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Abstract

We present a statistical based non-tree clock distribution construc-
tion algorithm that starts with a tree and incrementally insert
cross links, such that the skew variation of the final clock net-
work is within a certain confidence interval under variations in
wire width. Monte Carlo simulations show that the robustness of
the final clock network can be significantly improved with a small
increase in wire length.

1 Introduction
As the minimum feature sizes of VLSI circuits get smaller
while the clock frequency increases, the effects of process vari-
ations on clock skews become significant. In [10], it is shown
that interconnect variations in clock trees can cause as much as
25% variation in clock skew.

To counter the effects of skew variations, two categories
of approaches have been proposed. One is the optimization
on clock trees [17] [12]. These works perform wire sizing to
minimize the skew variations.

The other category is the construction of hybrid non-trees,
or in general, clock networks [15, 9, 14, 13]. The main reason-
ing behind this approach is to provide additional paths for the
signal to reach the clock sink nodes such that the variations can
be compensated. In [9], a center fat wire is used. The idea be-
hind the center fat wire is that if clock signals from a tree arrive
at multiple evenly distributed locations at the center chunk, the
clock skew within the fat wire is negligible. In [15], a top (root)
level mesh drives multiple clock trees in the lower (leaf) level.
In [14], a top level tree drives a mesh in the lower level. In
[13], cross links are added to convert a clock tree to a non-tree.

The main objective of the above works is to minimize the
skew between clock sinks by performing optimizations that is
based on computing the exact skew using delay models. How-
ever, process variations are statistically distributed and maybe
spatially correlated. Therefore, it is advantageous to perform
clock tree optimizations that are based on statistical informa-
tion of the process variations. It is shown in [13] that inserting
links to a clock network can reduce the skew variability with-
out a significant increase in wirelength. In this work we utilize
the concept of link insertion to increase the robustness of the
clock network. The problem can be stated as follows: Given a
clock tree that satisfies the skew constraints between the clock
sinks, successively insert links to the tree/network such that the
skew variation is within a certain confidence interval, under
variations in wire width.

We propose an incremental statistical based optimization
approach to increase the robustness of a clock distribution net-
work to process variation by the addition of cross links [13].
We use statistical timing analysis similar to [5, 2] to obtain the

statistical distribution of the skew of the clock distribution net-
work to determine the optimal insertion point. Once the cross
links are inserted, the statistical skew distributions are updated
before more links are inserted. In [13], the statistical skew
analysis is performed only at the final step, when all links have
been added. Monte Carlo simulations show that the robust-
ness of the final clock network can be increased with a small
increase in wire length. In this work, we use a fitted Elmore de-
lay model [1] and apply this to the Elmore delay computation
of both clock trees and non-trees.

2 Statistical Distribution of Parameters
Consider a wire of two segments. ei has a uniform width of wi

and of length li. e j has a width of w j and of length l j. If we use
a RC π-type circuit to model this wire and evaluate the Elmore
delay of the wire from one end of ei (source node) to the end
of e j, we have:
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where r� is the wire resistance per unit square, ca is the area ca-
pacitance per unit length and c f is the fringing capacitance per
unit length. If we rewrite the expression based on the widths
from Eqn. (1), we have:
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The Elmore delay model has been widely used because it
is extremely efficient to compute and has a good fidelity with
respect to HSPICE simulation [3]. The primary disadvantage
of is that it has limited accuracy and it always overestimates
the delay [8]. To increase the accuracy , we use a fitted Elmore
delay model [1] in this work, although we refer to it as Elmore
delay throughout the paper.

Due to process variations, the width of a fabricated wire
may deviate from the designed width and it would follow a
statistical distribution. Therefore, we replace all occurrences of
wi and wj with random variables (RV) Wi and Wj and express
the Elmore delay of the wire as another RV denoted as D j:
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We assume that W has a normal distribution with mean (W )
and standard deviation (σW ). In this work, we consider only
wire width variations, but it can be extended to handle other
sources of variations such as wire height.

