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ABSTRACT

Variability in digital integratedcircuits makestiming verificaion
an extremely challengng task. In this paper, a canaical first or-
derdelaymodé is proposel thattakesinto accaunt both correlated
ard indeperert rardomness A novel lineartime block-basel sta-
tistical timing algarithm is employed to propagatetiming quanti-
tieslike arrival timesandrecuiredarrival timesthrough the timing
graphin this canorical form. At the end of the statisticaltiming,
the sersitivities of all timing quantities to eachof the soucesof
variation areavailable. Excessie sersitivities canthenbe targeted
by manual or autonatic optimizationmethod to improve the ro-
bustnessof the design. This paper alsoreportsthefirstincrenental
statisttal timer in theliteratue which is sutable for usein thein-
ner loop of physicalsynthess or othe optimizationproggams.The
third nowvel contribution of this paper is the computation of local
and global criticality probablities. For a very small costin CPU
time, theprobalility of eachedgeor nodeof thetiming graph being
critical is computed. Numeical restuts are preseted on industrial
ASIC chips with overtwo million logic gates.

Categoriesand Subject Descriptors

B.8.2[Hardware€]: Performareand reliability—Performane Anal-
yssand DesignAids

Geneaal Terms
Algorithms, performance verification
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Statsticaltiming, incremental variability

1. INTRODUCTION AND BACKGROUND

The timing characterisiis of gates andwires tha makeup a dig-
ital integratedcircuit show mary typesof variability. Therecan
be variability dueto manufacturing, due to environmertal factors
swch asVyg andtempeature, and dueto devicefatigue pheromera
suweh aselectronigration, hot electron effectsandNBTI (Negative
Bias Temperaturelnstahility). The variability makesit extremely
difficult to verify the timing of a desigh before committing it to
manufacturing. Nominally sub-critical paths or timing points may
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becomecritical in someregions of the spae of variations due to
excessve sensitvity to one or moresour@sof variation. The goal
of robug design, to first order, is to minimize suchsersitivities.

Traditional static timing mettoddogy is corner-basedor case-
based.e.g.,best-casgvorst-caseandnomind. Unfortunaely, such
amethoablogy may require an exporentialnumbe of timing runs
asthe numbe of indeperdert and significantsoucesof variation
increae. Further, asdescribé in [1], the analysis may be both
pessimitic and risky at the sametime At cornerstha are timed,
worstcase assunptionsare mack which are pessimgtic, whereas,
sinceit is intractableto analyz all possble corrers, the missing
cornersmay leadto failuresdetectedfterthe mandacturingof the
chip. Statisical timing andysisis a solutionto theseproblems.

Statistical timing algorithmsfall into two broad clas®s. Thefirst
is path-basedalgorithmswherein a seleted setof pathsis submit-
tedto the statisttal timer for detailedanalysis. This set of meth-
ods canbe thought of as“depth-first” traversalof the timing gragh.
Path-basedstatstical timing is accuate and hasthe ability to re-
alistically capure correlatiors, but suffersfrom otherweaknesses.
First, it is not clea how to selectpatts for the detailedandysis
sinceone of the pathsthat is omitted may be critical in same part
of the processspace. Secoml, path-tasedstatistcal timing often
doesnot provide the diagrosticsnecessanyto improve the robust-
nessof the design Third, path-tasedtiming does not lend itself
to incrementalprocessig whereby the calling progam makesa
change to the circuit and the timer answersthe timing query in-
cremantally andefficiertly [2]. Finally, path-basd algaithms are
good at taking into accownt global correlatiors, but do not hande
indeperdert rardomressin individual delays. Doping effectsand
gateoxide imperfedions areuswally modeledasuncarelated ran
dom phenomena. In fad, few if any statstical timing attenptsin
the literatue include support for both correlatedand independert
randomress.

