Variation Tolerant Buffered Clock Network Synthesis with
Cross Links

ABSTRACT

Clock network synthesis is a key step in the ultra deep sub-
micron (UDSM) VLSI Designs. Most existing clock network
synthesis algorithms are designed for nominal operating con-
dition, which are insufficient to tolerate the growing vari-
ability from process, voltage and temperature (PVT) vari-
ations. In this paper, we propose a unified algorithm for
synthesizing a robust, variation tolerant, buffered clock net-
work with cross link insertion. We explicitly consider clock
signal slew and resistive shielding effect for our variation-
tolerant, balanced buffered clocks tree construction without
sacrificing skew, buffer/wire area, and run time. We further
reduce the clock skew variability with cross link insertion
to our balanced buffered clock trees, which work seamlessly
with cross-link methodology. Very promising experimental
results are obtained on standard benchmarks, compared to
previous state-of-the-art algorithms.

1. INTRODUCTION

Clock distribution networks (CDNs) are of great impor-
tance in any synchronous VLSI chip because the pace of al-
most every data transfer is determined by the clock signal. A
high quality CDN is vital for obtaining good circuit perfor-
mance, reduced power and high timing yield in the UDSM
technologies. As one of the largest and fastest switching
nets in any design, the CDN has a tremendous influence on
the over all performance of the chip [2]. Realizing this im-
portance, numerous works have been done towards solving
the problem of clock network synthesis [5-18]. In the ma-
jority of these works, only traditional parameters like skew,
wire/buffer area and power are considered. However, in the
sub-100 nm technologies, variation effects like manufactur-
ing variations [3,20], temperature changes and power supply
noise [4] are becoming more and more significant and there-
fore, it is of vital importance to address these issues in the
clock network, which is especially sensitive to variations.

In a typical clock network, the variation in device param-
eters like gate length and oxide thickness is an important

source for the unwanted skew in the UDSM technologies [21].
The interconnect variation might also account for up to 25%
of the total clock skew variability in high-performance de-
signs [22]. The contribution of interconnect variation to-
wards unwanted skew is likely to increase as the technology
scales further. However, many of the existing algorithms, in-
cluding the recent ones like [15-17] do not consider such vari-
ation effects during clock tree synthesis. These algorithms
typically construct the clock tree for the nominal values of
device/interconnect parameters to achieve the target clock
skews. The main drawback of such an approach is that even
if clock skew constraints are met at design time (for nom-
inal values of device/interconnect parameters), PVT vari-
ations can introduce unwanted clock skew during the chip
fabrication, thereby affecting performance and timing yield.
Recently proposed link-based clock network [1] has been
shown to be very tolerant to PVT variations. However, [1]
addresses only unbuffered clock networks, which cannot be
used in most practical cases.

In this work, we propose an efficient algorithm for syn-
thesizing a robust, variation tolerant buffered clock network
with cross link insertion. The important contributions of
this work are:

e We propose an efficient algorithm to explicitly consider
clock signal slew and resistive shielding effects during
the bottom-up topology construction. It helps us to
overcome the inaccuracy of the simple Elmore delay
model, as used in most clock tree synthesis algorithms.

e We propose a unified variation-tolerant algorithm to
build a balanced buffered clock network along with
wire length minimization.

e We further reduce the clock skew variability with cross
link insertion to our balanced buffered clock trees. It
may be noted here that adding links in a buffered clock
tree is a non-trivial problem. This has been explained
in section 5.

Monte Carlo simulations in SPICE using 90 nm technol-
ogy parameters show that our algorithm can reduce the av-
erage skew due to variation effects by as much as 50% with
no penalty in resources or runtime.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to 2., BACKGROUND AND MOTIVATION
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

In this section, we will briefly review existing buffered
clock tree synthesis algorithms in the literature. Then, we

will point out their drawbacks, and motivations for this
work.

2.1 Brief review of existing works

One of the pioneering algorithms for clock routing was
proposed in [5], in which a zero skew clock routing was ob-
tained by recursively merging a pair of zero skew subtrees
until a single clock tree is obtained. The zero-skew principle
in [5] was extended in the DME algorithm [6] for wire length
minimization. However, [5,6] addressed only the problem
of an unbuffered clock tree. The problem of constructing
a zero skew buffered clock tree under Elmore delay model
was solved in [7,8]. The optimal clock buffering for a given
topology and buffer library was solved in [9]. A heuristic
for synthesizing a low-power buffered clock tree using the
Elmore delay model was proposed in [10]. Buffer and wire
sizing were done so as to reduce power and maintain the zero
skew property under Elmore delay. None of the above clock
tree synthesis algorithms consider clock signal slew during
the synthesis of the clock tree.

To our best knowledge, [11] was the first work that explic-
itly considered slew during buffer insertion. But it assumes
a given unbuffered clock tree, which may result in very sub-
optimal solution compared to simultaneous buffering and
clock routing [7]. In [18], a SPICE based time domain
based buffer /wire sizing has been proposed which results in
greatly reduced skew in SPICE. To our best knowledge, [18]
is the only work that aims to reduce the actual clock skew
in SPICE. However, since it directly uses SPICE for tuning
the clock network, the runtime may be prohibitive.