Using a Taylor series expansion of Eqn. (2) up to the sec-
ond order, we have:
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where d0 = d j, evaluated at the expansion point (which is the
Elmore delay if we do not consider process variations), m is
the number of RVs involved in Eqn. (3), and ∆Wk = Wk −Wk.
From this we can see that the mean of Elmore delay is not ob-
tained by setting the wire widths to their mean values, due to
other higher terms that shift the mean. Using a second order
expansion mainly increases the accuracy of the mean compu-
tation. The effect of higher order terms on the variance is not
as pronounced.

Therefore the Elmore delay of D j is in the form:
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where ak and bk1k2 are scalar constants. Therefore for each D j,
there are 1+m+m(m+ 1)/2 terms.

To find the mean, E (D j), in Eqn. (5), we have:
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where E (∆Wk1∆Wk2) is the covariance between ∆Wk1 and ∆Wk2

(since both ∆Wk1 and ∆Wk2 have zero mean). To find the vari-
ance, Var (D j), we have:
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where H.O.T. are higher order terms. In this work, we do not
consider H.O.T. for variance computation. The RVs are as-
sumed to be spatially correlated and is given in a covariance
matrix. The spatial correlation is modeled by imposing a set of
grids on the design space where parameters of devices or wires
within the same grid have perfect correlation while the parame-
ters of devices or wires that are in distant grids have a weaker
correlation [5, 2]. Therefore if there are m grids, there would
be m RVs and covariance matrix would be of size m×m. Each
grid represents the distribution of the deviation of wire widths
∆Wk. Therefore, if we know the mean values of each RV, we
can easily compute the mean and variance of the delay of the
wire. We assume all wires in the same grid have the same nom-
inal width. The model can be easily generalized to handle the
case where wires in the same grid may have different widths.

For a clock tree, we denote the skew between any two
nodes i and j to be qi j = di − d j. Therefore, Qi j = Di −Dj

and can similarly be expressed in the form:
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where ãk and b̃k are the scalar constants obtained from Di −
Dj. Hence, E (Qi j) and Var (Qi j) can be computed in a similar
fashion as in Eqn. (6) and (7). The mean and the variance can
be found in O(m2) run time (we do not use higher orders for
variance computation).

To reduce the complexity of the mean and variance compu-
tation, we make use of Principal Component Analysis (PCA)
[11] to convert the set of correlated RVs to an uncorrelated set
as in [5]. In turn, we can express all the delays and skews
with the new uncorrelated set of RVs. Since the cross terms
no longer exist, there are only 1 + 2m terms for every D and
Q. Once the delay or skew is expressed as a set of indepen-
dent RVs, the mean and variance can now be found in O(m)
run time. For the rest of the paper, D’s and Q’s are assumed to
be expressed with the new uncorrelated set of RVs.

Table 1 shows the accuracy of the statistical skew analysis
compared to Monte Carlo HSPICE simulations. Max mean
skew is defined as the largest mean skew in the circuit and Max
SD skew is the largest standard deviation of skew in the circuit.
It also shows the use of fitted Elmore delay on a tree. From the
results, we see that using a fitted Elmore delay enhances the
accuracy when performing statistical analysis, which is crucial
when we are optimizing the variation of skews such that it is
within a certain confidence level.

3 Statistical Delay and Skew
A challenge of adding links to trees is that once the link is
added and a non-tree is formed, Eqn. (1) and consequently
Eqn. (5) can no longer be used directly to compute the delays.
Suppose that n is the number of nodes in the clock tree. In
general, given the node conductance matrix G of size n× n,
and the nodal capacitance matrix C that is of size n× 1, the
RC delay can be found by computing G−1C or R C , where
R = G−1.