The statisticatimerdescribedn this paperbdongsto the seond
classof statistcal timers, naméy block-basedstatistcal times.
Thissetof methalstraverseghetiming graphin alevelized “breadth-
first” mamer. In [3], probability distributions are assumedto be
trains of discreteimpulseswhich are propagatedhrough the tim-
ing gragh. However, correlaions both due to global deperdendes
on the source of variation anddueto path-sharingareignored,as
is the casewith [4]. In this samegener& framework, [5] describs
how correlatiors dueto reconvergent fanout canbe takeninto ac-
count, but not dependerte on global saurcesof variation. In [6],
anapproximate block-basel statisticaltiming analysis algorithmis
describedto redice pessimism in worst-casestatc timing andy-
sis. The corceptof parameterizedielaymodelsis proposal. Re-
certly, [7, 8] focuson handlingspatialcorrelatonsdue to intra-de
variability. Unfortunaely, all thes efforts suffer from sone weak
nesses.First, they do not provide diagnogics tha canbe usedby
a humandesigne or synthesis programto make the circuit more
robust. Secoml, they are notimmediatelyamenableto incremen
tal processing Third, they do nat provide for a generd enaugh
timing mocdel to accanmocdate correlaton due to dependance on



commonglobd soucesof variation independen ranrdormessand
correlation dueto pathsharingor recorvergert fanaut. This paper
describesa statisttal timing algorithm thatpossessethefollowing
strergths.

1. A caronicalfirst-orderdelaymodd is emgdoyedfor all tim-
ing quantities. Themodkel allows for both global correlations
ard indepencdent rancdomress. Thus timing resultssuchas
arrival timesandsladks are alsoavailablein this canaical
form, therebyproviding first-orde sensitvitiesto ead of the
saurcesof variation. Thes diagrosticscanbe usedto locate
excessve sersitivity to source of variationand to targetro-
bustcircuit desigrs by redudng thesesersittivities.

. Thestatsticaltiming algarithm is approximae, but haslinear
complexity in thesizeof thecircuit and thenumberof global
saurcesof variation. The speed of the algaithm and its
block-basednature allow thetod to time very large circuits
ard incremenally respndto timing queaiesafterchargesto
a circuit aremacke. To the bestof the authors’ knowledge,
thisisthefirstincremental statistcal timerin theliteratureor
industry.

. The algaithm compues, with a very small CPU overhead,
locd ard global criticality probabilities which are useful di-
agnosticsin improving the performarte androbustinessof a
design.

2. CANONICAL DELAY MODEL

All gateandwire delaysarrival times,requiredarrival times,slacks
and slews (rise/fall times)areexpresgdin a stardardor canaical
first-orderform below:

n
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whereag isthemeanor nominalvalue, AX;,i =1,2,--- ,nrepregnt
thevariaion of n global sour@sof variaion X;,i =1,2,--- ,nfrom
ther nomind values,a,i = 1,2,---,n arethe sensitvities to each
of the global saurcesof variation, AR; is the variation of aninde-
pencentrandom varialle Ry from its meanvalue and a1 is the
sensitivity of thetiming quantity to Ry. By scalingthe sensitvity
coefficients,we canassunethat X; andR, areunit normd or Gaus-
siandistributionsN(0,1). Not all timing quantities deperd on all

globalsourceof variation;in fac [7, 8] suggestmethalsof model-
ing ACLV (Across-ChipLinewidth Variation)by having delays of
gatesandwires in physically different regions of the chip depend
on differert sets of rancdomvariables. In chipswith voltageislards,
the delayof anindividual gatewill dependonly on the variability
of the power supply of theislard in whichit is physicdly located.

3. THE CONCEPT OF TIGHTNESS PROB-

ABILITY

Given ary two rancdbm variables X andY, thetightnessprobability
Tx of X is the probalility thatit is larger than (or dominates)Y.
Given n random variables, the tightnessprobability of eachis the
probalility that it is largerthanall the othes. Tightnessprobability
is calledbinding probability in [9, 10]. The tightnessprobability
of Y, Ty is (1— Tx). Below we shav how to compute the max of
two timing quartities in canorical form and how to determinetheir
tightnessprohbabilities. Giventwo timing quartities

n
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their 2 x 2 covariancematrix canbe writtenascoyA, B) =

a1 b1
a b
ap a 8 a1 O :
b1 by bh 0 by V] an by @)
a1 O
0  bny

where V is the covariancematrix of the soucesof variation. As-
suming that the X; areindependent randam variablesfor the pur-
posesof illustration V is the unity matrix, and thusco\A,B) =

