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ABSTRACT
Variability in digital integratedcircuits makes timing verification
an extremely challenging task. In this paper, a canonical first or-
derdelaymodel is proposed thattakesinto account bothcorrelated
and independent randomness.A novel linear-timeblock-based sta-
tistical timing algorithm is employed to propagatetiming quanti-
ties like arrival timesandrequiredarrival timesthrough thetiming
graphin this canonical form. At the end of the statistical timing,
the sensitivities of all timing quantities to eachof the sourcesof
variation areavailable. Excessive sensitivitiescanthenbe targeted
by manual or automatic optimizationmethods to improve the ro-
bustnessof thedesign. Thispaperalsoreportsthefirst incremental
statistical timer in theli terature which is suitable for usein thein-
ner loopof physicalsynthesis or other optimizationprograms.The
third novel contribution of this paper is the computationof local
and global criticality probabiliti es. For a very small cost in CPU
time,theprobability of eachedgeor nodeof thetiming graph being
critical is computed. Numerical results are presented on industrial
ASIC chips with over two million logic gates.

Categoriesand Subject Descriptors
B.8.2[Hardware]: Performanceandreliability—PerformanceAnal-
ysis and DesignAids

General Terms
Algorithms,performance, verification

Keywords
Statisticaltiming, incremental,variability

1. INTRODUCTION AND BACKGROUND
The timing characteristics of gates andwires that makeup a dig-
ital integratedcircuit show many typesof variability. Therecan
be variability dueto manufacturing, due to environmental factors
suchasVdd andtemperature,and dueto devicefatiguephenomena
such aselectromigration, hot electron effectsandNBTI (Negative
Bias TemperatureInstabil ity). The variability makesit extremely
difficult to verify the timing of a design before committing it to
manufacturing. Nominally sub-critical paths or timing pointsmay
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becomecritical in someregionsof the space of variations due to
excessive sensitivity to oneor moresourcesof variation. The goal
of robust design, to first order, is to minimize suchsensitivities.

Traditional static timing methodology is corner-basedor case-
based,e.g.,best-case, worst-caseandnominal. Unfortunately, such
a methodology may require an exponentialnumber of timing runs
asthe number of independent and significantsourcesof variation
increase. Further, as described in [1], the analysis may be both
pessimistic and risky at thesametime. At cornersthat are timed,
worst-caseassumptionsaremade which arepessimistic, whereas,
sinceit is intractableto analyze all possible corners, the missing
cornersmay leadto failuresdetectedafterthemanufacturingof the
chip. Statistical timing analysisis a solutionto theseproblems.

Statistical timing algorithmsfall into two broad classes.Thefirst
is path-basedalgorithmswherein a selected setof pathsis submit-
ted to the statistical timer for detailedanalysis. This set of meth-
odscanbe thought of as“depth-first” traversalof the timing graph.
Path-basedstatistical timing is accurate and has the ability to re-
alistically capture correlations, but suffers from otherweaknesses.
First, it is not clear how to selectpaths for the detailedanalysis
sinceone of thepathsthat is omittedmaybecritical in somepart
of the processspace. Second, path-basedstatistical timing often
doesnot provide the diagnosticsnecessaryto improve the robust-
nessof the design. Third, path-basedtiming does not lend itself
to incrementalprocessing whereby the calling program makesa
change to the circuit and the timer answersthe timing query in-
crementally andefficiently [2]. Finally, path-based algorithmsare
good at taking into account global correlations, but do not handle
independent randomnessin individual delays. Doping effectsand
gateoxide imperfections areusually modeledasuncorrelated ran-
dom phenomena. In fact, few if any statistical timing attempts in
the li terature include support for both correlatedand independent
randomness.

