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PerformanceRequirement

Abstract

High power consumptionnot only leadsto shortbatterylife for
handhelddevices,but alsocauseson-chipthermalandreliability
problemsin general.As power consumptionis proportionalto
thesquareof supplyvoltage,reducingsupplyvoltagecansignif-
icantlyreducepowerconsumption.Multi-supplyvoltage(MSV)
haspreviously beenintroducedto providefiner-grainpower and
performancetrade-off. In this work we proposea methodology
on top of a set of algorithmsto exploit non-trivial voltageis-
land boundariesfor optimalpower versusdesigncosttrade-off
underperformancerequirement. Our algorithmsare efficient,
robustanderror-bounded,andcanbeflexibly tunedto optimize
for variousdesignobjectives(e.g.,minimalpowerwithin agiven
numberof voltageislands,or minimal fragmentationin voltage
islandswithin a given power bound)dependingon the design
requirement.

1 Intr oduction

With thebroadeningmarket interestsin sophisticatedmo-
bile applications,meetingaggressive power targeton top
of performancerequirementin high-speedportabledesign
is becominga challengingtask. As the designparam-
etersfor optimal power and optimal performanceoften
contradicteachother (for example,a lower supplyvolt-
agereducespower consumptionbut slows device speed)
designersarein aconstantfight with balancingpowerand
performancethroughoutthechipdesigncycle.

High powerconsumptionnotonly leadsto shortbattery
life for handhelddevices, but also causeson-chip ther-
mal andreliability problemsin general.At 90nmprocess
node,the vastamountof functionality integratedwithin
SoC designs,compoundwith much larger leakagecur-
rent,is alreadyleadingto designswith powerdissipations
in thehundredsof Watts. Processtechnologyis trending
againstpower dissipation— this problemis expectedto
only getworseat thefutureprocessnodes.

Power consumptiongenerallybreaksdown into two
sources: dynamic and static powers [5]. While static
power comesfrom leakagecurrent,dynamicpower

���
is

the result of device’s switching activities, which can be

representedby �������	��
�����
(1)

wherek is switchingrate,c is loadcapacitance,v is supply
voltage,andf is clock frequency. Dynamicpower domi-
natesthetotalpowerconsumptionin today’slogic design.
Techniquesto lowerswitchingpowerarecombinationsof
reducingswitchingactivity, load capacitanceandsupply
voltage.For example,clock frequency canbesetto zero
by gatingtheclock to inactive logic block. Loadcapaci-
tancecanbereducedby minimizing totalwire lengthand
by downsizingthegates.

As dynamicpower is proportionalto thesquareof sup-
ply voltage,reducingsupplyvoltagecansignificantlyre-
duce active power consumption. Multi-supply voltage
(MSV) is introducedto providefiner-grainpowerandper-
formancetrade-off. Therearetwo typesof MSV. In “row-
based”type, thereare interleaving high and low supply
voltagestandardcell placementrows. In “region-based”
approach,circuitsarepartitionedinto “voltageisland” (or
“power domain”) whereeachvoltage island occupiesa
contiguousphysicalspaceandoperatesat a supplyvolt-
agethatmeetstheperformancerequirement[9, 7, 2].

Region-baseddesignin currentstateof art is largely
donemanuallyand is primarily basedon design’s logic
hierarchy. That is, designerspartition circuits into a few
groupsbasedon their performancerequirementand the
connectivity betweenmodules.Eachgroupis thenspec-
ified with a supplyvoltage.Logic boundariesarelargely
usedin this groupingprocessmainlybecausethey arethe
boundariesthat designersaremost familiar with. How-
ever, these“natural” boundariesin a designarealmostal-
waysnon-optimalboundariesfor supplyvoltages.

Although in theory only timing critical device needs
high supply voltage, this naive thinking for maximum
powerreductionis notpractical.Whenvoltageislandsbe-
comefragmented,thereis an overheadin voltageshift-
ing devices. Moreover, it is high costto implementfrag-
mentedpower networks as implementingsuchcomplex
power network is not only a tediouswork but will also
takea lot of preciousroutingresourcefrom design,which
is not a good idea when per-metal-layermanufacturing
cost is soaringas processmigrates. We thereforewish
to reducethis designcost.
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Figure 1: (a) Design with timing critical cells (small darker
cells). (b) Power consumptiontoo high. (c) Timing require-
mentnot met for small cells in module � . (d) A solutionwith
non-logicalboundary