{ stita? s ab ]:{
Shiab 3R

By comparingtermsin (5) above, oa, og ard the correlation
coefficiert p can be compuedin linear time. Now we seekto de-
terminethe distribution of max(A, B) and thetightnessprabatiliti es
of AandB. We appal to [11, 12] for analytic expresionsto solve
this prodem. Define
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The mea andvarian@ of max(A,B) canalsobe andytically ex-
pressedas

E[max(A,B)] = agTa-+bo(1—Ta) + 60 Lﬁgﬂ] ,
var[maxA,B)] = (0% +a3)Ta+ (08 +b3)(1—Ta)+
(20-+ bo) B0 (5™ ) — {E[max(A,B)]}2.

Thus the tightness probabilities, expeded value and variance of
max(A, B) canbe compued analytically and efficiertly. Similar
formulas can be developed for min(A,B). The CPU time of this
operationincreass only linearly with the number of souces of
variation.

Tightnessprobablilities have an interpretation in the spaceof the
saurcesof variation. If onerancdm variablehasa 0.3 tightnes
probaklity, then in 30% of the weightedvolume of the proces
spaceit is largerthanthe othe variable,and in the other70%, the
othervariableis larger. Theweighting fador is thejoint probability
density function (JPDH of the underlyingscourcesof variation.

(10

4. BLOCK -BASED STATISTICAL TIMING :
THE KEY IDEA

To apply theseideasto static timing, we needprohabilistic equiv-
alerts of the“max,” “min,” “add” and“subtract” opeations. Ad-
dition and sultraction of two quantitiesin canorical form is easy
so we focus hereon the max and min operations Considertwo
edgesof atiming graphthatsuggesttwo arrival timesA ard B ata
node on which they areincidert. Usingthe formulasof the previ-
ous sectdn, we seek to expressC = max(A, B) backinto canorical
form for further correlatedpropagaion through the timing gragh.
The corceptof tightnessprobalility helpsusin this difficult step.
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Figure 1. Sample circuit.

From (9) and (10), we know the meanandvarianceof C. In tradi-
tional static timing, C would take the value of the largerof A and
B, andfor all downstreanpurposs,the characterists of thedom-
inant edgethatdeterminedhearrival time C arepresered, and the
otheredgeis ignored This is like having a tightnesgprobaility of
100% and 0%. In the probabilistic domain, the characteristicof
C aredetermiredfrom A andB in the proportion of their tightness
probabilities. Thusif the probablities were0.75 and 0.25, thesen-
sitivities of A andB would be linearly combinedin a3: 1 ratio to
obtainthesensitvities of C. Mathematically

Ci:TAai“‘(l_TA)bivi:1!21"'7n$ (11)

whereT, is thetightnessprobability of A.

The meanof the distribution of max(A,B) is presened when
converting it to canaical form. The only remaining quantity to
be compued is the indeperdertly rancdom part of the resdt. This
is doneby matching the variarce of the cananical form to the vari-
ance computedandytically from (10). Thusthe first two moments
of the real distribution are alwaysmatchedin the canorical form.
Interestingly, the coefficierts computedin this manrer presene the
correct correlationto the global soucesof variationassuggesed
by [11] andare similar to the coeflicientscomputedin [7].

The maxof two Gaussiaais nat a Gaussianbut we re-express
it in the caronical Gaussiarform andincur an accurag penaltyfor
doing so. However, this stepallows usto keepalive and propagate
correlations due to dependenceon the global soucesof variation,
which is absolutelykey to perfaming timing in arealisticfashon.
Monte Carlo resultswill be shown in the resultssection to as®ss
theaccuragy of this methal.

Whenmorethantwo edgesof the graph corverge at a node, the
max or min operationis condwctedone pair atatime, justaswith
deterministe quantities. The tightnessprobalilities aretreaed as
conditional prohabilities and postprocessd to compute the final
tightnessprobability of each arc incident on the node whose ar-
rival timeis beng compued. As moreequally critical signds are
max’ed, accuragy degracesslightly sincethe asymmetryin there-
suting probability distribution increass, making it harder to ap-
proximatein caronicalform.