In [12], the important problem of clock buffer load im-
balance is addressed. In the previous algorithms like [7],
different clock buffers at a given level from the clock source
may drive different loads. The methodology in [12] attempts
to solve this problem by using a clustering approach. But
such a clustering and load balancing approach usually re-
sults in excessive wire length due to wire snaking when the
two clusters to be merged do not have similar target delays

The effect of interconnect width variation on the clock
skew has been addressed in the algorithms of [1, 13, 14].
However, the effect of device variation has not been ad-
dressed. In [15,16], the problem for optimal buffer/wire
sizing in clock network has been studied under the Elmore
delay model. In [17], a new merging scheme has been pro-
posed for prescribed skews which usually results in consid-
erably less wirelength compared to the other algorithms.
However, this algorithm results in highly unbalanced clock
structure.

The balanced clock structure issue has been addressed
in works like [7,12]. But both of them perform one form
of load balancing or the other, they result in excessive to-
tal wire lengths when compared to the results of algorithm
in [17]. But the algorithm in [17] constructs a highly un-
balanced clock tree, inserting buffers only for meeting slew
requirements.

2.2 Motivations for this work

Explicit slew consideration during CTS: As discussed
in the previous section, most of the existing buffered CTS
algorithms use Elmore delay. However, Elmore delay is inac-
curate for the DSM technologies mainly because it ignores
the resistive shielding effect [19]. Oftentimes, a buffered
clock tree built using Elmore delay results in considerable

skews in SPICE simulations [18]. Except in [11], the clock
signal slew is not considered during the clock tree synthesis
stage in most algorithms. A few algorithms like [17] use an
upper bound of capacitance that can be driven by a buffer
and insert buffers whenever the bound is exceeded. How-
ever, this may result in differential buffer loading and extra
skews in SPICE simulations. Hence, a systematic approach
to addressing signal slew of clock signals is necessary.

Balanced nature of clock tree for variation toler-
ance: We define a balanced clock tree as one in which identi-
cal buffers are inserted at a given level from the clock source.
Moreover, in a balanced buffered clock tree, the number of
buffer levels from the clock source to each clock sink will
be the same. Figure 1 (a) shows an example of unbalanced
clock tree where the number of buffers from the clock source
S to the sinks A and B is two while for sinks C and D it is
one. However, in the case of figure 1 (b), all the sinks have
equal number of buffers starting from the clock source. This
makes it a balanced clock tree, assuming that the sizes of
buffers B1 and B2 are the same.

Figure 1: (a) An example of an unbalanced buffered
clock tree; (b) An example of a balanced buffered
clock tree.

A key advantage in having a balanced clock structure is
that it will be much more tolerant to variation. For example,
if the nominal delays from source to sinks in both figure 1
(a) and (b) is 100 ps and if the nominal gate delay is 20ps.
Under nominal conditions, both figure 1 (a) and (b) will have
identical skews. However, when variational effects become
more and more severe in nanometer designs, the scaling of
the device delays and interconnect delays need not match.
For example, due to certain change in operating temperature
or voltage, the device delay doubles and interconnect delay
becomes one half of the nominal values. Then the balanced
structure is much more tolerant to the variation.

In the UDSM technologies, it is becoming increasingly
difficult to capture all the different variation effects. This
further motivates us to use the balanced clock structure to
improve tolerance to variations. Many recent clock tree syn-
thesis algorithms like [15,16,18] use buffers of different sizes
and tune them in such a way that the skew and delay targets
are met at the nominal values of device and interconnect pa-
rameters. However, due to the PVT variations, significant
skew can be generated in such clock trees.

Link insertion: In [1], a non-tree clock network with
high tolerance to skew variation effects has been proposed.
The non-tree is obtained by inserting cross links in a given
clock tree at suitable places. It has been shown in [1] that
such a non-tree is significantly more tolerant to variation

effects than a regular tree, while the increase in wirelength
consumption is very small. However, the methodology pro-
posed in [1] for link insertion is applicable only for unbuffered
clock trees. As a result, the practical applicability of this
clock tree is reduced. In this work, we address the problem
of link addition for buffered clock trees.

The motivation of this work is to consider the above issues
in a unified variation-tolerant CDN framework.

3. METHODOLOGY FOR BACKWARD
PROPAGATION OF SLEW

In this section, we will review the concept of iterative de-
lay evaluation of [19]. The methods of [19] is mainly for
delay analysis and cannot be directly applied for clock tree
synthesis. To overcome this drawback, we propose our algo-
rithm for backward slew propagation which can be applied
during clock tree synthesis.

3.1 Iterative delay and slew evaluation

Ideally, we would like to have a delay evaluation proce-
dure that is as efficient and elegant as Elmore delay while
accounting for resistive shielding and signal slew effects. The
iterative delay estimation procedure of [19] is such a delay
model, used in IBM’s physical design closure tool. The pro-
cedure explicitly considers the signal slew in delay evaluation
and accounts for the interdependence between the input sig-
nal slew of a node and the effective load seen by the node.
However, the procedure is mainly for delay evaluation. In
this paper, we extend it for the purpose of clock tree syn-
thesis by introducing the notion of required slew similar to
the concept of required skew.

