic 
congestion prediction in hierarchical quad-grid model,” IEEE 
International Symposium on Circuits and Systems, pp., 2005. 

[12] H. Hou, J. Hu, and S. S. Sapatnekar, “Non-Hanan 
routing,” IEEE Trans. on Computer-Aided Design, Vol. 18, 
pp.436–444, 1999. 