Slews (rise/fall times)arepropagaed in much the samemamer.
If the policy is to propagateheworstslew, then aseparatetightness
proballity is compued for the slews and apgied to representthe
bigger slew in caronicd form. If the policy is to propagatethe
latestarriving slew, thenthesamearrival tightnesgprobabilitiesare
applied to comhbine theincoming slews to obtainthe output slew.

In this manne, by repacing the “plus; “minus; “max” and
“min” operationswith probabilistic equivalents andby re-expressing
theresut in a carpnical form after eachoperation,regular static
timing canbecarried out by astandirdforwardandbackwardprop-
agdion through the timing graph [13]. Early ard late mode sep-
arae rise andfall delays,sequertial circuits and timing tests are
therefore easily acommalatedjust asin traditionaltiming araly-
sis.

5. CRITICALITY COMPUTATION

The methals presentedn the previous sedion erable statistical
timing andysis,duringwhichtheconcep of tightnesgprobability is
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Figure 3: Backward traversal of the timing graph.

leveragedto propagatearrival andrequiredarrival timesin a para-
metric canorical form. In this section, the useof tightnessproba-
biliti esin computing criticality probabilities[14] is presentedOne
of theimportantoutcomesof determirstic timing is the ahlity to
find the mostcritical path. In the statistical domain,the coneptof
themost critical pathis probabilistic. The criticality probability of
apathis the probability thatthe pathis critical; the criticality prob-
ahility of anedgeistheprobalility thatthe edgeliesalongacritical
path; andthecriticality probability of anoce is the probability that
acritical path pasesthroughthat node. Compuing theseprobabil-
itieswill obviously have importarn benefitsin enumeratingcritical
paths, enabling robust optimizaion andgeneratingestvedors for
at-spedtest.

5.1 Forward propagéaion
Theideasbelind criticality compuations are descibed by mears
of an examge. Conrsiderthe combinatioral circuit of Fig. 1. In
thisexampe, sepaate rising andfalling delaysandslew effectsare
ignoredfor simgicity, but the ideas canbe extendedin a straight-
forward manne. Likewise,sequertial circuitsposenospecal prob-
lem. The exanple assumeslate-male timing, but ealy-modefol-
lows the samerea®ning

The timing graphof the circuit is shavn in Fig. 2. During the
forward propagation phaseof timing aralysis,eachedgeof thetim-
ing graphis anndated with anarrival tightnes probability (ATP),
whichis the probability thatthe edgedeterminesheariival time of
its sinknode. The ATPs in this examge have beenchosen arbitrar-
ily, andare shown atthetail of ead edge of thetiming gragh. Once
theprimaryoutpus arereached avirtual output edgeis addedfrom
ead primary output to a sink node, shavn asedgesG ard H in
Fig. 2. Eachsuchedg is consideredto have a dday equal to the
negaive of the as®rted requiredarrival time at the correspording
primaryoutput. In the presene of timing tegs (suchassetup hold
or clock pulsewidth tests),a virtual edyeis addedto the sink node
whaosedéday is the negaive of the compued required arrival time.
Thenthe stardardforward propagdion procedue is cortinued to
computethe “arrival time” of the sink of the gragh, and the ATPs
of the virtual output edges. In this cas, for illustration purposes,
the ATP of eachof thevirtual output edgesis 0.5.

Property 1: The sum of the ATPsof all edgesncident on any



Figure 4: Sourcenode of the timin g graph.

nodeof thetiming graphiis 1.0.

Property 2: The probability of a path being criti cal is the
product of the ATPsof all edgesalong thepath. Forpath2B5E6GS
to becritical, for examge, edgeB hasto determinethearrival time
of node 5 (proballity=0.5), edgeE hasto determire the arrival
time of node 6 (probaklity=0.6) and edge G hasto determire the
arrival time of noce S (probability=0.5), for a total probability of
0.15, assumingndependencebetweertheseeverts.

Property 3: The sum of the criti cality of all pathsin atiming
graph is 1.0.