Consider the figure 2 of a simple RC network connect-
ing nodes v and a. An input ramp voltage with a signal
transition time of ¢, is applied at the node v. The transi-
tion time at the output node of the RC segment, namely
node a is given by t,. According to Elmore delay, the total
down stream capacitance seen by the node v is C. However,
because of the resistive shielding effect of the resistance R,
only a fraction of the capacitance C' is actually seen by the
node v, which is usually referred to by the name effective ca-
pacitance [19]. According to [19], the value of this effective
capacitance is give as:

Cesf=Kx*C (1)
where K is the scaling factor defined as:

K=1-2z(1-¢ %),

(2)

where x =

voltage

(b)

Figure 2: (a) Definitions of transition times for
nodes v and a. (b) A simple example of RC net-
work.

It should noted that the value of the effective capacitance
seen by node v and the slew rate at v are interdependent.
The output slew rate of the CMOS buffer depends on both
the input slew and the load capacitance [19]. From equa-
tions (1) and (2), the effective load capacitance seen by the
buffer output depends on the slew at the buffer output. This
factor introduces a chicken-egg problem which is addressed
in [19] using an iterative delay evaluation technique.

3.2 Backward propagation of slew

In order to consider the node slews during the clock tree
synthesis, we need to calculate the signal slew rate during
the bottom-up topology generation phase of the DME [6,
17] algorithm. However, by definition, the slew rate at a
child node can be calculated only when the slew rate at
the parent node is known. For example, in figure 2, the
slew rate at node a can be obtained only when the slew
rate at node v is known. An efficient method for obtaining
the transition times at the nodes of the clock tree for a
given transition time at the source node has been proposed
in [19]. Considering the figure 2, the transition time at node
v is given as t,. Given ¢, and the R, C values, the transition
time time at node a can be obtained using the method of [19]
as:
te = t—vl, where ¥ = RC

1—z(l—e"%)

In order to consider the slew during clock tree synthesis,
we would like to get an inverse equation of 3. That is, we
would like to get the value of ¢, for a given value of ¢,. Such
an inverse expression will enable us to consider slew during
the bottom up phase of clock tree synthesis. Such an inverse
expression can be obtained as follows: define a new quantity
called y and using 3, we have:

_RC _ RC(1—a(1—e 7))

ta ty
which can be simplified to
1
y=xz(1-z(1—-e*)) (4)

The plot of equation 4 is shown in figure 3. As it can
be seen from the plot, the value of y reaches a saturation
point after the value of x reaches a value of roughly 20. The
saturation value of y is 0.5, which can also be verified by
applying the Taylor series approximation for the term e
as 1 — i + # Using this approximation in equation 4
will reduce the value of y to 0.5. A key use of the above
observation is that for a given value of x, there is an unique
value of y and vice versa. Thus, when we are given the
required slew value at output node, we can obtain the value
of y, which can be used to uniquely determine the value of
x, which in turn can be used to obtain the required input
slew. In other words, if we have a slew requirement at the
child node a in figure 2, using that we can uniquely obtain
the required slew value at the parent node v. This technique
can be used to build a buffered clock tree with simultaneous
slew considerations in a bottom-up fashion.

4. VARIATION TOLERANT BALANCED
CLOCK TREE SYNTHESIS

In this section, we propose our balanced buffered clock
tree synthesis algorithm. First, we will consider the problem

0 5 10 15 20 25 30 35 40

Figure 3: Plot of x (ratio of RC and input slew)
versus y (ratio of RC and output slew)

of merging two subtrees using the backward slew propaga-
tion algorithm of the previous section. Then we introduce
our novel merging scheme which guarantees the construction
of a perfectly balanced buffered clock tree while simultane-
ously reducing the wirelength.

The high level framework of our algorithm is similar to
the DME based algorithms like [7,17] in which the first step
is the topology generation phase in which different subtrees
are merged recursively based on a merging cost. After all the
subtrees are merged into a single tree, a top down embedding
is done to finalize the locations of the clock tree nodes.

4.1 Subtree merging with backward slew prop-

agation

Consider figure 4 in which two subtrees T; and T} (rooted
at nodes i and j respectively) are to be merged to form a
new subtree T}, with node p as the root. In the traditional
merging, the lengths of segments [, ; and [, ; are determined
in such a way that the Elmore delay from v to the sinks of
both T; and 7T are identical. During this step, the entire
downstream capacitance at nodes ¢ and j are considered.
However, the delay evaluation method of [19] considers only
the effective capacitance at the subtrees T; and Tj; while
determining the edge lengths. The delay from node p to
nodes ¢ and j are given as [19]:

1
D(p,i) = §rcl,2m' + 7l iCet 1 (5)

. 1
D(p,j) = 57“01127,]- +7lp,jCey 2

where, 7 and ¢ are the unit length resistance and capaci-
tance, respectively. Cess1 and Ceyyo are the effective down-
stream capacitances of nodes i and j respectively. It may be
noted that for clock sinks, the value of effective capacitance
is equal to the load capacitance.