Thestatisticaltimerdescribedin thispaperbelongsto thesecond
classof statistical timers, namely block-basedstatistical timers.
Thissetof methodstraversesthetiminggraphin alevelized“breadth-
first” manner. In [3], probabili ty distributions areassumedto be
trainsof discreteimpulseswhich arepropagatedthrough the tim-
ing graph. However, correlationsbothdue to global dependencies
on the sources of variation anddueto path-sharingareignored,as
is thecasewith [4]. In this samegeneral framework, [5] describes
how correlations dueto reconvergent fanout canbe takeninto ac-
count, but not dependence on global sourcesof variation. In [6],
anapproximate block-based statisticaltiming analysis algorithmis
describedto reduce pessimism in worst-casestatic timing analy-
sis. The conceptof parameterizeddelaymodelsis proposed. Re-
cently, [7, 8] focusonhandlingspatialcorrelationsdue to intra-die
variability. Unfortunately, all these efforts suffer from some weak-
nesses.First, they do not provide diagnostics that canbe usedby
a humandesigner or synthesis programto make the circuit more
robust. Second, they arenot immediatelyamenableto incremen-
tal processing. Third, they do not provide for a general enough
timing model to accommodatecorrelation due to dependence on
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commonglobal sourcesof variation, independent randomnessand
correlati� on dueto pathsharingor reconvergent fanout. This paper
describesastatistical timing algorithm thatpossessesthefollowing
strengths.

1. A canonicalfirst-orderdelaymodel is employedfor all tim-
ing quantities. Themodel allows for bothglobal correlations
and independent randomness. Thus timing resultssuchas
arrival timesandslacks arealsoavailable in this canonical
form, therebyproviding first-order sensitivitiesto each of the
sourcesof variation. These diagnosticscanbe usedto locate
excessive sensitivity to sources of variationand to targetro-
bustcircuit designsby reducing thesesensitivities.

2. Thestatisticaltiming algorithm isapproximate,but haslinear
complexity in thesizeof thecircuit andthenumberof global
sourcesof variation. The speed of the algorithm and its
block-basednature allow the tool to time very largecircuits
and incrementally respondto timing queriesafterchangesto
a circuit aremade. To the bestof the authors’ knowledge,
this is thefirst incrementalstatistical timer in theliteratureor
industry.

3. The algorithm computes, with a very small CPU overhead,
local and global criticality probabilitieswhich are usefuldi-
agnosticsin improving the performanceandrobustnessof a
design.

2. CANONICAL DELAY MODEL
All gateandwire delays,arrival times,requiredarrival times,slacks
and slews (rise/fall times)areexpressedin a standardor canonical
first-orderform below:

a0
� n

∑
i � 1

ai∆Xi
�

an� 1∆Ra � (1)

wherea0 is themeanor nominalvalue,∆Xi � i � 1 � 2�������	� n represent
thevariation of n globalsourcesof variation Xi � i � 1� 2�������
� n from
their nominal values,ai � i � 1 � 2�������
� n arethesensitivities to each
of theglobal sourcesof variation, ∆Ra is the variation of an inde-
pendent random variable Ra from its meanvalue and an� 1 is the
sensitivity of the timing quantity to Ra. By scalingthesensitivity
coefficients,wecanassumethatXi andRa areunit normal or Gaus-
siandistributionsN � 0� 1� . Not all timing quantities depend on all
globalsourcesof variation;in fact [7, 8] suggestmethodsof model-
ing ACLV (Across-ChipLinewidth Variation)by having delays of
gatesandwires in physicallydif ferent regions of the chip depend
on different setsof randomvariables.In chipswith voltageislands,
thedelayof an individual gatewill dependonly on thevariability
of thepower supply of the island in which it is physically located.

3. THE CONCEPT OF TIGHTNESSPROB-
ABILITY

Given any two randomvariablesX andY, thetightnessprobability
TX of X is the probability that it is larger than (or dominates)Y.
Given n random variables, the tightnessprobability of eachis the
probabil ity that it is largerthanall theothers. Tightnessprobability
is calledbinding probability in [9, 10]. The tightnessprobability
of Y, TY is � 1  TX � . Below we show how to compute themaxof
two timing quantities in canonical form andhow to determinetheir
tightnessprobabilities.Giventwo timing quantities

A � a0
� n

∑
i � 1

ai∆Xi
�

an� 1∆Ra � and (2)

B � b0
� n

∑
i � 1

bi∆Xi
�

bn� 1∆Rb � (3)

their 2 � 2 covariancematrix canbe written ascov� A � B���

a1 a2 ����� an an� 1 0
b1 b2 ����� bn 0 bn� 1

�
V �

a1 b1
a2 b2
...