5.2 Backward propagation

Fig. 3 shavsthe criticality calcuations during the badkwardpropa-
gationphaseof timing analysis.During the backwvard propagaton,
we will compute the globd criticality of eachedgeand eachnode
of thetiming graph, and the required arrival tightness probability
(RATP) of eachedge of the timing graph which is the probabil-
ity thatthe edgedetermineghe requiredarrival time of its souce
node

Property 4: The sink node hasa node criticality probability
of 1.0. This propertyis obvious sinceall pathsmust passthrough
the sink node. The sum of the ATPs of the virtual output edgesis
thereforealso1l.0.

Starting with the sink node S, the backward propagationfirst
considas edgesG andH. They each have a 0.5 edge criticality
sincethey eachdeterminehe arrival time of Swith 0.5proballity.
Thecriticality of nodes6 and 7 arelikewise0.5each

Property 5: The criticality of an edge is the product of its
ATP and the criticality probability of its sink node. Clearly
an edge is globally critical only if its sink nodeis critical and it
determineghearrival time of tha sink node

Property 6: The criticality of a nodein the timing graph is
the sum of the criti cality of all edgesleaving that node. Using
the above two properties, the criticalities of edgesand nodesare
easily computedduring alevelizedbackvardtraversalof thetiming
graph,andareshown in Fig. 3. The criticality compuatons can
piggy-back on top of the usial required arrival time cdculations.
Note thatthe criticality of edge A, for example,is the produd of
the criticality of node 6 (0.5) ard the ATP of edge A (0.4). The
criticality of node5, for examge, is the sumof the edge criticalities
of edgeskE andF.

Property 7: The sum of the node criti calities of all the pri-
mary outputs is 1.0. For generalseqential circuits, this property
would apply to all slack-deermining end-points (primary output
and timing testpoints).

Property 8: The criticality of any nodein thetiming graph is
the sum of the path criticaliti es of all pathsin its fanout cone.
For example,noce 5 has two pathsin its fanout cone pah 5E6GS
with a path criticality of 0.3and path 5F7HS with a pathcriticality
of 0.5, totalingto a nock criticality of 0.8for node 5.

As the backwvard propagationprogreses,required arri val tight-
nessprobabilities (RATPs) are computedand anndated on to the
timing graph Theseprobabilities are shavn close to the souce
nodeof eachedgein Fig. 4.

Property 9: The sum of the RATPs of all edgesorigin ating at
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any node of the timin g graph is 1.0. At anode suchas 5 where
therearemultiple fanait edges the RATPswill bein the proportion
of theedgecriticality probabilitiesof the downstreamredges.When
the primary inputs are reache during backward traversal,a nev
node of thetiming graphcalled the sourcenock is podulated, with
virtual input edges from the saurce node to eachof the primary
inputs, shavn asedgesl, J,K andL in Fig. 4. Each virtual input
edgeis corsideredto have a delayequalto the arrival time of the
correspording primary input, and the recuired arrival time of the
saurcenodeis computed. During this computation,the RATPs of
thevirtual edgesarealsodetermined

Property 10: The ATPs of each of the virtu al input edgesis

0

Property 11: The criticality of the source nodeis 1.0. This
propertyis obvioussince every path paseshrowghthe saurcenode.

Property 12: The sum of the node criticaliti es of all the pri-
mary inputsis 1.0.

Property 13: The sum of the edgecriticalities of the virtu al
input edgess 1.0asis the sum of their RATPs.

Property 14: The criticality of any path is the product of
the RATP of all edgesof the path. Thus the criticality of path
S0J2BE6GSis 0.4 x 1.0x 3/8x 1.0 =0.15.

Property 15: The product of the ATPs along any path of the
graph is equalto the product of the RATPs.

Property 16: The criticality of an edge is the sum of the crit-
icality of all pathsthr oughthat edge.

Property 17: The sum of the edgecriticaliti es of any cutsetof
the timing graph that separates the source from the sink node
is 1.0. In other words, any cut throuch the graphthat leavesthe
saurce node on one side ard the sink node on the other will cut
edgeswhosecriticality probabilitiessumto 1.0. This mustbe the
ca® since every critical pathwill have to passthrough exactly one
edge of thecutset.

It is importart to note that the edge and node criticalities can
be compued on a global basis,or on a perendpoint basis,where
an endpoint is a slack-ceterminingnode of the graph (a primary
output or eitherendof atiming testsegment). The applicationwill
dictatewhich type of computation is more efficiert ard suitable.

