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ABSTRACT
In this paper we propose a novel technique for optimizing the runtime in
statistical timing analysis. Given a global acceptable error budget at the
primary output which signifies the difference in the area of the accurate
and approximate timing CDFs, we propose a novel formulation of bud-
geting this global error across all nodes in the circuit. This node error
budget is used to simplify the computation of arrival time CDFs at each
node using approximations. This simplification reduces the runtime of
statistical timing analysis. We investigate two ways of exploiting this
node error budget, firstly through piecewise linear approximation ([4])
and secondly though hierarchical quadratic approximation. Experimen-
tal results on ISCAS/MCNC benchmarks show that our approach is at
most 3 times faster than accurate statistical timing analysis and had a
very small error. We also found quadratic piecewise approximation to be
more accurate than linear approximation but at lesser gains in runtime.

1 Introduction
Growing importance of fabrication variability and estimation uncertainty
has lead to increased significance of statistical timing analysis. Several
researchers have investigated this issue in detail [3, 2, 1, 8, 11, 12, 13, 6, 4].
Statistical timing analysis problem essentially takes a DAG G = (V,E) as
input with each node delay and arrival time represented as a distribution.
It calculates the distribution of the arrival time at the primary outputs
(POs) of the DAG. One of the most important issue in statistical timing
analysis is the runtime. The latest work by Devgan et. al [4] proposes
an approach for fast statistical timing analysis in which after the node
arrival time CDF is evaluated, the CDF is approximated by a piecewise
linear approach. This simplification results in massive gains in runtime.

Our work builds upon this approach for statistical timing analysis.
The key problem in the approach presented in [4] is that whenever a
signal is approximated by piecewise linearization, this linearization is
performed using an arbitrary and predecided number of lines. Having
too few lines could result in large amount of error and too many lines
could result in large execution runtime. Hence an adaptive way of de-
termining the degree of approximation for each signal is needed which
can effectively perform a tradeoff between gain/loss in runtime with in-
crease/decrease in error. In order to achieve this tradeoff we investigate
the way error gets propagated in statistical timing analysis. We propose
a closed form expression for this error propagation. Using this expres-
sion, we propose the philosophy of error budgeting. The error budgets
at each node are used to approximate the node delay PDFs and arrival
time CDFs. We investigate two kinds of approximation strategies: lin-
ear (traditional) and hierarchical quadratic. This entire statistical timing
analysis framework is put together in the SIS framework. Experimental
results show that our budgeting approach comes very close to accurate
statistical timing estimation (without any approximation) but can be at
most 3 times faster. Comparatively, the traditional approach [4] had a
large error in the output arrival time CDF. We also found the quadratic
approximation to be much more accurate than linear approximation but
with lesser gains in runtime.

The rest of the paper is organized as follows. Section 2 describes the
motivation and the statistical timing framework of this work. Section 3
contains the proposed error budgeting formulation. Section 4 the pro-
posed the linear and quadratic approximation strategy. The results are
presented in section 5 and conclusion in section 6.

2 Motivation and STA Framework
In this paper, we propose a novel approach for speeding up statistical
timing analysis by effectively controlling the amount of error injected
for gains in runtime. Given the distribution of the arrival time at the
primary inputs and the distribution of the gate delays, the problem is
to evaluate the distribution of arrival time at the intermediate nodes as
well as the output nodes in the circuit. Similar to static timing anal-
ysis, statistical timing analysis traverses the circuit topologically from
the primary inputs to the primary outputs generating the arrival time
distribution at the out of each intermediate node.

The SUM and the MAX operation in the statistical timing frame-
work need to be computed on the distributions of arrival times and gate
delays. In [4], the authors propose to model the arrival times as cumula-
tive density functions (CDFs) and the gate delays as probability density
functions (PDFs) as shown in figure 1(a). t1 and t2 denote the range of
the distributions in both the cases as shown in the figure.
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Figure 1: Distributions and their Linear Approximations

For computational efficiency of the SUM and MAX operations of sta-
tistical timing, these CDFs and PDFs are approximated using techniques
of piecewise linear and quadratic approximations. The details of these
modelings are given later in section 4. In figure 1(b), the CDF and PDF
are shown under the piecewise linear approximation scheme. We will
now discuss the SUM and MAX operation under these CDFs and PDFs.
We assume that the arrival times and gate delays are independent of each
other. The issue of statistical dependence due to re-convergent fanouts
needs to be resolved [4], [1], [3]. In [4], the authors propose an efficient
heuristic technique based on common mode removal approach which we
have implemented in this work.