The examplein Figure1 shows how “natural” logical
boundariesfails to provide a solution that meetsall de-
signrequirements.Therearethreemodulesin thedesign,
eachof them only containsleaf cells. Both moduleA
andB have timing critical cellsthatrequirehigh voltages
(Figure1(a)). If we want to guaranteeperformancewith
practicalnumberof voltageislandswhile usingonly log-
ical boundaries,thenwe will have a solutionasshown in
Figure1(b),whosepowerconsumptionmayexceedsome
givenbound(suppose,for example,atmosthalf chiparea
is allowedfor highvoltage).Ontheotherhand,if wewant
to keeppower consumptionwithin given boundwithout
generatingfragmentedvoltageislands,thenwe will have
to assignmoduleA to a low-voltagevoltage island, as
shown in Figure1(c), therebysacrificingperformanceon
thosetiming critical cellsin A. However, if weuseanon-
logical boundarybasedon placementresult,asshown in
Figure1(d), we cansatisfyboth the power consumption
boundandthetiming requirementat thesametime with-
out generatingfragmentedvoltageislands.

In this work we proposea methodologyon top of a set
of algorithmsto exploit the “non-natural” (non-logical)
boundaryin adesignfor optimalsupplyvoltagepartition-
ing capturingpower versusdesigncost trade-off under
performance(timing) requirement. Dependingon each
designer’sspecificneeds,theoptimaltrade-off canbeex-
ploredby eitheroneof the two dual optimizationprob-
lems:maximallyreducepowerconsumptionwithin given
numberof voltage islandsbound; or createminimally
fragmentedvoltageislandswithin givenpowerconsump-
tion bound.Ourapproachcanhandlebothproblems,with
thelatterhaving anextra ������� ��� factorin runningtime (

�
is the numberof voltageislands),comingfrom a binary
searchfor

�
. We will focuson the latter problemin the

following discussion.Howeverall our resultscanbeeas-
ily adaptedto theformerone.

Our contribution can be summarizedas follows: To
our bestknowledge,we are the first to considerpower
versusdesign cost trade-off under timing requirement
for voltageislandgenerationproblem. In particular, we
exploit non-trivial voltage island boundariesto balance
power consumptionand power network fragmentation.
We formulatethis problemasvoltage-partitioningprob-
lem(Section2). Thisvoltage-partitioningproblemis NP-
completeand we thus study approximationalgorithms
(i.e., algorithmswith optimality guarantee)and present
onethat runsin polynomialtime. This algorithm,unfor-
tunately, is not efficient enoughfor practicaldesigns.We
thereforedesignanefficient two-stepheuristicalgorithm
whichcombinesdynamicprogrammingwith variable-size��� � gridding(Section3). We show (Section4) thatour
methodis efficientandpractical,aswell asproducesnear-
optimal voltageislandsfor a wide selectionof industry
data.Comparedto theapproachusingsimpleboundaries
within a design,our methodgeneratesaboutonetenthof
voltageislandsfor the sameamountof power reduction.
Therunningtime is smallevenfor very largeindustryde-
signs.
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Figure2: (a) A ! by ! array " , with a subarray(shadowed re-
gion) #%$&"�' (*)�)+) ,.-/(0)1)+) 243 ; 5768#:9;$=<�< and >?68#:9�$@<�! . (b) A
partitioningof " with sevenrectangles.

2 Voltage-partitioning Problem

2.1 Problemdefinition

Let A be an B by C array, and AED FHGID JKG the valueof the
elementat position �8F � J � . We sometimesmay also re-
fer to anarrayasa rectangle. A subarrayAED �MLNLNL O �1P LNLNL QHG
is simply the rectangularregion in A with �R� �1P4� (resp.�RO � Q � ) as the bottom-left (resp. upper-right) vertex. A
partitioningof A is asetof disjointrectangles(subarrays)ST�VUXWZY*�N[N[�[4�/WZ\K]

that cover A ;
�&�_^ S`^

is called the
sizeof this partitioning. SeeFigure2 for an illustration.
Let ab� Wc�d�fehg*i�jlknm o4pIqnrdW D F�GsD JKG be the maximumvalue
of all elementsin a rectangle

W
. The weightof

W
is de-
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finedas t � Wc�b� ujlknm o4pIqnr �vab� Wc��wxW D F�GsD J.G �4�
and the weight of

