Optimal Post-PlacementoltagelslandGeneratiorunder
Performancdrequirement

Abstract

High power consumptiomot only leadsto shortbatterylife for
handheldevices,but alsocause®n-chipthermalandreliability
problemsin general. As power consumptions proportionalto
thesquareof supplyvoltage reducingsupplyvoltagecansignif-
icantlyreducepower consumptionMulti-supply voltage(MSV)
haspreviously beenintroducedo provide finer-grainpowver and
performancdrade-of. In this work we proposea methodology
on top of a setof algorithmsto exploit non-trivial voltageis-
land boundariedor optimal pover versusdesigncosttrade-of
underperformancerequirement. Our algorithmsare efficient,
robustanderrorboundedandcanbeflexibly tunedto optimize
for variousdesignobjectives(e.g.,minimal poverwithin agiven
numberof voltageislands,or minimal fragmentatiorin voltage
islandswithin a given power bound)dependingon the design
requirement.

1 Intr oduction

With thebroadeningnarketinterestdn sophisticateano-
bile applicationsmeetingaggressie power targeton top
of performanceequiremenin high-speegbortabledesign
is becominga challengingtask. As the designparam-
etersfor optimal power and optimal performanceoften
contradicteachother (for example,a lower supply volt-
agereducespower consumptiorbut slows device speed)
designersarein aconstanfight with balancingpowerand
performancehroughouthe chip designcycle.

High powerconsumptiomotonly leadsto shortbattery
life for handhelddevices, but also causeson-chip ther
mal andreliability problemsin general. At 90nmprocess
node, the vastamountof functionality integratedwithin
SoC designs,compoundwith much larger leakagecur-
rent,is alreadyleadingto designswith power dissipations
in the hundredsof Watts. Procesgechnologyis trending
againstpower dissipation— this problemis expectedto
only getworseat the future processodes.

Paver consumptiongenerally breaksdown into two
sources: dynamic and static powers [5]. While static
power comesfrom leakagecurrent,dynamicpower Py is
the resultof device’s switching actwities, which canbe

representedy

Py = kCU2f, (1)

wherek is switchingrate,c is loadcapacitancey is supply
voltage,andf is clock frequeng. Dynamicpower domi-
nateghetotal pawerconsumptionn today’slogic design.
Techniqueso lower switchingpower arecombinationf
reducingswitchingactwity, load capacitancend supply
voltage. For example,clock frequeng canbe setto zero
by gatingthe clock to inactive logic block. Load capaci-
tancecanbereducedoy minimizing total wire lengthand
by downsizingthe gates.

As dynamicpower is proportionalto the squareof sup-
ply voltage,reducingsupplyvoltagecansignificantlyre-
duce active power consumption. Multi-supply voltage
(MSV) isintroducedo providefiner-grainpowerandper
formancerade-of. Therearetwo typesof MSV. In “row-
based"type, thereareinterleaving high andlow supply
voltagestandardcell placementows. In “region-based”
approachgircuitsarepartitionedinto “voltageisland” (or
“power domain”) where eachvoltageisland occupiesa
contiguousphysicalspaceand operatesat a supply volt-
agethatmeetsthe performanceequiremenf9, 7, 2].

Region-baseddesignin currentstateof art is largely
donemanuallyandis primarily basedon designs logic
hierarchy Thatis, designergartition circuits into a few
groupsbasedon their performancerequirementand the
connectvity betweermodules.Eachgroupis thenspec-
ified with a supplyvoltage. Logic boundariesarelargely
usedin this groupingprocessmainly becausghey arethe
boundarieghat designersare mostfamiliar with. How-
ever, these'natural” boundaries$n a designarealmostal-
waysnon-optimalboundariegor supplyvoltages.