In this work, since we assume that the wire widths are RVs,
we need to capture this information in the resistance and capac-
itance of each wire. In this work, a wire that passes through
multiple grids is treated as a path p of multiple nodes and
edges. The capacitance (cL) and resistance (rL) of the wire can
be expressed as:

cL = ∑
i∈path p

li(caWi + c f ), (9)

and

rL = r� ∑
i∈path p
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Wi

. (10)

From these two equations, we can express cL and rL in the form
of a Taylor series expansion similar to Eqn. (5), then repre-
sent them with a set of uncorrelated RVs obtained by PCA. To



Table 1: Comparison of statistical skew analysis with Monte Carlo (MC) HSPICE simulations for trees
Benchmark Circuit (MC) Stat. analysis (SA) ∆ = SA−MC

MC (*SA) ∆ = ∗SA−MC
MC

Circuit Clock Nodes Grids Max Max Max Max ∆Max ∆Max Max Max ∆Max ∆Max
pins mean SD mean SD mean SD mean SD mean SD

# # # skew skew skew skew skew skew skew skew skew skew
(ps) (ps) (ps) (ps) (%) (%) (ps) (ps) (%) (%)

s1423 74 262 16 1119 22.4 1134 22.9 1.3 2.2 1305 26.6 16.6 18.8
s5378 179 594 64 950 102 946 108 -0.4 7.8 1061 124 11.7 21.6
s15850 597 2162 64 1853 455 1779 464 -4.0 1.9 2259 579 21.9 27.3

*Without using fitted Elmore delay

avoid adding new notation, we again use rL and cL to denote
resistance and capacitance expressed in terms of the set of un-
correlated RVs. To find the conductance, we take the Taylor
series expansion of 1

rL
and represent it with a set of uncorre-

lated RVs.
Since we can express resistance and capacitances with sets

of uncorrelated RVs, the remaining challenge is in computing
R C and updating it as successive links are inserted.

3.1 Incremental Updates
After each subsequent link insertion, R C must be updated.
Suppose the xth link wire that we add to the tree has a resis-
tance of rx and a capacitance of cx and the link wire is added
between nodes i and j.

Updating C is trivial because we add cx
2 to two entries of

C , namely Ci and C j. This can be viewed as adding a column
vector (∆Cx) to C where ∆Cx has a capacitance of cx

2 at the ith

and jth entries with the rest set to zero:

Cx = Cx−1 + ∆Cx, (11)

where:

∆Cx =

⎡
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⎤
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{ cx
2 k = {i, j},
0 otherwise.

(12)

In this work, we do not construct R . However, to demon-
strate the main concept of updating R C , assume that it is given.
Updating R is not as straightforward. One way of performing
the update is by adding 1

rx
to the appropriate entries of G, and

perform an inverse operation (assuming that it is possible) to
obtain the new R . If we observe the update of G, we see that
adding a link resistance rL between nodes i and j is equivalent
to subtracting (adding) the link conductance 1

rL
from (to) two

entries of G, namely Gii, Gj j and adding (subtracting) 1
rL

to
(from) Gi j, Gji. If we put these four link conductances in a
matrix ∆G, the new G, is given by:

Gx = Gx−1 + ∆Gx, (13)

such that:
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V T

x
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1 k = i,
−1 k = j,
0 otherwise,

(14)

and we denote the vector of v’s as Vx.
From Eqn. (14), we can see that ∆G is a matrix of rank-one.

Therefore, instead of performing an inverse computation of G x

after every link inserted, we perform a rank-one update on R x−1
(G−1

x−1) to obtain Rx (G−1
x ) directly. The rank-one update of

Rx−1 is given by [7]:

Rx = [Rx−1 − 1
rx

VxV
T
x ]−1 = Rx−1 + βRx−1VxV

T
x Rx−1, (15)

where:

β =
rx

rx −VT
x Rx−1Vx

By using a rank-one update, we can obtain R x quickly after
a link insertion. The new delay of every node can then be ob-
tained by multiplying Rx with the updated Cx. This allows us to
use a rank-one update to compute the statistical delay and skew
of a clock network which is constructed from a clock tree by
link insertion in O(mn2). However, in this work, we are only
interested in the product of R and C . Therefore, R is not con-
structed and it is not necessary to update R and C separately.
By directly updating R C , there is a reduction in computation
complexity.