...
an bn

an� 1 0
0 bn� 1

� (4)

where V is the covariancematrix of the sourcesof variation. As-
suming that the Xi areindependent random variablesfor the pur-
posesof illustration, V is the unity matrix,and thuscov� A � B���

∑n� 1
i � 1 a2

i ∑n
i � 1aibi

∑n
i � 1aibi ∑n� 1

i � 1 b2
i

� σ2
A ρσAσB

ρσAσB σ2
B � (5)

By comparing termsin (5) above, σA, σB and the correlation
coefficient ρ can becomputed in linear time. Now we seekto de-
terminethedistributionof max� A� B� and thetightnessprobabiliti es
of A andB. We appeal to [11, 12] for analytic expressionsto solve
this problem. Define

φ � x��� 1�
2π

exp �� x2

2
� (6)

Φ � y��� � y� ∞
φ � x� dx (7)

θ � � σ2
A
� σ2

B  2ρσAσB � 1� 2 � (8)

Then, theprobability thatA is largerthanB is

TA � � ∞� ∞

1
σA

φ
x  a0

σA
Φ

x � b0
σB

 ρ x � a0
σA

1  ρ2
dx

� Φ
a0  b0

θ � (9)

The mean andvariance of max� A� B� canalsobe analytically ex-
pressedas

E
�
max � A � B���
� a0TA

�
b0 � 1  TA � � θφ a0

� b0
θ �

var
�
max� A � B���	��� σ2

A
�

a2
0 � TA

� � σ2
B
�

b2
0 ��� 1  TA � �� a0

�
b0 � θφ a0

� b0
θ  � E �max� A� B���"! 2 �

(10)

Thus, the tightness probabilities, expected value and variance of
max� A� B� can be computed analytically and efficiently. Similar
formulas canbe developed for min � A � B� . The CPU time of this
operation increases only linearly with the number of sources of
variation.

Tightnessprobabil ities havean interpretation in thespaceof the
sourcesof variation. If one random variablehasa 0.3 tightness
probability, then in 30% of the weightedvolume of the process
spaceit is larger thantheother variable,and in the other70%, the
othervariable is larger. Theweighting factor is thejoint probability
density function(JPDF) of theunderlyingsourcesof variation.

4. BLOCK -BASED STATISTICAL TIMING :
THE KEY IDEA

To apply theseideasto static timing, we needprobabilistic equiv-
alents of the “max,” “min,” “add” and“subtract” operations. Ad-
dition and subtraction of two quantitiesin canonical form is easy,
so we focus hereon the max and min operations. Considertwo
edgesof a timing graphthatsuggesttwo arrival timesA and B at a
nodeon which they areincident. Using the formulasof theprevi-
ous section, we seek to expressC � max� A� B� backinto canonical
form for further correlatedpropagation through the timing graph.
Theconceptof tightnessprobability helpsus in this difficult step.
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Figure 1: Sample circuit.

From(9) and (10), we know the meanandvarianceof C. In tradi-
tional static timing, C would take the value of the largerof A and
B, andfor all downstreampurposes,thecharacteristicsof thedom-
inant edgethatdeterminedthearrival timeC arepreserved, and the
other edgeis ignored. This is likehaving a tightnessprobabili ty of
100% and 0%. In the probabilistic domain,the characteristicsof
C aredeterminedfrom A andB in theproportion of their tightness
probabil ities. Thusif theprobabil itieswere0.75 and 0.25, thesen-
sitivities of A andB would be linearly combined in a 3 : 1 ratio to
obtainthesensitivitiesof C. Mathematically,

ci � TAai
� � 1  TA � bi � i � 1� 2�������#� n� (11)

whereTA is thetightnessprobability of A.
The meanof the distribution of max� A� B� is preserved when

converting it to canonical form. The only remaining quantity to
be computed is the independently random part of the result. This
is doneby matching thevarianceof thecanonical form to thevari-
ancecomputedanalytically from (10). Thusthe first two moments
of the real distribution are alwaysmatchedin the canonical form.
Interestingly, thecoefficientscomputedin thismannerpreserve the
correct correlationto the global sourcesof variationassuggested
by [11] andaresimilar to thecoefficientscomputedin [7].

Themaxof two Gaussians is not a Gaussian, but we re-express
it in thecanonicalGaussianform andincur an accuracy penaltyfor
doing so. However, this stepallows usto keepalive and propagate
correlationsdueto dependenceon theglobal sourcesof variation,
which is absolutelykey to performing timing in a realisticfashion.
MonteCarlo resultswill be shown in the resultssection to assess
theaccuracy of this method.