Although in theory only timing critical device needs
high supply voltage, this naive thinking for maximum
powerreductionis not practical.Whenvoltageislandsbe-
comefragmentedthereis an overheadin voltage shift-
ing devices. Moreover, it is high costto implementfrag-
mentedpower networks as implementingsuch complec
power network is not only a tediouswork but will also
take alot of preciousroutingresourcdrom designwhich
is not a good idea when permetal-layermanugcturing
costis soaringas processmigrates. We thereforewish
to reducethis designcost



Figure 1: (a) Designwith timing critical cells (small darker
cells). (b) Paver consumptiontoo high. (c) Timing require-
mentnot metfor small cellsin module A. (d) A solutionwith
non-logicalboundary

The examplein Figure 1 shavs how “natural” logical
boundariedails to provide a solution that meetsall de-
signrequirementsTherearethreemodulesin the design,
eachof them only containsleaf cells. Both module A
andB have timing critical cellsthatrequirehigh voltages
(Figure1(a)). If we wantto guarantegerformancewith
practicalnumberof voltageislandswhile usingonly log-
ical boundariesthenwe will have a solutionasshowvn in
Figurel(b),whosepower consumptiormay exceedsome
givenbound(supposefor example,at mosthalf chiparea
is allowedfor high voltage).Ontheotherhand,if wewant
to keeppower consumptionwithin given boundwithout
generatingragmentedroltageislands thenwe will have
to assignmodule A to a low-voltagevoltageisland, as
shawn in Figure1(c), therebysacrificingperformanceon
thosetiming critical cellsin A. However, if we useanon-
logical boundarybasedon placementesult,asshovn in
Figure 1(d), we can satisfy both the power consumption
boundandthetiming requirementt the sametime with-
out generatingragmentedroltageislands.

In this work we proposea methodologyon top of a set
of algorithmsto exploit the “non-natural” (non-logical)
boundaryin adesignfor optimalsupplyvoltagepartition-
ing capturingpower versusdesigncost trade-of under
performance(timing) requirement. Dependingon each
designers specificneedsthe optimaltrade-of canbe ex-
plored by eitherone of the two dual optimizationprob-
lems: maximallyreducepower consumptiorwithin given
numberof voltage islandsbound; or createminimally
fragmentedsoltageislandswithin given power consump-
tion bound.Ourapproackcanhandlebothproblemswith
thelatterhaving anextralog(k) factorin runningtime (k
is the numberof voltageislands),comingfrom a binary
searchfor k. We will focuson the latter problemin the

following discussion However all our resultscanbe eas-
ily adaptedo theformerone.

Our contribution can be summarizedas follows: To
our bestknowledge, we are the first to considerpower
versusdesign cost trade-of under timing requirement
for voltageisland generatiorproblem. In particular we
exploit non-trivial voltage island boundariego balance
power consumptionand power network fragmentation.
We formulatethis problemas voltage-partitioningprob-
lem (Section2). This voltage-partitioningproblemis NP-
completeand we thus study approximationalgorithms
(i.e., algorithmswith optimality guaranteejand present
onethatrunsin polynomialtime. This algorithm,unfor-
tunately is not efficient enoughfor practicaldesigns We
thereforedesignan efficient two-stepheuristicalgorithm
whichcombineslynamicprogrammingvith variable-size
p x ¢ gridding (Section3). We shawv (Section4) thatour
methods efficientandpractical,aswell asproducesear
optimal voltageislandsfor a wide selectionof industry
data. Comparedo the approachusingsimpleboundaries
within a design,our methodgeneratesboutonetenthof
voltageislandsfor the sameamountof power reduction.
Therunningtime is smallevenfor very largeindustryde-
signs.
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Figure2: (a) A 9 by 9 array A, with a subarray(shadeved re-
gion) R = A[2---4,2---6]; u(R) = 11 andw(R) = 19. (b) A
partitioningof A with sevenrectangles.

2 \Voltage-partitioning Problem

2.1 Problemdefinition

Let A beann by m array and A[z][y] the value of the
elementat position (z,y). We sometimesmay alsore-
fer to anarrayasarectangle A subarrayA[l- - -r,b- - -u)
is simply the rectangularregion in A with (I,b) (resp.
(r,u)) asthe bottom-left (resp. upperright) vertex. A
partitioning of A is asetof disjointrectanglegsubarrays)
ITI = {Ry,...,Ry} thatcover A; k = |II]| is calledthe
sizeof this partitioning. SeeFigure 2 for anillustration.
Let u(R) = max(,,y)cr R[z][y] be the maximumvalue
of all elementsn arectangleR. Theweightof R is de-



finedas

w(R)

Y (u(R)— Rlzly]),

(z,y)ER

and the weight of II, w(II), is simply the sum of the
weightsof all R;’s,for1 < <k.