This approach is similar to [4] in a sense that they are also
incrementally computing the new RC delay as resistive links
are added back to a tree to compute the RC delay of the origi-
nal network (the resistive links were removed from the original
RC network to form a tree). However, in [4], their objective is
to compute the final delay of a given RC network without the
presence of variations. In this work, we are computing the sta-
tistical delays and skews in the presence of variations. We also
add new capacitances to the network and therefore we have
additional terms that we need to compute. The main concept
behind our work is the use of a rank-one update and the use of
the unique structure in ∆Gx and ∆Cx, for a direct update of the
statistical delay.



4 Direct Incremental Statistical Delay Up-
date

In this section, we introduce a method to compute and update
R C directly after a link is inserted.

From Eqns. (11, 13 and 15), we have:

RxCx =
[
Rx−1 +

rxRx−1VxV T
x Rx−1

rx −VT
x Rx−1Vx

]
(Cx−1 + ∆Cx)

= Rx−1Cx−1 +Rx−1∆Cx +
rxRx−1Vx(V T

x Rx−1Cx−1)
rx −VT

x Rx−1Vx

+
rxRx−1Vx(V T

x Rx−1∆Cx)
rx −VT

x Rx−1Vx
(16)

To compute RxCx, we must obtain the following terms:

1. rx: This is the resistance of the link expressed with a set
of uncorrelated RVs.

2. Vx or V T
x : This is a column vector that corresponds to the

two nodes (i and j) that are connected by the xth link.
The vector has values of 1 and −1 in the ith and jth en-
tries and zeros elsewhere. This term is stored for succes-
sive link insertions and requires O(1) space complexity
for each link.

3. Rx−1Cx−1: This term corresponds to the RC delay before
the xth link is inserted. Before the first link is inserted,
this corresponds to the case where x = 1 and R0C0 cor-
responds to the original Elmore delay of the clock tree,
which can be found by a bottom-up, top-down tree tra-
versal in O(mn). This is the key idea why we do not
require the construction of R . Once this term is com-
puted, it is stored for successive link insertions and re-
quires O(mn) space complexity.

4. V T
x Rx−1Cx−1: From Eqn. (14), we see that V T

x is a row
vector of zeros except with values of 1 and −1 in the
ith and jth entries. Therefore the product of V T

x and
Rx−1Cx−1 can be easily found by taking the difference
between the ith the jth entry of Rx−1Cx−1 and can be done
in O(m) run time.

5. Rx−1Vx: By replacing the x’s with y− 1 in the brackets
and replacing (Cx−1 + ∆Cx) with Vx in Eqn. (16), this
term can be computed using the recursive function as
follows:

Ry−1Vx = Ry−2Vx︸ ︷︷ ︸
(a)

+
ry−1Ry−2Vy−1V T

y−1(Ry−2Vx)

ry−1 −V T
y−1Ry−2Vy−1︸ ︷︷ ︸
(b)

. (17)

y is used to indicate the difference between the V ’s of
previous links that have been already added and the V ’s
of the last or current link. The term Ry−2Vy−1 (or Rx−2Vx−1)
in (b) has been computed in the (x − 1)th link and is
known if we have stored this in the previous link inser-
tions. V T

y−1Ry−2Vx in (b) can be computed in a similar

fashion as V T
x Rx−1Cx−1. Therefore, (b) can be computed

as soon as Ry−2Vx (or (a)) is obtained.

6. V T
x Rx−1Vx: Similar to V T

x Rx−1Cx−1, the product of V T
x

and Rx−1Vx can be found by taking the difference be-
tween the ith the jth entry of Rx−1Vx. This term can be
computed in O(m) as soon as Rx−1Vx is obtained. We do
not store this for successive link insertions.