Whenmorethantwo edgesof thegraph converge at a node,the
max or min operationis conductedonepair at a time, just aswith
deterministic quantities. The tightnessprobabil ities aretreated as
conditional probabilities andpost-processed to compute the final
tightnessprobability of each arc incident on the node whose ar-
rival time is being computed. As moreequally critical signals are
max’ed, accuracy degradesslightly sincetheasymmetryin there-
sulting probability distribution increases, making it harder to ap-
proximatein canonicalform.

Slews (rise/fall times)arepropagated in much thesamemanner.
If thepolicy is to propagatetheworstslew, then aseparatetightness
probabil ity is computed for the slews and applied to representthe
bigger slew in canonical form. If the policy is to propagatethe
latestarriving slew, thenthesamearrival tightnessprobabilitiesare
applied to combine theincoming slews to obtaintheoutput slew.

In this manner, by replacing the “plus,” “minus,” “max” and
“min” operationswith probabilistic equivalents,andby re-expressing
the result in a canonical form after eachoperation,regular static
timing canbecarried out by astandardforwardandbackwardprop-
agation through the timing graph [13]. Early and late mode, sep-
arate rise and fall delays,sequential circuits and timing tests are
thereforeeasily accommodatedjust asin traditionaltiming analy-
sis.

5. CRITICAL ITY COMPUTATION
The methods presentedin the previous section enable statistical
timing analysis,duringwhichtheconcept of tightnessprobability is

Figure 2: Timing graph of the sample circuit.

Figure 3: Backward traversal of the timing graph.

leveragedto propagatearrival andrequiredarrival timesin a para-
metriccanonical form. In this section, theuseof tightnessproba-
biliti esin computing criticality probabilities[14] ispresented. One
of the importantoutcomesof deterministic timing is the ability to
find themostcritical path. In thestatistical domain,theconceptof
themost critical pathis probabilistic. Thecriticality probability of
apathis theprobability thatthepathis critical; thecriticality prob-
ability of anedgeistheprobability thattheedgeliesalongacritical
path; andthecriticality probability of a node is the probability that
acritical path passesthroughthatnode.Computing theseprobabil-
ities will obviously have important benefits in enumeratingcritical
paths, enabling robustoptimization andgeneratingtestvectors for
at-speedtest.

5.1 Forward propagation
The ideasbehind criticality computations aredescribed by means
of an example. Consider the combinational circuit of Fig. 1. In
thisexample,separate rising andfalling delaysandslew effectsare
ignoredfor simplicity, but the ideas canbe extendedin a straight-
forward manner. Likewise,sequential circuitsposenospecial prob-
lem. The example assumeslate-modetiming, but early-modefol-
lows thesamereasoning.

The timing graphof the circuit is shown in Fig. 2. During the
forward propagation phaseof timing analysis,eachedgeof thetim-
ing graphis annotated with anarrival tightness probabili ty (ATP),
which is theprobability thattheedgedeterminesthearrival timeof
its sinknode.TheATPs in this example have beenchosen arbitrar-
ily, andareshown atthetail of each edgeof thetiming graph. Once
theprimaryoutputsarereached, avirtual output edgeisaddedfrom
each primary output to a sink node, shown asedgesG and H in
Fig. 2. Eachsuchedge is consideredto have a delay equal to the
negative of theasserted requiredarrival time at thecorresponding
primaryoutput. In thepresenceof timing tests (suchassetup, hold
or clock pulsewidth tests),a virtual edgeis addedto the sinknode
whosedelay is the negative of thecomputed requiredarrival time.
Thenthe standardforward propagation procedure is continued to
computethe “arrival time” of thesink of thegraph, and theATPs
of the virtual output edges. In this case, for il lustration purposes,
theATP of eachof thevirtual output edges is 0.5.

Property 1: Thesum of theATPsof all edgesincident on any
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Figure 4: Sourcenode of the timin g graph.

nodeof the timing graph is 1.0.
Property 2: The probabili ty of a path being criti cal is the

product of theATPsof all edgesalong thepath. Forpath2B5E6GS
to becritical, for example, edgeB hasto determinethearrival time
of node 5 (probabil ity=0.5), edgeE hasto determine the arrival
time of node6 (probability=0.6) and edgeG hasto determine the
arrival time of node S (probability=0.5), for a total probability of
0.15, assumingindependencebetweentheseevents.

Property 3: The sum of the criti cality of all paths in a timin g
graph is 1.0.