In [4], the authors show that the CDF of the arrival time Cx
o (t) at the

output due to input pin x is given by the convolution of the input arrival
time CDF Cx(t) with the PDF of the pin-to-pin gate delay P x

o (t) as given
by equation 1. This follows from the fact that the probability distribution
of the sum of two independent random variables is the convolution of
their probability distributions.
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Figure 2: Gate with x and y input pins and output o

Cx
o (t) =

∫ t

0

(Cx(t − τ) ∗ P x
o (τ)dτ) (1)

Similarly, the CDF Co(t) after the MAX operation on the arrival time
CDFs Cx

o (t) and Cy
o (t) at the output pin o (refer to figure 2) can be com-

puted from equation 3. The CDF of the maximum of two independent
random variables is the product of their CDFs.

Ao(t) = MAX(Ax
o (t), Ay

o(t)) (2)

Co(t) = Cx
o (t) ∗ Cy

o (t) (3)

Hence statistical timing operations SUM and MAX are now performed
by doing a convolutions followed by a multiplication. Hence the arrival
time distribution at the output of the gate, given the input arrival time
distributions and the gate delay distribution can be given by equation 4.

Co(t) = (Cx(t) ⊗ P x
o (t)) ∗ (Cy(t) ⊗ P y

o (t)) (4)
Now that we have the formulations for the MAX and SUM operation

for statistical timing using CDFs and PDFs, we can run statistical tim-
ing analysis similar to conventional static timing. Equation 4 can used to
evaluate the output CDFs at each gate in the circuit. In order to speed
up statistical timing evaluation, the approach of [4] linearizes the arrival
time CDF into a prespecified number of lines. It also approximates the
arbitrary node delay PDF into stepwise function. The authors then for-
mulated a closed form expression for evaluating equations 1 and 3 when
the arrival time CDFs were represented using a piecewise linear approx-
imation and the node delay PDF was represented using a stepwise ap-
proximation. This results in huge speed ups in runtime when compared
with a traditional point-wise convolution based approach. The overall
runtime of timing analysis depends upon the total number of lines used
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to represent the arrival time CDF and the total number of steps used to
represent the node delay PDF.
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Figure 3: Error Budgeting

In this paper we propose novel ways of controlling this tradeoff be-
tween the overall error and runtime. Specifically, we have investigated
two issues in this direction.

1. Given an error budget that the user specifies, identify the degree of
approximation needed for each individual node arrival time CDFs
and node delay PDFs

2. Investigating better approximation strategies like quadratic (in-
stead of linear) for improving error and same runtime

Figure 3 illustrates the basic philosophy behind our approach. Given,
node delay distributions in a DAG, the approach in [4] topologically
computes the arrival time CDFs at each node. Whenever a new CDF
is computed it is simplified by representing it as a piecewise linear ap-
proximation. This simplification adds an error into the statistical timing
estimation which is controllable by the number of lines used to approx-
imate the CDFs. Finally, the CDF at the output has some error when
compared with the accurate arrival time CDF. In this work, we define
this error as follows

ERROR =

∫ tmax

tmin

|Caccurate − Cestimate|dt (5)

Essentially, this is the total area in the entire range of interest where
the actual signal is different from the approximate signal. Let us suppose
that we are provided a total error budget E that the user is willing to
tolerate at the primary output. Given this error budget, we would like to
assign it to all nodes in such a way that maximum gains in runtime occur.
Traditionally, this global error budget is essentially spread uniformly.
This is not a very effective strategy of distributing the global error since
the DAG may have unbalanced paths. Consider the example DAG shown
in figure 3. Approximating all node CDFs with the same number of
points would not be the best idea since node D is not critical. Hence
the global arrival time CDF at node F has low sensitivity to the amount
of error in the arrival time CDF at node D. Hence runtime speed-ups
could be achieved by adding more error at D by approximating it in lesser
number of lines. We call this concept Error Budgeting, since through
this approach we strive to control the amount of error in the final output
CDF for gains in runtime. We also investigate better approximation
techniques like quadratic approximation for lesser error. The budgeting
and approximation schemes are integrated into one statistical timing
system.