We compute Ry−2Vx in (a) by doing recursive operations
of Eqn. (17). This will generate terms similar to (b),
which we can compute once the term like (a) is known,
and a term like (a) which again will require further re-
cursive operations. Eventually the term (a) will reach
R0Vx. Note that this is very similar to R0C0, which is the
Elmore delay of the original tree, before any links are
inserted. Therefore, we can treat R0Vx as the Elmore de-
lay of a special tree that has the same exact topology and
resistance values as the original tree (Fig. 1). However,
the tree has zero node capacitances except for node i and
node j. These two nodes have a “capacitance” of 1 and
−1 respectively when the xth link is inserted. We will
show how R0Vx is obtained in the next section. Since
Rx−1 is symmetric:

(V T
x Rx−1) = (Rx−1Vx)T .

Once this term is computed, it is stored for successive
link insertions and requires O(mn) space complexity. Note
that we store terms that are Rx−1Vx, i.e., where the index
differs by one. The rest are not stored because they are
not reused again in future link insertions.

7. Rx−1∆Cx: The method of computing this term is very
similar to finding Rx−1Vx. It will require recursive opera-
tions similar to Eqn. (17), exceptVx is replaced with ∆Cx.
Eventually the term (a) will reach R0∆Cx. We can treat
R0∆Cx as the Elmore delay of a special tree that has the
same exact topology and resistance values as the origi-
nal tree. However, the tree has zero node capacitances
except for node i and node j. These two nodes both have
a capacitance of cx

2 when the xth link is inserted. We will
show how R0∆Cx is obtained in the next section. This
term is not stored for successive link insertions.

V T
x Rx−1∆Cx can be computed in O(m) as soon as Rx−1∆Cx

is obtained.

In [4], no new capacitances are added when the links are
added back to form the original RC network. In this work, we
have the extra term R0∆Cx, which needs to be computed and
will be presented in the following section. The other difference
is in the space complexity. Using the same notation, [4] re-
quires O(mnx2). In this work, we require O(mnx) to store the
terms Rx−2Vx−1 and RxCx.

4.1 Computing R0Vx and R0∆Cx
Note that the special trees corresponding to the terms R0Vx and
R0∆Cx are essentially the same except that the two capacitances
at node i and node j are different (Fig. 1). Therefore, we can
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Fig. 1: Figure showing the special tree and the off-path sub-
trees. All nodes have zero capacitance except nodes i and j
(where the link is inserted)

compute both terms simultaneously with a single bottom-up,
top-down traversal. There are some unique properties that al-
lows a quick computation the Elmore delay of these special
trees. We denote the path in the tree from node a to node b
as patha�b and denote the node NCAi j as the nearest common
ancestor of nodes i and j. In this work, we only insert links
between nodes i and j such that NCAi j �= i and NCAi j �= j.

Suppose s is the root of the original clock tree. We de-
note Tk as an off-path subtree rooted at node k: k ∈ path i�s ∩
path j�s, and no edges in Tk intersects with any edge in pathi�s∩
path j�s (Fig. 1). The nodes in Tk have zero capacitances,
which implies that the Elmore delay of these nodes will have
the same delay as node k. Therefore, we can simply fill in these
values in R0Vx and R0∆Cx once the delay to node k is found.
This means that we do not need to traverse those nodes in Tk

during the Elmore delay computation. Although it still requires
O(n) time to fill in the entries, we only perform a number of
multiplications (product of node resistance with downstream
capacitance of the node) that is bounded by the height of the
original tree.

Suppose u = NCAi j. It is interesting to note that to fill the
entries of R0Vx, we really do not need to traverse above u for
the Elmore delay computation. This is because the downstream
capacitance of those nodes k: k ∈ pathu�s, are zero (sum of 1
and −1). Therefore the Elmore delays from the root to nodes k
and to nodes in subtrees Tk, where k ∈ pathu�s, are all zero.

5 Statistical based link selection
The major challenge is to determine where the links should be
inserted. This is because as we can expect that, in general, in-
serting a link between two nodes will change the skew between
all node pairs.