5.2 Backward propagation
Fig. 3 showsthecriticality calculationsduring thebackwardpropa-
gationphaseof timing analysis.During thebackwardpropagation,
we will compute the global criticality of eachedgeand eachnode
of the timing graph, and the requiredarrival tightnessprobability
(RATP) of eachedge of the timing graph, which is the probabil-
ity that the edgedeterminesthe requiredarrival time of its source
node.

Property 4: The sink nodehasa node criticality probabilit y
of 1.0. This property is obvious sinceall pathsmust passthrough
thesink node. Thesum of theATPs of the virtual output edgesis
thereforealso1.0.

Starting with the sink node S, the backward propagationfirst
considers edgesG and H. They each have a 0.5 edge criticality
sincethey eachdeterminethearrival timeof Swith 0.5probability.
Thecriticality of nodes6 and 7 arelikewise0.5each.

Property 5: The criticality of an edge is the product of its
ATP and the criticality probability of its sink node. Clearly,
an edge is globally critical only if its sink node is critical and it
determinesthearrival timeof that sinknode.

Property 6: The criticality of a node in the timin g graph is
the sum of the criti cality of all edgesleaving that node. Using
the above two properties, the criticalities of edgesand nodesare
easily computedduringalevelizedbackwardtraversalof thetiming
graph,andareshown in Fig. 3. The criticality computations can
piggy-back on top of the usual required arrival time calculations.
Note that the criticality of edge A, for example,is the product of
the criticality of node 6 (0.5) and the ATP of edge A (0.4). The
criticality of node5, for example, is thesumof theedgecriticalities
of edgesE andF.

Property 7: The sum of the node criti calities of all the pri-
mary outputs is 1.0. For generalsequentialcircuits, this property
would apply to all slack-determining end-points (primary output
and timing testpoints).

Property 8: The criticality of any node in the timing graph is
the sum of the path criticaliti es of all paths in its fanout cone.
For example,node 5 has two pathsin its fanout cone, path 5E6GS
with a path criticality of 0.3and path 5F7HSwith a pathcriticality
of 0.5, totalingto a node criticality of 0.8for node5.

As thebackwardpropagationprogresses,required arri val tight-
nessprobabilities (RATPs)arecomputedandannotated on to the
timing graph. Theseprobabilities are shown close to the source
nodeof eachedge in Fig. 4.

Property 9: Thesum of theRATPsof all edgesorigin ating at

any node of the timin g graph is 1.0. At a nodesuchas 5 where
therearemultiple fanout edges,theRATPswill bein theproportion
of theedgecriticality probabilitiesof thedownstreamedges.When
the primary inputs are reached during backward traversal,a new
nodeof thetiming graphcalled thesourcenode is postulated, with
virtual input edges from the source node to eachof the primary
inputs,shown asedgesI, J, K and L in Fig. 4. Each virtual input
edge is consideredto have a delayequal to thearrival time of the
corresponding primary input, and the required arrival time of the
sourcenodeis computed. During this computation,theRATPs of
thevirtual edgesarealsodetermined.

Property 10: The ATPs of each of the virtu al input edgesis
1.0.

Property 11: The criticality of the source node is 1.0. This
propertyisobvioussinceevery path passesthroughthesourcenode.

Property 12: The sum of the nodecriticaliti es of all the pri-
mary inputs is 1.0.

Property 13: The sum of the edgecriticalities of the virtu al
input edgesis 1.0asis the sum of their RATPs.

Property 14: The criticality of any path is the product of
the RATP of all edgesof the path. Thus the criticality of path
SoJ2B5E6GSis 0 � 4 � 1� 0 � 3$ 8 � 1� 0 � 0 � 15.

Property 15: The product of the ATPs along any path of the
graph is equal to the product of the RATPs.

Property 16: The criticality of an edge is the sum of the crit-
icality of all paths thr ough that edge.

Property 17: The sumof theedgecriticaliti esof any cutsetof
the timing graph that separates the source from the sink node
is 1.0. In other words, any cut through the graphthat leaves the
sourcenodeon oneside and the sink nodeon the other wil l cut
edgeswhosecriticality probabilitiessumto 1.0. This mustbe the
case since every critical pathwil l have to passthrough exactly one
edgeof thecutset.

It is important to note that the edge and node criticalities can
becomputed on a global basis,or on a per-end-point basis,where
an endpoint is a slack-determiningnodeof the graph (a primary
outputor eitherendof a timing testsegment). The applicationwill
dictatewhich type of computation is more efficient and suitable.