5.3 Path enumeration

Enurreratbn of pahsin orderof criticality probahlity is usefulin
a numbe of differentcontexts, suchasproducing repats, provid-
ing diagnosticsto the use or asynthesisprogram, listing pathsfor
test purposes, listing paths for CPPR (Comma Path Pessimsm
Remaval) purposes[15], and enuneratingpathsfor aralysisby a
pah-basedstatistcal timer [10]. One straighforward manrer of
erumeratingpathsis by mears of a breadth-firstvisiting of the
nodesof anaugnentedgragh asshown in Fig. 4, while following
the urvisited node with the highestcriticality probability at each
juncture. A running total of the criticality probébility of thelisted
paths is maintaired, ard the path enuneraton stops when the set
of critical paths hasbeen covered with a certaincorfidence

Duringthepathenumerationthefollowing properties areuseful.

Property 18: The ATP of an edge is an upper bound on the
criticality of any path that passeghrough that edge.

Property 19: The RATP of an edgeis an upper bound onthe
criticality of any path that passeghrough that edge.

Property 20: The criticality probability of an edgeis an up-
per bound on the criticality of any path that passsthrough
that edge.

Property 21: The criti cality probability of anodeis an upper
bound on the criticality of any path that passeshrough that
node.

6. INCREME NTAL STATISTICAL TIMING

Optimizationor physical syntresis progamsoften call anincre-
mertal timer millions of timesin their inner loop. To suit this
purpose a statistcal timer need to incrementally and efficiertly
arswertiming queriesafteroneor more changesto the circuit has
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Figure5: Incrementaltiming analysis.

beenmace.

Corsider the situation shown in Fig. 5. Assumea single change
has beenmack to the circuit at the location shown. The change
could betheaddition of a buffer, theresizirg of agate,theremoval
of alatch, andso on. Assumethat the cdling progam queries
the timer for the arrival time at the “L ocationof AT query” point.
Clearly, only the arrival timesin the yellow cone of logic change
(on black-ar-white hardopies,the lightestgrey region). Further
only arrival time changes in the fanin cone of the query point can
have an effect on the query. The intersection of thesetwo cores
of logic is shown in green (or the darkergrey region). Thusby
purely topologcal reasming, the portion of the circuit that must
be re-timedto answerthis quey is limited This kind of limit-
ing is calledlevel-limiting and is accomplishel by storingAT, RAT
ard AT-RAT levelsfor eachgate[2]. The levelization andlimiting
procediresareidentical for the statistical timing situation,and the
implementationcaneasilyride on top of an existing deterministic
incrementakapaility.

In additiond to level-limiting, theamount of re-canpuation can
be further reduced by dominance-limiting. Considerthe NAND
gateshown in Fig. 5. One input of the NAND gateis from the
“charged” cone of logic andthe othe from an unchangel region.
If the arrival time at the output of the NAND gateis unchaaged
becaseit wasdeterminedbath beforeandafterthe change by the
side input, thenthe fanou cone of the NAND gate(shown in dark
black in Fig. 5) canpotentially be skippedin answeringhe query.
Thistypeof limiting is calleddominance-limiting. In our statistical
timer, thenotionof “charge”is treatedprobabilisticaly by examin-
ing the tightnessprobabilities. If the ATP of the side inputis suffi-
ciently closeto 1.0both beforeand after the change, then thearrival
time of the output of the NAND gateneal not berecomputed,and
its fanout conecan potentially be skipped until some other input
of thatfanaut coneis known to have materially charged Similar
concepts are applicade during backwerd propagaton of required
arrival times.

Of course,thereare severd comgicatons that must be faced
in a real applicationsuch as slew propayation, latches, multiple
clock phasesand phasecharges, and the dynamic adaptationof
datastructuresto suchchangs. Thesedetals are omitted due to
lack of space.