In order to balance the effective delays of the two sub-
trees, the following equation must be satisfied:

D; + D(p,i) = D; + D(p, 5) (6)

where D; and D; are the delays from nodes ¢ and j to their
respective sink nodes. The edge lengths I, ; and [, ; can
be obtained by solving equation 6 with the condition that
lpi +1ps = L, where L is the Manhatten distance between
the nodes (or the merging segment of the nodes) i and j.
Wire snaking can be used to match the delays if wirelengths
greater than L is required [17]. Once the appropriate seg-

Figure 4: An example of subtree merger using ef-
fective downstream capacitance

Procedure: FindSlew(T,)
Input: A subtree rooted at node p
Output: The signal transition time limit at p.

1. If p is a sink
tp, = Transition time limit set by user.

return.
. i = LeftChild(p); j = RightChild(p).
ti,t; < Transition time limit at nodes ¢ and j.
Rl =7lp; R2=rlp ;.
Cl= Ceffl 4+ 0.5¢lp,i;C2 = Ceffg + 0.5¢lp, ;.
yl = 81CL. 00 — Rf—]@ (Similar to eqn.2)

t;

. For y1 and y2, obtain the corresponding unique
values of z1 and 2 using eqn.(4).

8. Using z1 and z2, obtain transition time limits

at node p w.r.t nodes ¢ and j as:
4i — R1C1.4j _ R202
P ozl P T x2
N
9. return min(t,,)

N ook wN

Figure 5: Procedure to evaluate the signal transition
values of a node given the transition values of the
child nodes.

ment lengths have determined, the required slew at the par-
ent node p can be calculated using equations (3) to (4).

Figure 5 explains this step in detail. A point to be noted
regarding bottom-up transition time limit propagation is
that, during merging of two subtrees with different transi-
tion time limits, two independent transition limits (one for
each child node) can be obtained for the new root p, denoted
by t; and t{; in the figure 5. Since the transition time limits
are defined as the maximum signal rise time acceptable at a
particular node, we pick only the tighter requirement of the
two. Also, slecting the lesser transition time might impact
the zero skew property within the subtree that has bigger
transition time. However the effect of this is minimal based
on our experimental experience.

Once the required slew information at the root node p is
available, the effective downstream capacitance at node p
can also be calculated as demonstrated in figure 6.

Thus, using the algorithms of figures 5 and 6, we can
merge a give pair of subtrees and obtain the values of slew
and effective downstream capacitance of the new subtree. In
order for this method to be applied in a recursive fashion, the
slew requirements at the clock sink nodes must be predefined
by the user. This can be used during the bottom-up clock
tree construction as shown in the next section.

4.2 Balanced CTS algorithm

As discussed in section 2.2, one of the key disadvantages
with some existing algorithms is the difficulty in getting a
balanced clock tree without a wirelength penalty. We pro-
pose to address this key problem using a novel merging

Procedure: FindEf fectiveCapacitance(Ty)

Input: A subtree rooted at node p
Output: The effective downstream capacitance at node p.

1. If p is a sink
Cesr = Sink load capacitance
return.
. i = LeftChild(p); j = RightChild(p)
Cesf1,Ceyra «— Effective downstream capacitance of 7, j
R1 = rlm; R2 = Tlpyj,
Cl= Ceffl + 0.5Clp’i; C2 = Ceffz + 0.5Clp7j.
tp, = transition time limit of node p

__ R1C1. __ R2C2.
K1 = BCL fj¢9 — R202,

8. Cesy = K1C1 + K202 + 0.5¢(lp,i + 1p,;); return.

NS o

Figure 6: The procedure to evaluate the effective
downstream capacitance recursively.

scheme, which is explained below.

In any merging scheme, node pairs to be merged are se-
lected as per a cost function. In most of the traditional merg-
ing schemes like [6], node pairs that are physically closest are
merged together with the intention of reducing the total wire
length. But, as noted in [17], this might result in excessive
wire snaking when the nodes to be merged do not have sim-
ilar delays. The algorithm in [7] selects the node pairs that
result in the smallest delay after the merger. This generally
results in a more balanced tree. However, the wirelength
consumed is generally more. In [17], the pair that results
in the minimal merging wirelength are merged. Since this
is in some ways similar to the minimum spanning tree algo-
rithm (which at each step selects the new edge with minimal
cost), it results in much a lower wirelength when compared
to the approaches of [6] and [7]. However, as noted in [17],
it might result in an highly unbalanced clock tree. In our
work, we use a modified form of the cost function of [17]
such that a balanced structure is obtained and wirelength is
also reduced.

Top level algorithm: The top-level steps involved in
our buffer insertion flow are given below:

1. Initialize a list F' as an empty list. This list will con-
tain all the flagged, unmerged nodes. A flagged node
is one that cannot be merged with any of the other
unmerged nodes without violating the limit on effec-
tive downstream capacitance (which is the maximum
driving capability of the buffer used).

2. Initialize a list U with the set of all the sink nodes.
This list will store all the unmerged, unflagged nodes.

3. While (Sizeof(U) + Sizeof(F) > 1) Do

(a) (T3, T;) = GetSubTreesToBeMerged(U) using steps
in figure 7.
(b) If (T3, T;) # NULL
i. Merge the subtrees to get a new subtree Tk.
Obtain the values of required slew and Cey sk
for node k using figures 5 and 6.

ii. Remove T3, T; from U.
ili. Add Ty to list U.
(c) else if ((T3,7;) = NULL) AND (Sizeof(U) +
Sizeof (F) > 1)
i. Insert buffers at all the nodes of F'.
ii. Update the values of delay, slew and effective
downstream capacitance for all nodes € F us-
ing the delay characteristics of the buffer.

iii. Move all the nodes in list F' to list U and
empty list F'.