S
, t � S�� , is simply the sum of the

weightsof all
W�y

’s, for z|{%}~{ � .
In the voltagepartitioning problem,we can consider

eachstandardcell placementregionasa two-dimensional
array A , induced by the underlying placementgrid.AdD F�GsD J.G is simply the square of the requiredvoltageat
the correspondingphysicalgrid cell. We wish to subdi-
vide the placementregion into a small numberof volt-
ageislands(i.e., find a partitioning for A ), whereevery
cell in thesamevoltageislandwill eventuallyreceive the
samevoltage.To makesurethattheresultingvoltagepar-
titioning satisfiesthetiming requirement,we requirethat
the voltagevalueassignedto a voltageisland

W
should

beat leastthevoltageassociatedwith eachgrid cell con-
tainedin thisvoltageisland(i.e.,at least � ab� Wc� ). As dy-
namicpower is proportionalto thesquareof supplyvolt-
age(Eqn 1), � jlknm o4pIqnr W D F�GsD J.G canbe consideredasthe
minimumpowerneededfor all cellscontainedin

W
; while

aftermergingtheminto onevoltageisland,thepowercon-
sumptionof

W
is increasedby somevalue,which is its

weight.To keeptheoverallpowercostlow, it is desirable
to have the power increase(i.e., weight of the partition-
ing) below somethreshold.We thusextractandformally
definethevoltage-partitioningproblemasfollows.

Definition 1 (Voltage-partitioning Problem,or VPP)
Givenan B � C array A andanerror threshold� , among
all partitionswhoseweightis smallerthan � , find theone
with smallestsize. Let �;�RA � � � bethesizeof this optimal
partitioning.

Thedualversionof thisproblem(DVPP)canbedefined
similarly by minimizing thetotal weightwith a boundon
thesizeof thepartitioning.Wefocusontheformerdueto
lackof space.

2.2 Algorithms with guarantees

While no previouswork hasbeendonefor problemVPP,
somevariantsof it are well studied. In particular, if
we definethe weight of a rectangle

W
as the sumof allW D FHGID JKG ’s,andtheweightof a partitioning
S

asthemaxi-
mumweightof rectanglesin

S
, wehaveavariantof prob-

lem VPP, sometimescalledthe RTILE problem[8]. The
RTILE problemis NP-complete[8], andthe proof of its
NP-completenesscan be extendedto work for problem
VPP(weomit theproof heredueto lackof space).

Given the hardnessof this problem,we thusshift our
focusto approximationalgorithmswhich provide a guar-
anteeon the outputsize. Thereis a � -approximational-
gorithm for problemVPP, which finds a partitioning

S

of a givenarray A sothat t � S�� {@� and
^ S`^ {=�.�7��A � � � .

Wefirst introduceanicelystructuredclassof partitionings
thatunderliesthis � -approximationalgorithm.

(a) (b)

Figure3: (a) A slicing partitioningof size8. (b) A grid parti-
tioning of size ,c�h� . (This picturemaynot displaycorrectlyin
soft version.Printedversionis fine.)

Slicing model. Given an input rectangleA , we can
slice it either with a vertical or a horizontalcut. Each
cut will divide its parentrectangleinto two, andwe then
slicetheresultingtwo childrenrectanglesrecursively. An
exampleis shown in Figure3 (a). A partitioningobtained
this way is calleda slicing partitioning [12, 14], or a bi-
naryspacepartitioning (BSP)[3]. Let ����A � � � denotethe
sizeof the optimal slicing partitioningof A with weight
smallerthan � , and �;�RA � � � denotethatof theoptimalar-
bitrarypartitioning.Thefollowing lemmafollows from a
classicresultin computationalgeometryaboutBSP[3].

Lemma 1 �;�RA � � � {%���RA � � � {��.�7��A � � ��[
Theabove lemmaimpliesthatanoptimalslicing parti-

tioning for A is a � -approximationfor problemVPP, and
it can thereforebecomeour focus now. Dynamic pro-
grammingis a classicmethodto handleslicing structure
[13, 3]. Below, wewill giveDP-Alg, adynamicprogram-
mingbased� -approximationalgorithmfor VPP. It follows
thesameframework astheonein [10], which wasdevel-
opedfor thegeneralizationof theRTILE problem.

Dynamic programming approach. First, we show
that the dual problemDVPP can be solved by dynamic
programming.