5.3 Path enumeration
Enumeration of paths in orderof criticality probability is usefulin
a number of differentcontexts, suchasproducingreports, provid-
ing diagnosticsto theuser or a synthesisprogram, listing pathsfor
test purposes, listing paths for CPPR (Common Path Pessimism
Removal) purposes[15], andenumeratingpathsfor analysisby a
path-basedstatistical timer [10]. One straightforward manner of
enumeratingpaths is by means of a breadth-firstvisiting of the
nodesof anaugmentedgraph asshown in Fig. 4, while following
the unvisited node with the highestcriticality probability at each
juncture. A running total of the criticality probability of the listed
paths is maintained,and the pathenumeration stops when the set
of critical paths hasbeen covered with a certainconfidence.

Duringthepathenumeration, thefollowing propertiesareuseful.
Property 18: The ATP of an edge is an upper bound on the

criticality of any path that passesthrough that edge.
Property 19: The RATP of an edgeis an upper bound on the

criticality of any path that passesthrough that edge.
Property 20: The criticality probability of an edgeis an up-

per bound on the criticality of any path that passes through
that edge.

Property 21: The criti cality probability of a nodeis an upper
bound on the criticality of any path that passesthr ough that
node.

6. INCREME NTAL STATISTICAL TIMING
Optimizationor physical synthesisprogramsoften call an incre-
mental timer milli ons of times in their inner loop. To suit this
purpose, a statistical timer needs to incrementallyandefficiently
answertiming queriesafteroneor morechangesto thecircuit has
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Figure 5: Incr ementaltiming analysis.

beenmade.
Consider thesituation shown in Fig. 5. Assumea single change

hasbeenmade to the circuit at the location shown. The change
could betheaddition of abuffer, theresizing of agate,theremoval
of a latch, and so on. Assumethat the calling program queries
the timer for the arrival time at the “L ocationof AT query” point.
Clearly, only the arrival timesin the yellow cone of logic change
(on black-and-whitehardcopies,the lightestgrey region). Further,
only arrival time changes in the faninconeof the querypoint can
have an effect on the query. The intersection of thesetwo cones
of logic is shown in green (or the darkergrey region). Thus by
purely topological reasoning, the portion of the circuit that must
be re-timedto answerthis query is limited. This kind of limit-
ing is calledlevel-limiting and is accomplished by storingAT, RAT
and AT-RAT levelsfor eachgate[2]. The levelization andlimit ing
proceduresareidentical for thestatistical timing situation,and the
implementationcaneasilyride on top of anexisting deterministic
incrementalcapabili ty.

In additional to level-limiting, theamount of re-computation can
be further reduced by dominance-limiting. Considerthe NAND
gateshown in Fig. 5. One input of the NAND gateis from the
“changed” coneof logic andtheother from an unchanged region.
If the arrival time at the output of the NAND gateis unchanged
becauseit wasdeterminedboth beforeandafterthe change by the
side input, thenthefanout coneof theNAND gate(shown in dark
black in Fig. 5) canpotentially beskippedin answeringthequery.
This typeof limi ting is calleddominance-limiting. In our statistical
timer, thenotionof “change” is treatedprobabilistically by examin-
ing thetightnessprobabilities. If the ATP of the side input is suffi-
ciently closeto 1.0bothbeforeandafter thechange,then thearrival
time of theoutput of theNAND gateneed not berecomputed,and
its fanout conecanpotentially be skipped until someother input
of that fanout cone is known to have materially changed. Similar
concepts areapplicable during backward propagation of required
arrival times.

Of course,thereare several complications that must be faced
in a real applicationsuch as slew propagation, latches, multiple
clock phasesand phasechanges,and the dynamic adaptationof
datastructuresto suchchanges. Thesedetails areomitteddue to
lackof space.

7. IMPL EMENTATIO N
Theaboveideashavebeenimplementedin aprototypecalled ?�@ ACB)DEGF�H	F

. ?�@ ACB EGF�H�F is implementedon top of the statictiming analysis
program ?�@ AIB�JK@ LNMPO in QSRTR with JUQWV scriptingunder XZY F B�[IMP\ \ .
Multiple clock phases,phase renaming, rule tests(suchas setup
and hold tests),automatic tests(suchasclock gating,clock pulse
width andclock inactive tests),arbitrarytiming assertionsand tim-
ing adjustsanywherein the timing graph, and clock overrides are
supported asin ?�@ ACB�JK@ LNMPO . The timerworkspermanently in incre-
mentalmode[16], even if a completetiming report is requested.