In the voltage partitioning problem, we can consider
eachstandarctell placementegion asatwo-dimensional
array A, induced by the underlying placementgrid.
Alz][y] is simply the squae of the requiredvoltage at
the correspondinghysicalgrid cell. We wish to subdi-
vide the placementregion into a small numberof volt-
ageislands(i.e., find a partitioningfor A), whereevery
cellin the samevoltageislandwill eventuallyreceve the
samevoltage.To make surethattheresultingvoltagepar
titioning satisfieghe timing requirementye requirethat
the voltage value assignedo a voltageisland R should
be at leastthe voltageassociatedavith eachgrid cell con-
tainedin this voltageisland(i.e., atleast\/u(R)). As dy-
namicpower is proportionalto the squareof supplyvolt-
age(Eqn 1), E(z,y)eR RJ[z][y] canbe consideredasthe
minimumpowerneededor all cellscontainedn R; while
aftermemgingtheminto onevoltageisland,thepowercon-
sumptionof R is increasedby somevalue, which is its
weight. To keepthe overall power costlow, it is desirable
to have the power increase(i.e., weight of the partition-
ing) belon somethreshold.We thusextractandformally
definethevoltage-partitioningproblemasfollows.

Definition 1 (Voltage-partitioning Problem,or VPP)
Givenann x m array A andan error thresholdd, among
all partitionswhoseweightis smallerthand, find theone
with smallestsize Letx(A,d) bethesizeof this optimal
partitioning.

Thedualversionof thisproblem(DVPP)canbedefined
similarly by minimizing the total weightwith a boundon
thesizeof thepartitioning. We focusontheformerdueto
lack of space.

2.2 Algorithms with guarantees

While no previouswork hasbeendonefor problemVPR,
somevariantsof it are well studied. In particular if
we definethe weight of a rectangleR asthe sumof all
RIx][y]'s, andthe weightof a partitioningIl asthe maxi-
mumweightof rectanglesn II, we have avariantof prob-
lem VPR sometimesalledthe RTILE problem[8]. The
RTILE problemis NP-completd8], andthe proof of its
NP-completenessan be extendedto work for problem
VPP (we omit the proof heredueto lack of space).
Given the hardnesof this problem,we thus shift our
focusto approximatioralgorithmswhich provide a guar
anteeon the outputsize. Thereis a 2-approximational-
gorithm for problem VPP, which finds a partitioning II

of agivenarrayA sothatw(II) < § and|II| < 2x(A, 9).
Wefirstintroduceanicely structurectlassof partitionings
thatunderliegthis 2-approximatioralgorithm.
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Figure 3: (a) A slicing partitioningof size8. (b) A grid parti-
tioning of size4 x 5. (This picturemay not displaycorrectlyin
softversion.Printedversionis fine.)

Slicing model.  Given an input rectangleA, we can
slice it eitherwith a vertical or a horizontal cut. Each
cutwill divide its parentrectangleinto two, andwe then
slicetheresultingtwo childrenrectanglesecursvely. An

exampleis shovn in Figure3 (a). A partitioningobtained
this way is calleda slicing partitioning [12, 14], or a bi-

nary spacepartitioning (BSP)[3]. Let p(A, §) denotethe
sizeof the optimal slicing partitioning of A with weight
smallerthand, andk(A, §) denotethatof the optimalar

bitrary partitioning. The following lemmafollows from a
classicresultin computationajeometryaboutBSP[3].

Lemmal k(A,0) < p(A,0) < 2k(A,9).

Theabove lemmaimpliesthatan optimalslicing parti-
tioning for A is a 2-approximatiorfor problemVPR and
it canthereforebecomeour focus now. Dynamic pro-
grammingis a classicmethodto handleslicing structure
[13, 3]. Below, wewill give DP-Alg, adynamicprogram-
ming base®-approximatioralgorithmfor VPR It follows
the sameframework asthe onein [10], which wasdevel-
opedfor thegeneralizatiorof the RTILE problem.

Dynamic programming approach.  First, we shov
that the dual problem DVPP can be solved by dynamic
programming.

Lemma2 Given an n x m array A and an integer
k > 0, wecancomputein O(k?(n + m)n?m?) timethe
minimum-weighslicing partitioning for A of sizek. The
spacecompleity is O(kn?m?).