4. Perform top down embedding.

The key step in the above procedure is the step 3(a) which
selects the node pairs to be merged. This step is detailed in
figure 7. For node-pair selection, we use similar cost function
as in [17] with an important change. In [17], a buffer will
be inserted in a node as and when the node downstream
capacitance exceeds a certain limit. But such an approach
will result in an highly unbalanced clock tree.

In our algorithm, we insert buffers only when there is no
node pair that can be merged without violating the effective
downstream capacitance limit. To enforce this requirement,
we maintain two separate lists - one called F' which will have
a list of flagged nodes and another list called U in which
we will store the list of unflagged nodes. For node pair
selection, we consider only the list U. If, for a particular
node ¢ € U, we are not able to identify a suitable node pair
for merger without exceeding the capacitance limit, we add
that node to the list of flagged nodes F' and remove ¢ from
U. We repeat the node-pair selection process until the list U
becomes empty or contains a single element that cannot be
merged with any other node. At that stage, we add buffers
to all the unmerged nodes of F', update their delays, slews
and effective downstream capacitances and transfer all the
nodes to the list U. This cycle continues till there is only a
single clock tree.

Procedure: GetSubTreesToBeMerged(U)
Input: Set of all unmerged subtrees
Output: The two subtrees to be merged
1. PairsFound =0
2. While (PairsFound # 1) AND (Sizeof(U) > 1) Do
(a) T; = subtree with min root-sink delay in U
(b) MergingCost = co
(c) For each subtree T € U and Ty # T;
i. cost = MergingCost(T;, Ty) defined in Fig. 8
ii. if cost < MergingCost
MergingCost = cost; T; = Tj,.
(d) if MergingCost # oo
PairsFound = 1
else
Remove T; from U; Add T; to F.
3. if MergingCost # oo
return (73, T5)
else
Transfer the possible single node € U to list F'.
return NULL.

Figure 7: The algorithm for selecting the subtrees
to be merged.

A minor point that may be noted here is that the MergingCost
algorithm of Figure 8 that is used in the GetSubTreesToBeM erged

returns a value of co when a possible merger of two node
pairs i and j causes the effective capacitance limit to be
violated. Thus, only node pairs that result in a node with
lesser effective capacitance than the preset limit are merged.

Merits of balanced CTS algorithm: An obvious ad-
vantage of the above procedure is that it will, by construc-
tion, result in a perfectly balanced clock tree. This is be-
cause buffers are added only in the step 3(c) of the top-leve

Procedure: MergingCost(T;,T;)
Input: A pair of subtrees
Output: The merging cost of the subtree pair
1. Cost = Total wire length required to merge 7; and T}
2. EDSC = Effective downstream capacitance of the
parent node assuming the merging of subtrees
T; and Tj using steps of figure 6
3. If EDSC < Capacitance Limit
return Cost
else

return oo

Figure 8: The Merging cost for two subtrees.

algorithm in which all the unmerged nodes are buffered. As
a result, the number of buffers from the clock source to every
sink will be the same, thus satisfying one of the important
objectives of our work.

A less obvious advantage of the proposed merging scheme
is that, on the average, all the nodes to be flagged are mostly
in the same ballpark as 1/2 times the effective calacitance
limit used in the figure 8. This results in similar equiva-
lent capacitance loads for all the buffers at a given level.
This helps to a great extent in reducing the actual SPICE
skew. It may be noted here that works of [7,12] also target
the objective of balancing the loads for buffers at a given
level. However, they obtain the balancing by adding exces-
sive wire capacitance, which results in a big increase in total
wirelength. In our scheme, since we merge nodes consider-
ing the wire length cost, our algorithm generally results in
considerably lesser wirelength that [7,12]. Our top-down
embedding after obtaining the topology is identical to the
DME algorithm [6].

5. LINKINSERTION FOR BUFFERED
CLOCK TREES

Recently, a link based non-tree was proposed in [1], in
which cross links are added to an existing clock tree so as
to obtain a non-tree CND. Such a link based non-tree was
shown to be highly tolerant to skew variations with minimal
increase in wire length. An example is shown in figure 9.
Consider the figure 9 (a), in which an unbuffered clock tree
with a single clock driver is shown. In this tree, the sinks
4 and 5 are located physically very close to each other but
still they share no common path other than the clock source
S. As demonstrated in [1], adding a link (shown in dotted
lines) between nodes such as 4 and 5 result in reducing the
effect of variation factors on the clock skew. This is mainly
because the addition of link introduces a redundant clock to
sink path for the sinks. So the variations in these paths will
tend to cancel each other resulting in low skew variability.
In a practical clock tree, many such links needs to be added
so as to sufficiently reduce the skew variability. In [1], the
clock network is divided into a bipartite graph and Minimum
Spanning Tree (MST) algorithm is used selecting the node-
pair selection for link insertion. The cost function for MST
link insertion is the Manhattan distance between the clock
sinks. This helps in reducing the wirelength used for link
insertion.