In a synchronous circuit, between every pair of sinks, say
i and j, there are two inequalities that pose lower and upper
bound constraints on the skew qi j [6]. These are the hold time
and setup time constraints. For simplicity, we use ai j ≤ qi j ≤

qij
6  sigma

Fig. 2: Figure showing a PDF of skew (qi j). The shaded
area is the 6σ skew variation

Input: Clock tree T , skew constraints (or bounded skew),
grids and Covariance matrix

Output: Clock network T̃
1. Add internal nodes to T based on the grid partition
2. Perform PCA to obtain uncorrelated set of RVs
3. Perform statistical skew analysis on T
4. While skew violation exists: (See Eqn. (18))

a. For each sink pair considered for link sink insertion,
find the worst case skew violation

b. Insert the link that has the best worst case violation
c. Update skew

Fig. 3: Statistical link insertion algorithm

bi j to represent the lower and upper bound skew constraints
between sinks i and j.

The objective of this work is to achieve:

ai j + ασi j ≤ qi j ≤ bi j −ασi j, (18)

where ασi j is α times the standard deviation of Qi j and σi j

is obtained from the statistical skew analysis. In other words,
we would like the mean of the skew of every sink pair to be
adjusted such that the 2ασi j skew variation (µ±ασi j) for that
particular pair of sinks lies within their skew constraints. A
skew violation occurs when the skew constraints are not satis-
fied. In this work, we assume α = 3 as shown in Fig. 2.

In Section 4, we showed that we can obtain the statistical
delay and skew after a link has been inserted. Therefore, for
any candidate link, we can temporarily insert the link, perform
a statistical delay evaluation and check against the skew con-
straints for skew violations. We can then determine whether
that candidate link should be permanently inserted to resolve
the skew violations. Once the link is inserted, the delay and
skew is updated and is ready for the next link to be inserted.
The algorithm is summarized in Fig. 3.

5.1 Candidate link selection
In a clock tree with n nodes, there are O(n2) pairs of nodes that
could be considered as candidates. Clearly, testing all of them
will be expensive to do. Therefore, we reduce the search space
by setting a limit on the link distance. The reason for this is that
we would like to keep the links as short as possible to minimize
the total wirelength. A longer wirelength imposes a larger load



to the clock driver and will consume more power per switching
cycle. The other reason is that a shorter link inserted will have
a smaller perturbation on the delay and skew of the overall tree
because a shorter link would have smaller link capacitances.
We can see this from the computation of R0∆Cx.

One other constraint that we use is to limit the height of the
subtree that is rooted at the NCA of the two nodes where the
link is to be inserted. From the computation of R0∆Vx, we can
see that the taller the subtree, the larger the effect the link has
on the tree.

6 Complexity Analysis
In this section, we present and summarize a run time complex-
ity analysis of the major components of the algorithm:

1. Statistical Elmore delay evaluation of the original tree
with n nodes: We first start with a bottom-up traversal
to gather the all the downstream capacitances of every
node, which takes O(n). Then we perform a top-down
traversal to compute the Elmore delay of every node by
taking the product of the edge resistance and its down-
stream capacitance and adding the delay of the parent
node. Each product takes O(m) and we go through n
nodes. Therefore the run time is O(nm). Once the de-
lays Di’s to each node is found, to compute the mean
and variance requires O(m) time. Therefore, the overall
complexity of this part is O(nm).

2. Statistical skew evaluation: Once we have obtained all
the delays Di’s to each node, we can find the skew Qi j’s.
Since there are O(n2) skew pairs, and each pair requires
O(m) time to compute the mean and the variance of the
skew, the overall complexity of this part is O(mn2). How-
ever, in practice, we only evaluate the skew of the sink
pairs because we are interested in the skews of the clock
sinks.