PrROOF. Let wi(l---r,b---u) be the minimum weight
of ary rectangle(subarray)R in A with at mosts sub-
rectangleswhereR = A[l- - -r, b- - -u]. Theultimategoal
is to computewy (1- - -n,1---m). If s = 1, orif w(R) = 0,



we simply setw?(l-- -r,b-- -u) = w(R). Otherwise we
have:

*

w

3(l ../,-7b.. u) = min {

1<t<s

lrSIl’Li?I’I" wz‘(l...ll‘,b...u)+w:_t(7;+1...r,b...u), }
ij<u w:(lr}yu).'.w:_t(lr’.j_’_lu) )

Roughly the secondminimization term enumeratesll
verticalandhorizontalcuts,while thefirstterm (1 < ¢ <
s) enumeratesll possibledivision of rectanglenumbers
betweerthe two separategbarts. The weightof ary sub-
array w(A[l---r,b-- -u], canbe computedin O(1) time
after O(nm) time/spacereprocessingpy extendingpre-
fix sumalgorithm[8] to our weightfunction. It thenfol-
lows thatwe canbuild atableof size O(kn2m?) to store
wi(l--rb--u), foralll <s <k, 1<Il<r<nand
1< b < u<m,intimeO((n+m)kn?m?). Thusproves
thelemma.

We can now guessthe optimal numberof rectangles
k* = k(A, ) in abinary manner startingwith x* = 1.
By Lemmal and2, we concludewith thefollowing result.

Theorem1 Givenann x m array A andanerror bound
6 > 0, a 2-approximationof ¥ = (A, d) canbe com-
putedin O(k%(n + m)n?m? log k) time and O (kn?m?)
space

3 FastHeuristic Algorithm

In this section,we describeT S-Alg, an efficient two-step
heuristicalgorithmfor problemVPP,

3.1 Algorithm overview

Ideally, we would lik e to have someguarante®nthesize
of the rectanglesoutput by TS-Alg, while keepingthe
compleity of the algorithmlow. DP-Alg asintroduced
in lastsectionproducesearoptimal solutions. Unfortu-

nately it is tooslow to bepractical.In fact,thelargespace
requiremenlimits thesizeof theinputrectangle¢o merely
around100 x 100, while the sizeencountereéh practice
caneasilygo upto 50,000 x 50,000. We thereforewant
to first reducethe size of the input, beforewe feedit to

DP-Alg. This motivatesus to designthe following two

stepapproactfor problemVPRP, referredto asTS-Alg.

Step 1. Sizereduction:
producea p x ¢ arrayG with w(G) < ¢, for some
e<é

Step 2. Approximatetiling:
applyDP-Alg on G to computea partitioningII with
w() <46

We alsoreferto ap x ¢ array G a grid partitioning
of sizep x ¢ for A (seeFigure 3 (b)). Note that both
the quality andquantityof thefirst stepdirectly affect the
performanceof the secondstep: On one hand,we hope
that the quantity (i.e, the value of p andq) is small, so
that DP-Alg is fastand practical. On the otherhand,as
DP-Alg will notcutary cellin G (i.e., arectanglen the
final outputwill bea combinationof somecellsfrom G),
cellsfrom G shouldbe ‘good’. We will seein whatfol-
lowsthatalthoughT S-Alg doesnotguarante¢hattheout-
put size will approximatex(A,d) within someconstant
factor we have a controlin the quality in eachof thetwo
steps.The experimentalresultsfrom next sectionfurther
demonstratés performancéothin efficiency andin out-
putquality.

3.2 Sizereduction

Onestraightforvard approachfor St ep 1 of TS-Alg is
to simply subdivide A evenlyinto p x ¢ rectanglegsoall

pg numberof cellsin G are congruent). This methodis

completelyoblivious to the cell value distribution in A.
Thereforejt mayproduceargep andgq in orderto satisfy
thatw(G) < €, andthe ‘wrong’ boundariesnducedby
G limit the possiblesolutionsfrom DP-Alg. The natural
questionto askis then: given an error thresholde, what
is the grid partitioning of smallestsize(i.e., p x ¢), and
whoseweightis at moste. Variantsof this problemhave
alreadybeenstudiedin thetheoryandalgorithmfield [11,
4], andwe canmodify the algorithmfrom [11] to obtain
thefollowing result.

Lemma 3 Letp* x ¢* bethesizeof the optimalgrid par-

titioning with weightsmallerthane/2. Onecancompute
in O((n+m+pq)-plog(nm)) timeagrid partitioning of

weighte andof sizep x g, wheep x § < 17p* x ¢*.