Limitations of link insertion algorithm of [1] : The
algorithm used in [1] is applicable only to unbuffered clock
networks and cannot be applied to buffered case for the fol-
lowing reasons:

e It considers only the Elmore delay while inserting the
links. While Elmore delay has been shown to have
good fidelity in [1] for the unbuffered clock trees w.r.t
SPICE, the fidelity is poor for a buffered clock tree as
demonstrated in [18].

e Adding links between two sinks driven by different
buffers introduces the problem of multi-driver nets.
For example, in figure 9 (b), the link between nodes
4 and 5 has two drivers, namely buffers A and B. If
the links are not selected considering accurate delays,
then it is possible to insert links between nodes whose
delay values are quite different. As explained in [1],
adding links between node-pairs with vastly different
delays might actually harm the skew between the other
pairs.

e Another concern with multi-driver links is that it might
increase the short circuit power of the clock network.
This is because of the virtual shorting of Vdd and Vss
(Source and Ground) that might occur when one of
the drivers gets turned much ahead of others or vice
versa. For example, in figure 9(b), if the nominal de-
lays of nodes 4 and 5 are vastly different, it means that
buffers A and B will get switched on and off at quite
different times. Because of this, nodes 4 and 5 might
be on opposite voltage extremes (Vdd and Vss) for a
considerable amount of time. This might increase the
short circuit power drastically. By making sure that
the nodes have very similar accurate delay values, we
not only make the skew better, but also reduce the du-
ration of the possible short-circuit power consumption.

Figure 9: An example of link-based non-tree. (a)
Unbuffered case. (b) Buffered case.

Thus, it is clear from the above points that link insertion
for buffered clock tree is a non-trivial problem. In order to
insert links in a buffered clock tree, we required the buffered
clock tree to have a good nominal skew in SPICE. Otherwise,
adding the links might either harm the overall skew between
other node pairs or result in too much short circuit power.
It may be noted here that our buffer insertion algorithm is
especially suited for link insertion because of the balanced
nature of the clock tree and consideration of more accurate
delay models than most existing algorithms.

5.1 Linkinsertion flow

The approach taken by us to address the concerns regard-
ing the algorithm of [1] for link insertion for buffered clock
trees is detailed below:

e We overcome the problem of inaccuracies in Elmore de-
lay by using the same bottom-up clock tree synthesis
flow as in section 4.2. Since we consider both resis-
tive shielding and signal slew, we are able to address
the most important drawback of using Elmore delay,
namely accuracy.

e During node pair selection for link-insertion, we con-
sider both the spatial proximity of the nodes and the
proximity in terms of delays. This enables us to ad-
dress the concerns about excessive short-circuit power.
This approach also makes sure that link addition does
not affect the skew between other sink pairs adversely.
More specifically, we use a modified cost function for
the MST algorithm of [1] by making the link insertion
cost as a weighted function of both link insertion and
accurate delays (obtained using the algorithm of [19])
of the clock tree end points before link insertion. For
example, in figure 9(b), assume that the nodes 4 and 5
have delays that differ considerably and that nodes 3
and 6 have accurate delays very close to each other.
The original algorithm will insert the link between
nodes 4 and 5 because they are the physically clos-
est pairs. However, as discussed above, if the delays
of nodes 4 and 5 differ considerably, then choosing the
link between 3 and 6 will result in a better in terms of
both skew variability reduction and short circuit power
reduction eventhough the link between nodes 3 and 6
is slightly longer than the link between nodes 4 and 5.

The major steps in constructing a linked buffered clock
tree are:

1. Construct a buffered clock tree using the flow described
in Section 4.

2. Obtain the node pairs to be linked using a modified
form of algorithm in [1] with the cost function as weighted
function of link length and proximity of accurate de-
lays for the node pairs. The accurate endpoint delays
are obtained using the algorithm of [19] for delay eval-
uation.

3. Obtain the values of extra capacitances to be added
at the sinks due to link insertion. Since the link po-
sitions are fixed, the amount of extra capacitance to
be added can be calculated once the node pairs have
been selected.

4. Using the link capacitance values as extra load capaci-
tance at the selected sinks, construct another buffered
clock tree with the same topology as the one con-
structed in step(1). This new buffered clock tree will
be equivalent to the first buffered clock tree plus the
link capacitance.

5. Add the link resistances to the new clock tree built
in step (3). As described in [1], adding link resis-
tances does not change the nominal values of skew
once the link capacitances are accounted for. The fi-
nal result will be equivalent to the buffered clock tree
constructed in the first step plus the link capacitance
and link resistances. This is our final buffered, linked
clock network.

6. EXPERIMENTAL RESULTS

In order to verify the variation tolerance of our new buffered
clock tree and the linked buffered clock tree approaches, we
run SPICE based Monte Carlo simulations (500 trials) con-
sidering both interconnect and device variations. We assume
that interconnect width, loac capacitances, device channel
lenght and oxide thickness vary with a Gaussian distribu-
tion with o = 5%. We implemented our algorthms in C++
and experiments were run with a 3.25GHz, 2Gb memory
Linux system. We use the same benckmarks as in [5] scaled
for the paramaters for 90nm technology. We scale both the
load capacitance and the chip area so that the bench marks
are applicable for 90nm technology.