3. Direct incremental statistical delay update: This compo-
nent has several smaller parts:

(a) Computation of R0Vx and R0∆Cx: This is done by
finding the Elmore delay of two special trees as
shown in Section 4.1. However, since the two trees
are very similar, we can compute these two terms
at the same time. Due to the fact that most node
capacitances of these special trees are zero, we do
not need to traverse all n nodes when computing
the Elmore delay. This means that although it is re-
quired to fill n entries of R0Vx and R0∆Cx, we only
perform a very small amount of computation (less
than n). We state that this part takes O(nm).

(b) Computation of RxCx: Assuming we have all the
terms shown in Section 4, we can start combining
the terms together. Since V T

x Rx−1Cx−1, V T
x Rx−1∆Cx

and
(

rx
rx−VT

x Rx−1Vx

)
are all of size 1× 1, therefore

we can view these terms as constant factors. We

can therefore rewrite Eqn. (16) as:

RxCx = (Rx−1Cx−1)+ (Rx−1∆Cx)

+(Rx−1Vx)·[(
rx

rx −V T
x Rx−1Vx

)(
V T

x Rx−1Cx−1 +VT
x Rx−1∆Cx

)]
(19)

Computing the term in brackets takes one multi-
plication and that term is multiplied n times with
Rx−1Vx. We then add this to Rx−1Cx−1 and Rx−1∆Cx

to obtain RxCx. Therefore, this operation takes O(mn)
time.

If x is the number of links, to compute Rx−1Vx, it requires
x recursive operations of Eqn. (17) and one tree traversal
to obtain R0Vx. Each recursive operation should be com-
puted in the same manner as the computation of R xCx,
which takes O(nm). Therefore the overall time to com-
pute the final result of RxCx in Eqn. (16) for the xth link
is O(xmn+nm).

Therefore, the overall time to insert the xth link, update RxCx

followed by a statistical skew evaluation takes O(mn2 + xmn+
nm) time. Assuming for the link selection process, we consider
h candidate pairs of nodes as the xth link inserted. Therefore,
if we have to insert a total of x links, the run time complexity
of our algorithm is O(x(h(mn2 + xmn + nm))). From the ex-
periments shown, we only insert a very small amount of links,
therefore x is very much less than n.

7 Experiments and Results
The proposed statistical link insertion algorithm has been im-
plemented in Matlab and tested on three ISCAS89 benchmark
circuits on a Sun UltraSparc-II workstation. The wires are as-
sumed to have a resistance of 0.03Ω per unit square, an area ca-
pacitance of 1 f F/µm and a fringing capacitance of 1.2 f F/µm.
These numbers are typical for a 0.18µm process technology.

To truly evaluate the quality of our solution we performed
Monte Carlo HSPICE simulations on the original clock tree
and the final clock tree with inserted links. We assume that the
process variations are spatially correlated. We use a grid par-
titioning to section the die into a number of grids (m). Given
the clock tree, we first add additional internal nodes to the tree
based on the grid partitioning. Long wires that pass through
several grids will be treated as multiple segments and each seg-
ment’s wire width follows the statistical distribution associated
with the grid it passes through.

In these experiments, the clock tree (network) is fed into the
simulator and wire widths are assigned to all the edges, while
retaining the topology. The assignment of wire widths follows
a normal distribution that has a mean of wmean and a standard
deviation of σw. The 3σw variation of the wire widths in every
grid has been set to an arbitrary value of ±20% of the nominal
value. In other words, the minimum (−3σ) is set at 80% of
the nominal value and the maximum (+3σ) is set at 120% of
the nominal value. The skews between all pairs of sinks are



Table 2: Comparison of statistical skew analysis with Monte Carlo (MC) HSPICE simulations for non-trees
Benchmark Circuit (MC) Stat. analysis (SA) ∆ = SA−MC

MC (*SA) ∆ = ∗SA−MC
MC

Circuit Clock Nodes Grids Max Max Max Max ∆Max ∆Max Max Max ∆Max ∆Max
pins mean SD mean SD mean SD mean SD mean SD