Each timing assertion, gatedelay, wire delay and timing test
guardtime mustbe modeledin canonical form, i.e., with a mean
part, a dependence on global sourcesof variation and an indepen-
dent random portion. The ?�@ ACB EGF�H	F implementation allows each
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Figure 6: ?�@ ACB EGF^H	F vs.Monte Carlo analysison chip “A. ”

gateandeach wire to have its own customizedvariability model,
providedthe model canbe expressedin the canonical form. For
testingpurposes, however, threeglobal sourcesof variation were
implemented. The first is gatevs. wire delays. Each of thesesets
of delayscanhave an independent and correlatedvariability, and
a mistrack coefficient. In the caseof gate vs. wire delays, mis-
track impliesthat whengatesgetfaster, wiresget slower, andvice
versa, and in generalexpressescorrelations between the two sets
of delays. Thesecond supportedglobal sourceof variation is rise
vs. fall delays of gates(to model N/P mistrack due to manufactur-
ing variationsor fatigue effects). Again, each of these canhave a
random and correlatedpart and a mistrackcoefficient. The third
supportedsourceof variation is meantsimilarly to study mistrack
betweennormalVt and low Vt gates.In thebenchmarkresultspre-
sented in thenext section, sensitivitiesto thesethreeglobal sources
of variationwereprovided in a blanket fashion asa percentageof
thenominal delay. ?�@ AIB E_F�H	F supports JUQSV commandsto express
a situationin which, for example,“all normal Vt gateshave a 1%
independent randomnessand a4%correlated variabil ity, all low Vt
gateshave a 2% independent randomnessand 5% correlatedvari-
ability, and the two setsof variationsmistrackwith respectto each
other.”

8. NUMERICAL RESULTS
A setof industrialASIC designswastimedwith 3 globalsourcesof
variation aswell asindependent randomnessbuilt into every edge
of the timing graph. The benchmarkresults areshown in Table 1,
in which thechipsarecodenamed A, B, etc., to preserveconfiden-
tiality. “Propagatesegments”is the number of edgesin the timing
graph with uniquesource-sinkpairs of nodes. “Load” is the CPU
time to load the netlist, timing rules and assertions.“ ?�@ ACB�J`@ LNMPO ”
is the CPU time of the deterministic basetimer, while the “ ?�@ ACB0DEaF'H	F

” columnshows theCPUtimetaken whenthestatisticaltimer
runsalongside(andin addition to) thedeterministictimer. All CPU
timesweremeasuredonanIBM Risc/System6000 model43P-S85
on a single processor. Al l timing runsincluded forward propaga-
tion of earlyand latearrival times,andreversepropagation of early
and late required arrival times. Similarly, the memory consump-
tion to load eachdesign, assertions and delaymodels (Base),run
deterministic timing ( ?�@ ACB�J`@ LNMPO ) andstatistical timing alongside
(and in additionto) deterministic timing ( ?�@ ACB EGF�H	F ) areshown in
subsequent columns of Table 1. The CPU and memoryoverhead
of statisticaltiming arevery reasonable, consideringthe wealthof
additional databeinggenerated.In thesmall testcaseA, memory
consumption wasdominatedby thedelay models,sotheoverhead
dueto statisticaltiming wasdwarfed.In testcaseE, thelargerover-
headwasdue to nodesin the timing graphhaving extremelyhigh
incidencedue to SoCtiming macromodels.

The statistical experimentswereperformedboth with and with-
out criticality computations,andtheCPU time and memoryover-
headwereobserved to benearlyidentical(within 1%),lending cre-
denceto theefficiency of thecriticality computations.