We compare our results with the algorithms in [7] and [17].
We chose these two algorithms for comparison because the
algorithm in [17] will result in a clock tree with greatly
reduced wire length consumption. So it can be a good
benchmark to do the wirelength comparisons. The algo-
rithm in [7], due to its balanced nature, is likely to yield
a good and balanced clock tree with reduced skew variabil-
ity. Thus, comparing our results with these two algorithms
will give us apt benchmarks for both wirelength and skew.
It may be noted that, for the major part, the code for our
algorithms and our implementation for [7,17] are identical
except the merging schemes used. So the difference in run-
time and results can be directly attributed to the different
merging schemes.

Since the results of [17] are expected to yield the minimum
wire length and worst skew (because of its unbalanced clock
trees), we use [17] as the baseline for comparing our results.
The skew variation and resource consumption for [17] are
shown in table 1. While selecting the clock trees for dif-
ferent algorithms, we made sure that all of them meet the
slew requirement of 100ps that we enforced on the clock tree
points. We also made sure that the clock tree with minimal
resources that met the slew criterion was selected for each
algorthm so as to ensure a fair comparison.

Table 2 shows the results of our new algorithms and the
algorithm in [7] scaled in terms of the results of [17] (All the
columns expect the # Buf and CPU have been scaled). The
Method column specifies the method for which results have
been give. We have identified the algorithm of [7] and [17]
as CTS of [7] and CTS of [17] respectively. We identify our
algorithms as CTS and Link+CTS. The wire length con-
sumtion is shown under the column titles WL. The ‘# Buf’
column gives the number of buffers for the particular clock
tree. The NS, WCS and AS denote the ‘Nominal Skew’,
‘Worst Case Skew’ and ‘Average Skew’ in SPICE, the last
two values obtained for 500 trials of Monte Carlo simulations
in SPICE. Finally, the CPU time for completing the clock
tree synthesis (in seconds) is shown in the column CPU. The
important observations from table (2) are as follows:

e From column 2 of table 2, it can be observed that our
buffered clock tree results in comparable wirelength
to that of [17] and much reduced wirelength than [7]
always.

e Asexpected, the skew values for [17] is the worst among
all the algorithms. Also, it can be observed that our
buffer insertion algorithm produces consistently better
results than [7] in terms of skew variability reduction.

e The linked, buffered clock networh has the best skew
variability reduction among all the algorithms. Also,

the percentage of extra wirelength consumed for link
insertion is small and drops heavily as the size of the
clock tree increases. This proves the effectiveness of
link insertion for buffered clock trees.

e The CPU time consumed for the algorithm [17] is the
lowerst while our algorithms yields comparable CPU
times. When compared to the run times of [7], the run
times of our buffer insertion algorithm and the linked
buffered clock network algorithm are much faster.

Thus, it can be said that our algorithms are a fast and
efficient approach to get variation tolerant buffered
clock trees and linked buffered clock tree.

TC WL # Buf | NS | WCS | AS | CPU
rl 25937 16 100 190 76 | 0.06
12 34110 28 96 222 60 | 0.36
r3 34353 36 101 196 52 | 0.71
r4 55115 78 176 | 362 76 | 3.46
r5 | 109722 163 110 226 56 9.4

Table 1: Skew variation and resource consumption
results for the algorithm in [17]

TC | Method WL | # Buf | NS | WCS | AS | CPU
r1 | CIS of [17] | 1.0 16 10 | 1.0 | 1.0 | 0.06
CTS of [7] | 5.219 18 | 057 | 072 | 046 | 1.1
Our CTS | 0.829 18 | 037 | 049 | 0.23 | 0.08
Link+CTS | 1.136 18 | 041 | 045 | 0.16 | 0.18
r2 [CTSof [17] | 1.0 28 10 [10 | 1.0 | 036
CTS of [7] | 7.588 36 | 091] 095 | 091 | 14
Our CTS | 1.836 40 | 0.62 | 0.60 | 0.59 | 0.42
Link+CTS | 1.852 40 | 065 | 039 | 0.37 | 0.52
13 [CTSof [I7] | 1.0 36 10 | 1.0 | Lo | 071
CTS of [7] | 9.627 41 | 059 | 057 | 061 | 44
Our CTS | 1.192 45 | 049 | 054 | 0.51 | 0.78
Link+CTS | 1.395 45 | 0.51 | 0.40 | 0.32 | 0.88
rd [CTSof[17] | 1.0 78 10 [1.0 | 1.0 | 346
CTS of [7] | 12.46 85 | 0.56 | 0.55 | 0.47 | 509
Our CTS | 2.164 83 | 034] 042 | 036 | 3.94
Link+CTS | 2.173 83 | 041] 033 | 025 | 441
t5 [CTSof [I7] | L0 163 | 10 | 1.0 | 1.0 | 94
CTSof [7] | 9.1894 | 174 | 0.79 | 0.55 | 0.49 | 2009
Our CTS | 1.5236 | 183 | 0.46 | 0.38 | 0.35 | 10.12
Link+CTS | 1.588 | 183 | 0.48 | 0.30 | 0.28 | 11.62

Table 2: Skew variation and resource consumption
results for our new algorithms and algorithms in [7]
in terms of resuts of [17] in Table 1

7. CONCLUSIONS

‘We have proposed an effective clock tree synthesis method-
ology for constructing a perfectly balanced clock network
with link addition. The clock network is robust and toler-
ant to varation effects. When compared to existing algo-
rithms, there is as much as 50% reduction in the average
skew in the clock sinks due to variation effects. Also, the
buffer/wire length cost and CPU time is also significantly
less than most of the previous algorithms.