Lemma 2 Given an B � C array A and an integer�����
, wecancomputein ��� � � �8B���C � B � C � � time the

minimum-weightslicing partitioning for A of size
�
. The

spacecomplexity is ��� � B � C � � .
PROOF. Let t��� ����L�LNL O �1P L�LNL Q � be the minimum weight
of any rectangle(subarray)

W
in A with at most � sub-

rectangles,where
W�� AED �MLNL�L O �1P LNLNL QvG . Theultimategoal

is to computet��\ ��znL�LNL B � �MLNLNL C � . If � � z , or if t � Wc�b�=� ,
3



we simply set t��� ����L�LNL O �+P LNL�L Q ��� t � Wc� . Otherwise,we
have: t �� ����L�LNL O �1P L�LNL Q �b��e��l�Y+���I� � U� ��y8���e����� �� 4��¡£¢ t��� �R��L�LNL } �1P L�LNL Q � � t���1¤ � �R}¥�¦znL�LNL O �1P L�LNL Q �4�t��� �R��L�LNL O �¨§ LNL�L Q � � t���1¤ � ����L�LNL O �¨§ �¦znL�LNL Q �ª© ].[
Roughly, the secondminimization term enumeratesall
verticalandhorizontalcuts,while thefirst term( zE{@«¬� ) enumeratesall possibledivision of rectanglenumbers
betweenthe two separatedparts.Theweightof any sub-
array, t �RAED �MLNL�L O �+P LNL�L QvG , can be computedin ����z � time
after ���RB¥C � time/spacepreprocessingby extendingpre-
fix sumalgorithm[8] to our weight function. It thenfol-
lows thatwe canbuild a tableof size ��� � B � C � � to storet��� �R��L�LNL O �1P L�LNL Q � , for all z®{¯�°{ � , z°{��:¬�O±{�B andzc{ P ¬%Q±{&C , in time ���/�8B£�®C �/� B � C � � . Thusproves
thelemma.

We can now guessthe optimal numberof rectangles� � � �;�RA � � � in a binary manner, startingwith � � � z .
By Lemma1 and2,weconcludewith thefollowingresult.

Theorem1 Givenan B � C array A andanerror bound� �²� , a � -approximationof
�@� �;�RA � � � can be com-

putedin ��� � � �RB±�@C � B � C �¥³�´nµ ��� time and ��� � B � C � �
space.

3 FastHeuristic Algorithm

In this section,we describeTS-Alg, anefficient two-step
heuristicalgorithmfor problemVPP.

3.1 Algorithm overview

Ideally, we would like to havesomeguaranteeon thesize
of the rectanglesoutput by TS-Alg, while keepingthe
complexity of the algorithmlow. DP-Alg as introduced
in lastsectionproducesnear-optimalsolutions.Unfortu-
nately, it is tooslow to bepractical.In fact,thelargespace
requirementlimits thesizeof theinputrectangleto merely
around z �n� � z �n� , while thesizeencounteredin practice
caneasilygo up to ¶ ���/�.�n� � ¶ �H�/�n�.� . We thereforewant
to first reducethe sizeof the input, beforewe feedit to
DP-Alg. This motivatesus to designthe following two
stepapproachfor problemVPP, referredto asTS-Alg.

Step 1. Sizereduction:
producea �·��� array ¸ with t ��¸ � {º¹ , for some¹£{&�

Step 2. Approximatetiling:
applyDP-Alg on ¸ to computeapartitioning

S
witht � S�� {%�

We also refer to a �&�&� array ¸ a grid partitioning
of size ���»� for A (seeFigure 3 (b)). Note that both
thequalityandquantityof thefirst stepdirectly affect the
performanceof the secondstep: On onehand,we hope
that the quantity (i.e, the value of � and � ) is small, so
that DP-Alg is fastandpractical. On the otherhand,as
DP-Alg will not cut any cell in ¸ (i.e., a rectanglein the
final outputwill bea combinationof somecellsfrom ¸ ),
cells from ¸ shouldbe ‘good’. We will seein what fol-
lowsthatalthoughTS-Alg doesnotguaranteethattheout-
put size will approximate�7��A � � � within someconstant
factor, we have a control in thequality in eachof thetwo
steps.Theexperimentalresultsfrom next sectionfurther
demonstrateits performancebothin efficiency andin out-
putquality.