# # # skew skew skew skew skew skew skew skew skew skew
(ps) (ps) (ps) (ps) (%) (%) (ps) (ps) (%) (%)

s1423 74 262 16 1053 21.1 1084 21.9 2.9 3.8 1241 25.4 17.9 20.4
s5378 179 594 64 945 103 942 110 -0.3 6.8 1055 128 11.6 24.3
s15850 597 2162 64 1841 453 1758 463 -4.5 2.2 2247 569 22.1 25.6

*Without using fitted Elmore delay

Table 3: Monte Carlo HSPICE skew and yield analysis before link insertion
UST/DME Wire- Max Max Yield

Circuit Safety margin length mean skew sd skew
(ps) (mm) (ps) (ps) (%)

s1423 0 107.3 1119 22.4 0
1500 141.2 1077 21.8 100

s5378 0 176.5 950 102 0
400 363.5 941 101 100

s15850 0 448.6 1853 455 0
300 1079.7 1821 451 100

evaluated based on this width assignment using HSPICE. For
each clock tree, 2000 simulations are performed with a new set
of width assignment for every simulation.

Table 2 shows the comparison of statistical skew analysis
(using fitted Elmore and without) with Monte Carlo HSPICE.
The results show that there is an increased accuracy when fitted
Elmore delay is used for non-trees. Table 3 shows the Monte
Carlo HSPICE skew analysis on the clock trees before links
are inserted. It shows the number of clock sinks, the wire-
length, the maximum of the mean of all skews and the max-
imum of the standard deviation of all skews. The trees are
generated using the UST/DME clock routing algorithm [16]
with different safety margins. The idea of safety margins is to
push the clock skew away from the bounds during clock rout-
ing such that they provide an increased tolerance to process
variations. This, however, increases the wirelength. We show
the increased wirelength for each circuit with a minimal safety
margin (at intervals) such that a 100% yield is achieved. The
yield is defined as the percentage of clock trees/networks tested
in the simulations that meet all skew constraints under the pres-
ence of process variations, based on the 6σ definition in Eqn.
(18). Our algorithm starts with clock trees with zero safety
margins.

The abrupt changes in the yield stems from the fact that the
safety margin increments in the experiments are done in inter-
vals. It would require very large amount of resources to run
Monte Carlo HSPICE simulations to determine the yield us-
ing fine safety margin increments. For the smallest benchmark
circuit s1423, we had to increase the wire width variation to
±30% to introduce a yield loss. This is because smaller clock
trees typically has shorter branches and therefore are less af-
fected by variations.

Table 4 shows the Monte Carlo HSPICE skew analysis on
the clock trees after the links are inserted. For each benchmark
circuit, it shows the change in both the maximum mean skew

Fig. 4: Circuit s1423 with links inserted (shown in red)

and the maximum standard deviation of skew from the origi-
nal clock tree, the wirelength and the number of links inserted.
From the results, we see that we can increase the yield with
a small number of links that do not significantly increase the
wirelength.

8 Summary and Conclusions
In conclusion, we have presented a method to incrementally
add cross links to a clock tree such that the skew variation of
the final clock network is within a certain confidence interval.
The link selection is determined by statistical skew analysis
which is incrementally updated after links are inserted. The fi-
nal result is a non-tree that has skew variation that is within a
certain confidence interval, with a small increase in wirelength
(12.2% max) compared to the orginal tree with zero saftey mar-
gins. The results are verified with Monte Carlo HSPICE simu-
lations.



Table 4: Monte Carlo HSPICE skew and yield analysis after link insertion
Max ∆ Max Max ∆ Max Wire- ∆ Wire- *∆ Wire- Links CPU Yield

Circuit mean skew mean skew sd skew sd skew length length length (UST) inserted time
(ps) (%) (ps) (%) (mm) (%) (%) (min) (%)

s1423 1053 -5.9 21.1 -1.3 119.1 10.9 -15.7 10 2.6 100
s5378 945 -0.5 103 1.0 185.7 5.2 -48.9 8 53.8 100
s15850 1841 -0.6 453 -0.4 503.3 12.2 -53.4 20 655 100

*Comparing with UST/DME with 100% yield
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