8. REFERENCES
[1] A. Rajaram, D. Z. Pan, and J. Hu, “Improved Algorithms for
Link Based Nontree Clock Networks for Skew Variability
Reduction,” in Proceedings of the ISPD 2005, San Fransisco,
CA, April 2005.

(2]

3

(4]

5]

6]

(7]

8l

(9]

(10]

(1]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

E. G. Friedman, “Clock distribution networks in synchronous
digital integrated circuits,” in Proceedings of the IEEE, vol.
89, no.5, pp.665-692, May 2001.

R. Saleh, S. Z. Hussain, S. Rochel, and D. Overhauser, “Clock
skew verification in the presence of IR-drop in the power
distribution network,” in IEEE Transactions on CAD, vol.19,
no.6, pp.635-644, June 2000.

W.-C. D. Lam, C.-K. Koh, and C.-W. A. Tsao, “Power supply
noise suppression via clock skew scheduling,” in Proceedings of
the IEEE ISQED, San Jose, CA, March 2002, pp. 355-360.
R.-S. Tsay, “Exact zero skew,” in Proceedings of the
IEEE/ACM ICCAD, Santa Clara, CA, November 1991, pp.
336-339.

T.-H. Chao, Y.-C. Hsu, J.-M. Ho, K. D. Boese, and A. B.
Kahng, “Zero skew clock routing with minimum wirelength,” in
IEEE Transactions on CS-ADSP, vol.39, no.11, pp.799-814,
November 1992.

Y. P. Chen, and D.F. Wong, “An algorithm for zero-skew clock
tree routing with buffer insertion,” in Proceedings of the ED €
TC, Pairs, France, March 1996, pp. 230-236.

S. Pullela, N. Menezes, and L. T. Pillage, “Low power IC clock
tree design,” in Proceedings of the CICC, May 1995,
pp.263-266.

J. Chung and C.K. Cheng, “Optimal Buffered Clock Tree
Synthesis,” in IEEE ASIC conference, Austin, TX, Sept. 1994,
pp. 130-133.

A. Vittal, and M. Marek-Sadowska, “Low-power buffered clock
tree design,” in IEEE Transactions on CAD, vol. 16, no. 9,
pp. 965 - 975 , Sept. 1997.

G. E. Tellez, and M. Sarrafzadeh, “Minimal buffer insertion in
clock trees with skew and slew rate constraints” in IEEE
Transactions of CAD, vol. 16, no.4, pp.333-342, April 1997.
A. D. Mehta, Y. P. Chen, N. Menezes, D. F. Wong, and

L. T. Pilegg, “Clustering and load balancing for buffered clock
tree synthesis” in Proceedings of the ICCD, Austin, Tx,
October 1997, pp. 217-223.

Y. Liu, X. Hong, Y. Cai, and X. Wei, “Reliable buffered
clock tree routing algorithm with process variation tolerance”
in Proceedings of the ASIC, October 2003, pp. 344-347.

B. Lu, J. Hu, G. Ellis, H. Su, “Process variation aware clock
tree routing,” in Proceedings of the ISPD, Monterey, CA, April
2003, pp. 174-181.

J. Tai. Yan, C. W. Wu, K. P. Lin, Y. C. Lee, and

T.Y. Wang, “Iterative convergence of optimal wire sizing and
available buffer insertion for zero-skew clock tree optimization”
in Proceedings of Asia-Pacific Conference, December 2004,
pp.529-532.

J. L. Tsai, T. H. Chen, and C. C. P. Chen, “Zero skew
clock-tree optimization with buffer insertion/sizing and wire
sizing” in IEEE Transactions of CAD, vol. 23, no. 4, pp.565 -
572, April 2004.

R. Chaturvedi, and J. Hu, “Buffered clock tree for high quality
IC design” in Proceedings of the ISQED, March 2004. pp.
381-386.

K. Wang, and M. Marek-Sadowska, “Clock network sizing via
sequential linear programming with time-domain analysis” in
Proceedings of the ISPD, Monterey, CA, April 2003, pp.
182-189.

R. Puri, D. S. Kung, and A. D. Drumm, “Fast and accurate
wire delay estimation for physical synthesis of large ASICs” in
Proceedings of the GLSVLSI, New York, NY, April 2002, pp.
30-36.

S. R. Nassif, “Modeling and analysis of manufacturing
variations,” in Proceedings of the IEEE CICC, San Diego, CA,
May 2001, pp. 223-228.

D. Harris, and S. Naffziger, “Statistical clock skew modeling
with data delay variations” in , IEEE Transactions on VLSI
Systems, vol.9, no.6, pp.888-898, December 2001.

Y. Liu, S. R. Nassif , L. T. Pileggi, and A. J. Strojwas,
“Impact of interconnect variations on the clock skew of a
gigahertz microprocessor” in Proceedings of DAC, Los Angeles,
CA,, June 2000, pp.168-171.