7. IMPLEMENTATION

Theabove ideashave beenimplementedn aprototype calledEins-
Stat. EinsStat isimplemened on top of the statictiming aralysis
programEinsTimer in C++ with TCL scriptingunder Nutshell.
Multiple clock phases,phase renaming rule tests(suchas setup
and hold tests),automatic tests(suchas clock gating, clock pulse
width andclock inactive tests) arbitrarytiming assertonsand tim-
ing adjustsanywheren the timing graph and clock overrides are
suppated asin EinsTimer. Thetimer workspermanertly in incre-
mentalmode[16], even if aconpletetiming reportis requested.
Eachtiming assetion, gatedelay wire delay and timing test
guardtime mustbe modeledin canorical form, i.e., with a mean
part, a deperdene on global saurcesof variation and anindepen-
dentrandm portion. The EinsStat implementation allows each
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Figure 6: EinsStat vs.Monte Carlo analysison chip “A.”

gateandeach wire to have its own customizedvariability model,

providedthe model canbe expressedn the canorcal form. For

testingpurposes, however, three globd saurcesof variation were
implemented. The first is gatevs. wire delays. Each of thesesets
of delayscanhave anindegendentand correlatedvariahility, and
a mistrack coeficient. In the caseof gate vs. wire delays, mis-
trackimpliestha whengatesgetfaster, wires get slower, andvice
versa and in general expressesorrelatiors betwea the two sets
of delays. The secom supmrtedglobal souce of variaton is rise
vs. fall delays of gates(to model N/P mistrack due to mandactur

ing variations or fatigue effects). Again, each of thee canhave a
random and correlatedpart and a mistrackcodficiert. The third

suppated saurceof variation is meantsimilarly to study mistrack
betweennormal Vt and low Vt gates.In thebendmarkresuts pre-
serted in thenext section, sersitivitiesto thesethreeglobd source
of variationwere providedin a blarket fashi;m asa percenage of

the nominal delay. EinsStat supports TCL commartsto expres
a situationin which, for example,“all normd Vt gateshave a 1%
indeperdert rardomressand a4% correlaked variability, all low Vt

gateshave a 2% indepencentrandomressand 5% correlatedvari-

ahility, and the two setsof variations mistrackwith respectto each
other”

8. NUMERICAL RESULTS

A setof industrial ASIC designswastimedwith 3 global soure@sof
variation aswell asindependentrancdomressbuilt into every edge
of thetiming graph. The berchmarkresuts areshavn in Table 1,
in whichthechipsarecode namel A, B, etc., to presere confider
tiality. “Propagatesggments”is the numker of edgesin the timing
grgph with unique saurce-sinkpairs of nodes. “Load” is the CPU
time to load the netlist, timing rules and assertions:“EinsTimer”
is the CPU time of the deterministc basetimer, while the “Eins-
Stat” columnshows the CPUtime taken whenthe statisticaltimer
runs alongside (andin addition to) the deterministidimer. All CPU
timesweremeasure@dnanIBM Risc/System6000 model 43P-S85
on a single processor All timing runsincluded forward propaga-
tion of earlyard latearrival times,andreversepropagaion of ealy
ard late required arrival times. Similarly, the memay corsump
tion to load eachdesign, assertons and delay modds (Base), run
deterministic timing (EinsTimer) and statistical timing alongside
(ard in additionto) deterministic timing (EinsStat) are shawvn in
subseqent columrs of Tade 1. The CPU and memoryoverhead
of statisticaltiming arevery reasmalle, consideringthe wealthof
additional databeing gererated.In the smalltestcaseA, memory
consunption wasdominaed by the dday models,sothe overhead
dueto statisticatiming wasdwarfed.In testca® E, thelargerover-
head wasdue to nodesin the timing graphhaving extremelyhigh
incidencedue to SoCtiming macronodds.

The statistcal experimentavereperformedboth with ard with-
out criticality computations, andthe CPU time and memoryover-
headwereobsened to be nearlyidentical(within 1%),lendng cre-
denceto theefficiencgy of thecriticality computatiors.

The primary god of EinsStat is to produce timing resuts in a



Table 1: CPU and memory resuts.