Onthehighlevel, the grid partitioningproblemcanbe
reducedo aSetCoverproblemwith smallVC dimension.
It is shawvn in [4] thatsuchproblemscanbeefficiently ap-
proximatedusinge-netsandanelegantanalysisby Clark-
sonin [6]. Thealgorithmis easyto implement.However,
its descriptionand analysisare somevhat involved. We
thereforeomit it from currentversionof the paper Inter-
estedreadersanreferto [11] andreferencesvithin.

3.3 Putting everything together

Givenap x ¢ grid partitioningG, let A7 denotethe sub-
arrayfrom A coveredby somerectanglel” of G. For the
secondstep,we modify the definition of the weightof T’
asfollows:
W)= Y (A7) - Al]ly).

(z,y)€AT



In otherwords,we still usethe original underlyingarray
A to computetheweight, althoughthe dynamicprogram-
ming tableis now built uponcellsfrom G. Furthermore,
we canpreprocess\ in roughly O(nm) time into astruc-
tureof sizeO(nm), sothatu(R) for ary subarrayR C A
canbecomputedn O(1) time. Thereforethesecondstep
canbeimplementedn O(nm + k?(p+q)p?q® log k) time
andO(nm + p?q*k) space.Puttingeverythingtogethey
we have:

Theorem2 TheTS-Algrunsin O(nm + k*(p + q)p*¢>)
timeandO(nm + p?q2k) spacewhee O hidessomeog-
arithmicterms.

Thesizeof p andg depend®ntheparametee < ¢ in the
first step. In practice,if p <« n, ¢ € m, andk is small.
Thenour TS-Alg canrunin roughly O(nm) time.

4 Experimental Results

4.1 Experiment setupand snapshotsof our
results

We perform our experimentswith a set of industry de-
signson 64-bit Linux machinegCPU: 1.95GHz, Mem-
ory: 11.7GB). For eachdesign the experimentis carried
out asfollows:

We use the Cadences commercial tool SoC En-
counter[1] to do timing-driven placementtiming opti-
mizationandtiming analysis. Thenwe assignvoltageto
eachcell accordingto its worstslack.

We transformthe standardcell placementand associ-
atedvoltagerequiremeninto theinputarrayasstatedear
lier.

We calculatethe maximum power increase which is
the total power increasewhenall cells are raisedto the
highestrequiredvoltageon the entirechip.

We give somereasonabléoundson the total amount
of power increase eachcorrespondingo a certainper
centageof the maximumpower increaseand apply our
TS-Alg to generateminimum number of voltage is-
landswithin eachpowerincreasebound.

Snapshots First, we give some visual results of our

TS-Alg to demonstratéts effectiveness.We will present
guantitatve resultsin the subsequensection. Figure 7

shaws the voltage islandsgeneratedrom two industry
designs. For eachdesign(one column), the top picture
shavsthe placementvith timing critical cellsin darkcol-

ors (the darker a cell, the highervoltageis needed).The

middle picture shows the grid partitioning generatedy

the sizereductionstep. Note thatthe voltagedistribution

informationis well preseredby thevariable-sizedyrids.

Thelastpictureshonsthe generatedoltageislands.

4.2 Comparisonwith other approaches

To demonstratehe efficiengy of our TS-Alg, we com-
paredit with two alternatve approaches.

Outline of alternative approaches. The first one is
ratherstraightforward: It is thelogicalboundarybasedp-
proach,whereeachgroupedmoduleor cell in thelogical
hierarchicaltreeforms anindividual voltageisland (Fig-
ure 4(a)). Currentlythis is the approachcommonlyused
in practice(asmentionedn theexamplein sectionl).

This approachss oftenvery inefficient dueto the high
fanoutof modulesin the logical hierarchytree. For the
examplein Figure4(b),moduleA; hasbeenmarkedhigh
voltagedueto its internaltiming critical cells. The rest
of cellsin the sub-treerootedat A arenon-critical. If we
don't group module 4, eachchild of A will becomean
individual voltageisland,causingtoo mary fragments.If
we groupmodule 4, the entire modulewill be raisedto
thehigh voltagethatis requiredon A, causingtoo much
power consumption. Suchcaseis very commonin real
designs.

Figure 4: Logical hierarchicaltree. (a) shadedmodulescor
respondto one possiblepartitioning. (b) A node A with high
fanout.