3.2 Sizereduction

Onestraightforwardapproachfor Step 1 of TS-Alg is
to simplysubdivide A evenly into � �°� rectangles(soall��� numberof cells in ¸ arecongruent).This methodis
completelyoblivious to the cell valuedistribution in A .
Therefore,it mayproducelarge � and � in orderto satisfy
that t �R¼ � {½¹ , and the ‘wrong’ boundariesinducedby¸ limit the possiblesolutionsfrom DP-Alg. Thenatural
questionto askis then: given an error threshold¹ , what
is the grid partitioningof smallestsize(i.e., �·�x� ), and
whoseweight is at most ¹ . Variantsof this problemhave
alreadybeenstudiedin thetheoryandalgorithmfield [11,
4], andwe canmodify thealgorithmfrom [11] to obtain
thefollowing result.

Lemma 3 Let �������n� bethesizeof theoptimalgrid par-
titioning with weightsmallerthan ¹4¾n� . Onecancompute
in ���M�RB:�¿C%� �v� � L � ³�´nµ �RB¥C �/� timea grid partitioningof
weight ¹ andof size À�±� À� , where À�Á� À� {�zXÂ �¥�|� �n� .

On thehigh level, thegrid partitioningproblemcanbe
reducedto aSetCoverproblemwith smallVC dimension.
It is shown in [4] thatsuchproblemscanbeefficiently ap-
proximatedusing ¹ -netsandanelegantanalysisby Clark-
sonin [6]. Thealgorithmis easyto implement.However,
its descriptionandanalysisaresomewhat involved. We
thereforeomit it from currentversionof thepaper. Inter-
estedreaderscanreferto [11] andreferenceswithin.

3.3 Putting everything together

Givena �Á�±� grid partitioning ¸ , let A£Ã denotethesub-
arrayfrom A coveredby somerectangleÄ of ¸ . For the
secondstep,we modify thedefinitionof theweightof Ä
asfollows:t �RÄ �b� ujlknm o4pIq0ÅÇÆ �Rab�RA£Ã ��w AdD F�GsD JKG ��[
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In otherwords,we still usetheoriginal underlyingarrayA to computetheweight,althoughthedynamicprogram-
ming tableis now built uponcells from ¸ . Furthermore,
wecanpreprocessA in roughly ���8B¥C � time into astruc-
tureof size ���8B¥C � , sothat ab� Wc� for any subarray

W¯È A
canbecomputedin ���Mz � time. Therefore,thesecondstep
canbeimplementedin ���8B¥C%� � � � � � � � � � � �¥³l´.µ ��� time
and ���8B¥C²� � � � � ��� space.Puttingeverythingtogether,
we have:

Theorem2 TheTS-Algrunsin É���8B¥Cª� � � � � � � � � � � � �
timeand ���8B¥C¦� � � � � ��� space, where É� hidessomelog-
arithmic terms.

Thesizeof � and � dependson theparameter¹{&� in the
first step. In practice,if �·Ê B , �°Ê C , and

�
is small.

Thenour TS-Alg canrun in roughly ���8B¥C � time.

4 Experimental Results

4.1 Experiment setupand snapshotsof our
results

We perform our experimentswith a set of industry de-
signson 64-bit Linux machines(CPU: 1.95GHz, Mem-
ory: 11.7GB). For eachdesign,theexperimentis carried
out asfollows:

We use the Cadence’s commercial tool SoC En-
counter[1] to do timing-driven placement,timing opti-
mizationandtiming analysis.Thenwe assignvoltageto
eachcell accordingto its worstslack.

We transformthe standardcell placementandassoci-
atedvoltagerequirementinto theinputarrayasstatedear-
lier.

We calculatethe maximumpower increase,which is
the total power increasewhenall cells are raisedto the
highestrequiredvoltageon theentirechip.

We give somereasonableboundson the total amount
of power increase,eachcorrespondingto a certainper-
centageof the maximumpower increase,andapply our
TS-Alg to generateminimum number of voltage is-
landswithin eachpower increasebound.

Snapshots First, we give some visual results of our
TS-Alg to demonstrateits effectiveness.We will present
quantitative resultsin the subsequentsection. Figure 7
shows the voltage islandsgeneratedfrom two industry
designs. For eachdesign(one column), the top picture
showstheplacementwith timing critical cellsin darkcol-
ors (the darker a cell, the highervoltageis needed).The
middle picture shows the grid partitioning generatedby
thesizereductionstep.Note that thevoltagedistribution
informationis well preservedby thevariable-sizedgrids.
Thelastpictureshows thegeneratedvoltageislands.