Name Gates Clock Propagate CPUtime (secs.) Memay (MB)
domains | segments || Load [ EinsTimer [ EinsTimer || Base| EinsTimer | EinsTimer
+ EinsStat + EinsStat
A 3,082 2 17579 51 2.8 3.8 111 53 60
B 183186 79 959,70 140.5 121.3 1876 423 177 723
C 1,085,034 182 5,799,546 || 51315 809.9 1233.1 3200 600 4300
D 1,213361 18 6,969,880 || 783.5 10M™.3 1485.7 2990 1160 4380
E 2,095,176 51 13,480,759 14949 1316.9 2724.3 4590 3320 11330

parameterizedorm, ard thereforeto give the desigrer information
regardng the robustnessof the desiqn. However, EinsStat pro-
ducesthesetiming resultsasrancdbm variablesandthe correctress
of the mean and spreadof thes randam variablescanbe verified
by MonteCarlo andysis. To rencertheanalyss tractable, EinsStat
makesa numberof assumpions that preventit from obtainirg the
exactreallt. Inaccuragy cregsin every time the probablity dis-
tribution resulting from a max or min operationis re-expressedn
canorical form. Specifically, the max or min of two Gaussiands
not Gaussianbut EinsStat forcesit back into aGaussiariorm. The
extentof theseinaccuaciesis revealedby MonteCarloanalysis.

Test chip “A” (3,042logic gates)was usedto demongrate the
importanceof global correlatons,and to compareEinsStat results
with Monte Carlo resuts. The critical pathin this chip is along
combinaional path passingthrough abaut 60 stagesof logic, with
a nominal dday of 23.06ns including wire delay With 5% cor-
relatedvariability on every gateandwire delay the longestpath
delayis 23.01 nswith ac of 0.9 ns. With 5% independentvariabil-
ity onevery gate andwire delay thelongestpah delay is 23.62 ns
with a g of 0.13ns. Clearly, with moreindepemert randonmess,
there is more carcellation of variability alorng a long path yield-
ing a tighter distribution but with a more pessimistt mean The
correlatedcaseproducesa more optimistic meanpath delay, but
with a much bigger spread.EinsStat allows the modeling of these
extreme situationsandanythingin-between.

Test chip “A” was analyzd both by EinsStat and by Monte
Carloanalysiswith 10,0® samples.Of the47,08 unique slacksto
choosefrom, the comparisonis shown on onerepresatative slack,
that of the nominally critical endpoint. Fig. 6 shavs the compa-
ison between EinsStat andMonte Carlo. The meanvalue,spread
ard tails arepredcted with reasmalie acaurag). The MonteCarlo
analysisrequired 14 hoursof CPU time, while EinsStat required
18 secomisonthe samecomputer.

A repaveringexperimert onchip“A” wasusel to evaluaeincre-
mental operaton of EinsStat. For each of 493 gateswith negative
slac, the gate power level (size)wasmadified, and EinsStat was
queriedfor the new slackon eachpin of the modified gae. Incre-
mental EinsStat was6 timesfasterthannon-inaementalEinsStat
with idertical results. For large designsand for differenttypes of
changesandquerieswe expectthe run time improvement obtained
by incremeral processingo be quite dramatic.

9. FUTURE WORK AND CONCLUSIONS

This paperpresentsanowel statisticatiming algorithmwhich prop-
agdesfirst-orcer sensitvities to global sourcesof variationthrough
atiming graph Each edge of the timing graph is modeled by a
canorical dday model that permits globd dependenceaswell as
independert randamness. The timing resuts are presentedn a
parametricform, which canhelp a desigier or optimization pro-
gram target robustnessin the design A novel theoreticalframe-
work for computing locd andglobd criticality probabilitiesis pre-
sented, thus providing detailed timing diagrosticsat a very small
costin runtime.

The following avenwesof future work sugyestthemseles The
assumptionof linear deendenceof delayon eachsouce of varia-
tion is valid only for smadl variations from nominal behavior. Ex-
terding the theoryto hardle genea nonlinearmodds andasym-

metric distributionswould be a big stepforward Secmd, theim-
pact of variahility of input slews and output loadson the delay
of timing graphedgescanbe chainruled into the caronicd delay
model assuggestedn [6]. Finally, the criticality computationsin
this pager assumendepanderce betwee the criticality probabili-
ties of any two patls, anassunption thatis valid to first order, but
not quite corred. Exterding the theoryto remove dependenceon
this assunption is a challengingtask.
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