A naturalway to improve the logical-boundarybased
approacthis to substitutehe high-fanouthierarchicalree
with non-logicalboundarybasedstandardjuad-treeThe
leavesof thequad-treaarethecellsin theinputarray and
eachnodein this treecorresponds$o a possibleregion (a
subarray) Givenanupperboundd for powerincreasethe
goalis to find a setof appropriatenodesfrom thetreethat
form a partitioningof theinput array Theway to obtain
sucha partitioningis by a greedybottom-upmeming ap-
proach.In particular we mark a nodewhite if it hasnot
beenmerged,black otherwise.A nodeis calleda candi-
date for meging if it is white while all its four children
areblack. FurthermoregivenanodeR in quad-treewith
its four childrenR;, ¢ = 1, ..., 4, definethe costof memg-
ing R; tobeC(R) = w(R) — (w(R1) +w(Ry) +w(R3) +
w(Ry4)). This correspondso the power increasaesulted
from combiningthefour subragyionsinto R. Now in order
to computea partitioning, we startwith a treewhereall
non-leafnodesarewnhite. At ary time, we choosehecan-
didatewith smallestcost (by usinga priority tree). The



processwill terminatewhenthe overall weightof there-
sulting partitioningexceedghe givenupperbounds. We
referto thisalgorithmQT-Alg. Theoveralltime complex-
ity is O(nmlog(nm)) and spacecompleity is O(nm).
Figure5 illustratesthe quad-treealgorithm.

\
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Figure5: Quadratictree. (a) Theinput array (b) After some
combinations

Comparison on the samedesignwith differ ent power

increasebound. Figure 6 compareghe outputsize of

our TS-Alg with the logical tree and quad-treealgo-

rithms on one industry designwith different power in-

creasebounds.Clearly our TS-Alg outperformghe other
two significantly and constantly(by an orderof 10 and
2, respectiely). Betweenthe two alternatves,quad-tree
algorithmis significantly better Thereforewe will only

comparewith quad-treealgorithmin the restof our ex-

periment.
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Figure6: comparingdifferentalgorithmson the samedesign

Comparison on differ ent designs. We extendthe ex-
perimentto a wide selectionof industrydesignswith dif-
ferentsizes. For eachdesign,we comparethe two algo-
rithmsagainstdifferentpowerincreasénoundsandobtain
similar resultsin outputsizeasin Figure6. Dueto the
limited spacewe omit themhere. Instead,for eachde-
sign,we pick a particularpower increaseboundsuchthat

the numberof voltageislandsbeing generateds within
a desiredrange’. We selectedthe rangeto be around
20, which is roughly an upperboundin currentpracti-
cal designs.Table 1 showns the comparisorbetweenour
TS-Alg andthe quad-treebasedQT-Alg. Thedesignsare
listed with increasingarray size (the input to both algo-
rithms), which is roughly proportionalto the numberof
leaf cells. It canbe clearly seenthatour TS-Alg outper
formsQT-Alg significantlyon all designdn termsof the
numberof voltageislandsobtained.

The time compleity of our algorithm hastwo terms:
O(nm) andO(n + m + k*(p + q)p>q?). Thefirst term
comesfrom the preprocessin@f the input array into a
tablefor laterlooking up the weight for any subarrayof
A. Sincethis stepis neededy bothQT-Alg andTS-Alg,
we omit it from the runningtime presented. Otherthan
this preprocessingime, the running time of TS-Alg is
output-sensitie, mainly dependingon p, g, and k, while
QT-Alg still hasa O(nmlog(nm)) runningtime. This
explainswhy the first threesmall designsin Table 1 has
largerrunningtime: asp x ¢ afterSt ep 1 in theircases
is larger thanthat of later cases.On the otherhand,for
all practicaldatawe testandfor all practicalk, p andgq
are small regardlessof the size of the input design(see,
for example,p x ¢ doesnotincreasdn Table 1 with the
input size). This meansthat our algorithm scaleswell
with increasingsize of the input design! Furthermoreas
k decreaseghe runningtime of our algorithmdecreases
aswell, while that of QT-Alg remainsroughly the same
(asit is not output-sensitie). This is demonstratedn
Table 2, wherewe choosek around10, which is prob-
ably a more practicalnumberin currentdesigns). Note
that TS-Alg beatsQT-Alg significantly and consistently
in termsof bothruntimeandquality.
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