4.2 Comparisonwith other approaches

To demonstratethe efficiency of our TS-Alg, we com-
paredit with two alternativeapproaches.

Outline of alternative approaches. The first one is
ratherstraightforward:It is thelogicalboundarybasedap-
proach,whereeachgroupedmoduleor cell in thelogical
hierarchicaltreeformsan individual voltageisland(Fig-
ure4(a)). Currentlythis is theapproachcommonlyused
in practice(asmentionedin theexamplein section1).

This approachis oftenvery inefficient dueto the high
fanoutof modulesin the logical hierarchytree. For the
examplein Figure4(b),moduleË Y hasbeenmarkedhigh
voltagedue to its internal timing critical cells. The rest
of cells in thesub-treerootedat Ë arenon-critical. If we
don’t groupmodule Ë , eachchild of Ë will becomean
individual voltageisland,causingtoo many fragments.If
we groupmodule Ë , the entiremodulewill be raisedto
thehigh voltagethatis requiredon Ë Y , causingtoo much
power consumption.Suchcaseis very commonin real
designs.

ÌNÌÌNÌÌNÌÌNÌÍNÍÍNÍÍNÍÍNÍ ÎNÎÎNÎÎNÎÎNÎÏNÏÏNÏÏNÏÏNÏÐNÐÐNÐÐNÐÑNÑÑNÑÑNÑ ÒNÒÒNÒÒNÒÓNÓÓNÓÓNÓ ÔNÔNÔÔNÔNÔÔNÔNÔÕNÕNÕÕNÕNÕÕNÕNÕ
A

A1

(a) (b)

Figure 4: Logical hierarchicaltree. (a) shadedmodulescor-
respondto onepossiblepartitioning. (b) A node � with high
fanout.

A naturalway to improve the logical-boundarybased
approachis to substitutethehigh-fanouthierarchicaltree
with non-logicalboundarybased,standardquad-tree.The
leavesof thequad-treearethecellsin theinputarray, and
eachnodein this treecorrespondsto a possibleregion (a
subarray).Givenanupperbound� for powerincrease,the
goalis to find asetof appropriatenodesfrom thetreethat
form a partitioningof the input array. Theway to obtain
sucha partitioningis by a greedybottom-upmerging ap-
proach.In particular, we marka nodewhite if it hasnot
beenmerged,blackotherwise.A nodeis calleda candi-
datefor merging if it is white while all its four children
areblack. Furthermore,givena node

W
in quad-treewith

its four children
W�y

, } � z ��[N[�[4�MÖ , definethecostof merg-
ing
W|y

to be ×�� Wc�b� t � Wc�w � t � WZY�� � t � W � � � t � W|Ø�� �t � W£ÙX�M�4[ This correspondsto the power increaseresulted
from combiningthefour subregionsinto

W
. Now in order

to computea partitioning,we startwith a treewhereall
non-leafnodesarewhite. At any time,wechoosethecan-
didatewith smallestcost (by usinga priority tree). The
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processwill terminatewhentheoverall weightof there-
sultingpartitioningexceedsthegivenupperbound � . We
referto thisalgorithmQT-Alg. Theoverall timecomplex-
ity is ���8B¥C ³l´.µ �RB¥C �/� andspacecomplexity is ���8B¥C � .
Figure5 illustratesthequad-treealgorithm.

(a) (b)

Figure5: Quadratictree. (a) The input array. (b) After some
combinations

Comparison on the samedesignwith differ ent power
increasebound. Figure6 comparesthe outputsizeof
our TS-Alg with the logical tree and quad-treealgo-
rithms on one industry designwith different power in-
creasebounds.Clearlyour TS-Alg outperformstheother
two significantlyandconstantly(by an orderof 10 and
2, respectively). Betweenthe two alternatives,quad-tree
algorithmis significantlybetter. Thereforewe will only
comparewith quad-treealgorithm in the restof our ex-
periment.
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Figure6: comparingdifferentalgorithmson thesamedesign

Comparison on differ ent designs. We extend the ex-
perimentto a wide selectionof industrydesignswith dif-
ferentsizes.For eachdesign,we comparethe two algo-
rithmsagainstdifferentpowerincreasebounds,andobtain
similar resultsin outputsizeas in Figure6. Due to the
limited space,we omit themhere. Instead,for eachde-
sign,we pick a particularpower increaseboundsuchthat

the numberof voltageislandsbeinggeneratedis within
a desiredrange1. We selectedthe rangeto be around
20, which is roughly an upperboundin currentpracti-
cal designs.Table1 shows the comparisonbetweenour
TS-Alg andthequad-treebasedQT-Alg. Thedesignsare
listed with increasingarraysize (the input to both algo-
rithms), which is roughly proportionalto the numberof
leaf cells. It canbe clearly seenthatour TS-Alg outper-
formsQT-Alg significantlyon all designsin termsof the
numberof voltageislandsobtained.