The primary goal of ?�@ ACB EaF�H�F is to produce timing results in a
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Table 1: CPU and memory results.
Name Gates Clock Propagate CPU time (secs.) Memory (MB)

domains segments Load ?�@ ACB�J`@ LNMPO ?�@ ACB�J`@ LNMPO Base ?�@ ACB�JK@ LNMbO ?�@ AIB�JU@ LcMdO
+ ?�@ ACB EaF^H
F + ?�@ AIB E_F�H	F

A 3,042 2 17,579 5.1 2.8 3.8 111 53 60
B 183,186 79 959,709 140.5 121.3 187.6 423 177 723
C 1,085,034 182 5,799,545 5131.5 809.9 1233.1 3200 600 4300
D 1,213,361 18 6,969,860 783.5 1079.3 1485.7 2990 1160 4380
E 2,095,176 51 13,460,759 1494.9 1316.9 2724.3 4590 3320 11330

parameterizedform, and thereforeto give thedesigner information
regarding the robustnessof the design. However, ?�@ ACB E_F�H	F pro-
ducesthesetiming resultsasrandomvariables,andthecorrectness
of the mean andspreadof these random variablescanbe verified
by MonteCarlo analysis.To rendertheanalysis tractable, ?�@ AIB EGF^H
F
makesa numberof assumptions that prevent it from obtaining the
exact result. Inaccuracy creeps in every time the probabil ity dis-
tribution resulting from a max or min operationis re-expressedin
canonical form. Specifically, the max or min of two Gaussiansis
not Gaussian, but ?�@ AIB EaF'H	F forcesit back into aGaussianform. The
extentof theseinaccuraciesis revealedby MonteCarloanalysis.

Test chip “A” (3,042logic gates)was usedto demonstrate the
importanceof global correlations,and to compare ?�@ ACB EaF�H�F results
with Monte Carlo results. The critical path in this chip is a long
combinational pathpassingthrough about 60 stagesof logic, with
a nominal delay of 23.06ns including wire delay. With 5% cor-
relatedvariability on every gateandwire delay, the longestpath
delayis23.01 nswith aσ of 0.9 ns. With 5% independentvariabil-
ity on every gate andwire delay, thelongestpath delay is 23.62 ns
with a σ of 0.13ns. Clearly, with moreindependent randomness,
there is morecancellation of variability along a long path, yield-
ing a tighter distribution but with a morepessimistic mean. The
correlatedcaseproducesa more optimistic meanpath delay, but
with a much bigger spread. ?�@ ACB EGF�H	F allows themodelingof these
extremesituationsandanythingin-between.

Test chip “A” was analyzed both by ?�@ AIB EGF^H
F and by Monte
Carloanalysiswith 10,000 samples.Of the47,048 uniqueslacksto
choosefrom, thecomparisonis shown on onerepresentative slack,
that of thenominally critical end-point. Fig. 6 shows thecompar-
ison between ?�@ ACB E_F�H	F andMonte Carlo. Themeanvalue,spread
and tails arepredicted with reasonable accuracy. TheMonteCarlo
analysisrequired 14 hoursof CPU time, while ?�@ AIB E_F�H	F required
18 secondson thesamecomputer.

A repoweringexperiment onchip“A” wasused to evaluateincre-
mental operation of ?�@ ACB EaF^H�F . For each of 493gateswith negative
slack, thegate power level (size)wasmodified, and ?�@ ACB E_F�H	F was
queriedfor thenew slackon eachpin of the modifiedgate. Incre-
mental ?�@ ACB EGF�H	F was6 timesfasterthannon-incremental?�@ AIB EGF^H
F
with identical results. For largedesignsand for different types of
changesandqueries,weexpecttherun timeimprovement obtained
by incremental processingto bequite dramatic.

9. FUTURE WORK AND CONCLUSIONS
Thispaperpresentsanovel statisticaltiming algorithmwhichprop-
agatesfirst-ordersensitivitiesto globalsourcesof variationthrough
a timing graph. Each edgeof the timing graph is modeled by a
canonical delay model that permits global dependenceaswell as
independent randomness. The timing results are presentedin a
parametricform, which canhelp a designer or optimization pro-
gram target robustnessin the design. A novel theoreticalframe-
work for computing local andglobal criticality probabilitiesis pre-
sented,thus providing detailed timing diagnosticsat a very small
cost in run time.

The following avenuesof futurework suggestthemselves. The
assumptionof linear dependenceof delayon eachsourceof varia-
tion is valid only for small variations from nominalbehavior. Ex-
tending the theoryto handle general nonlinearmodels andasym-

metricdistributionswould bea big stepforward. Second, the im-
pact of variabil ity of input slews and output loadson the delay
of timing graphedgescanbechain-ruled into thecanonical delay
model assuggestedin [6]. Finally, the criticality computationsin
this paper assumeindependence between the criticality probabili-
tiesof any two paths, anassumption that is valid to first order, but
not quite correct. Extending the theory to remove dependenceon
this assumption is a challengingtask.
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