The time complexity of our algorithmhastwo terms:���RB¥C � and É�h�RB �%C²� � � � � � � � � � � � � . Thefirst term
comesfrom the preprocessingof the input array into a
tablefor later looking up the weight for any subarrayofA . Sincethis stepis neededby bothQT-Alg andTS-Alg,
we omit it from therunningtime presented2. Otherthan
this preprocessingtime, the running time of TS-Alg is
output-sensitive, mainly dependingon � � � � and

�
, while

QT-Alg still hasa ���8B¥C ³l´.µ �RB¥C �/� running time. This
explainswhy the first threesmall designsin Table1 has
largerrunningtime: as�±� � afterStep 1 in their cases
is larger thanthat of later cases.On the otherhand,for
all practicaldatawe testandfor all practical

�
, � and �

aresmall regardlessof the sizeof the input design(see,
for example,����� doesnot increasein Table1 with the
input size). This meansthat our algorithm scaleswell
with increasingsizeof the input design!Furthermore,as�

decreases,the runningtime of our algorithmdecreases
aswell, while that of QT-Alg remainsroughly the same
(as it is not output-sensitive). This is demonstratedin
Table 2, wherewe choose

�
around z � , which is prob-

ably a morepracticalnumberin currentdesigns). Note
that TS-Alg beatsQT-Alg significantly andconsistently
in termsof bothruntimeandquality.
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[4] H. BrönnimannandM. T. Goodrich.Almostoptimal
setcoversin finite vc-dimension.DiscreteComput.
Geom., 14:463–479,1995.

[5] J. Buurma and L. Cooke. Low-power de-
sign using multiple å Ãvæ ASIC libraries.
http://www.sinavigator.com/Low Power Design.pdf.

[6] K. L. Clarkson. A Las Vegasalgorithm for linear
programmingwhenthedimensionis small.J. ACM,
42(2):488–499,1995.

[7] J. Hu, Y. Shin, N. Dhanwada,andR. Marculescu.
Architecting voltageislandsin core-basedsystem-
on-a-chipdesigns.In Proceedingsof the2004inter-
national symposiumon Low powerelectronicsand
design, pages180–185,2004.

[8] S. Khanna, S. Muthukrishnan,and M. Paterson.
On approximatingrectangletiling andpacking. In

SODA ’98: Proceedingsof the ninth annualACM-
SIAM symposiumon Discrete algorithms, pages
384–393,1998.

[9] D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W.
Stout, S. W. Gould, and J. M. Cohn. Managing
power andperformancefor system-on-chipdesigns
using voltageislands. In Proceedingsof the 2002
IEEE/ACM internationalconferenceon Computer-
aided design table of contents, pages 195–202,
2002.

[10] S. Muthukrishnan,V. Poosala,and T. Suel. On
rectangularpartitioningsin two dimensions:Algo-
rithms,complexity, andapplications.In ICDT ’99:
Proceedingof the 7th InternationalConferenceon
DatabaseTheory, pages236–256,1999.

[11] S. MuthukrishnanandT. Suel. Approximational-
gorithmsfor arraypartitioningproblems.Journalof
Algorithms, 54:85–104,2005.

[12] R. H. Otten. Automaticfloorplandesign. In Pro-
ceedingsof the 19thACM/IEEE conferenceon De-
signautomation, pages261–267,1982.

[13] L. P. P. P. vanGinnekenandR. H. J.M. Otten. Op-
timal slicingof planepointplacements.In Proceed-
ingsof theconferenceon Europeandesignautoma-
tion, pages322–326,1990.

[14] D. F. WongandC.L. Liu. A new algorithmfor floor-
plandesign.In Proceedingsof the23rd ACM/IEEE
conferenceon Designautomation, pages101–107,
1986.

8