3 Error Budgeting
In this section we will delve into the details of our budgeting formulation
that distributes the global error budget at the PO to each node which
can then be utilized for speeding up statistical timing analysis. The
error budget at the primary outputs is defined in equation 5. In order to
distribute this global error budget we need to investigate the way error
in arrival time CDFs and node delay PDFs interact when subjected to
SUM and MAX operations.

3.1 Error in SUM Operation

Figure 4 illustrates a situation in which the SUM operation is performed
on two signals, one of which is represented as a CDF and other as a PDF
(just like equation 1). The figure illustrates two representations for the
input CDF and PDFs, one of which is accurate and one of which is an
approximation. In this section we will discuss the error in the output
CDF after the SUM operation as a function of the errors in the input
CDF and PDF. The accurate output CDF is given by

Caccurate
out (t) =

∫ t

0

Caccurate
in (t − τ)P accurate

node (τ)dτ (6)

The approximate output CDF is given by

Caprrox
out (t) =

∫ t

0

Capprox
in (t − τ)P approx

node
(τ)dτ (7)

Since the SUM operation is essentially a convolution operation, the
range of the output CDF is defined as follows. If the input CDF starts
at t1 and ends at t2 (after t2 the CDF=1) and the input PDF starts
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Figure 4: Error in SUM
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Figure 5: Error in MAX

at t3 and ends at t4, then the output CDF starts at t1+t3 and ends
at t2+t4. Note that here the assumption is that both accurate and
approximate curves start and end at the same delay value. As it would
be clear in the next section, the way piecewise linear approximation
or quadratic approximation is performed, this range does not change.
Hence t1,t2,t3,t4 are the same for original and approximate curve. The
error in the output CDFs is given by

Errout =

∫ tmax

tmin

|Caccurate
out − Capprox

out |dt (8)

The error term can be re-written as follows

Errout =

∫ tmax

tmin

|

∫ t

0

Capprox
in

(t − τ)P approx
node

(τ)dτ−

∫ t

0

Caccurate
in (t − τ)P accurate

node (τ)dτ |dt (9)

The range of the integral tmin, tmax is simply t1+t3 and t2+t4 re-
spectively.

Errout =

∫ tmax

tmin

|

∫ t

0

(Capprox
in (t − τ)P approx

node
(τ)−

Caccurate
in (t − τ)P accurate

node (τ))dτ |dt (10)

Let us suppose that Capprox = Caccurate + δC and P approx =
P accurate + δP . Plugging this relation in equation 10 gives us the fol-
lowing result.∫ tmax

tmin

|

∫ t

0

(Caccurate
in (t − τ)δP (τ) + P accurate(τ)δC(t − τ)+

δP (τ)δC(t − τ))dτ |dt (11)

Ignoring the second order term δP (τ)δC(t− τ) and using the relation
|a + b| ≤ |a| + |b|, the above equation could be rewritten as

∫ tmax

tmin

(

∫ t

0

|Caccurate
in (t − τ)δP (τ)|dτ+

∫ t

0

|P accurate(τ)δC(t − τ)|dτ)dt (12)

∫ tmax

tmin

(

∫ t

0

|Caccurate
in (t − τ)δP (τ)|dτ+

∫ t

0

|P accurate(τ)||δC(t − τ)|dτ)dt (13)

Let the error in the input CDF be E1 =
∫ t2

t1
|(Caccurate

node
−Capprox

node
)|dt

and error in input PDF = E2 =
∫ t4

t3
|(P accurate − P approx)|dt. Since

0 ≤ Caccurate
in (t) ≤ 1 and E1 ≥ |δC(t − τ)| it can clearly be seen that

equation 13 is always ≤ the following

Errout ≤

∫ tmax

tmin

(

∫ t

0

|δP (τ)|dτ+

E1

∫ t

0

|P accurate(τ)|dτ)dt (14)

Errout ≤

∫ tmax

tmin

(E1 + E2)dt = (E1 + E2)(tmax − tmin) (15)

Equation 15 gives an upper bound on the output CDF error based
in the input errors. The range tmax, tmin is simply the range on which
the output arrival time signal is defined. Therefore the output error is a
linear combination of input errors.
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Figure 6: Error Bound in MAX

3.2 Error in MAX Operation

Figure 5 illustrates a similar situation for the MAX operation. The
input CDFs have the range (t1,t2) and (t3,t4) both for the accurate
and approximate cases. The output CDF which is a multiplication of
the input CDFs has the range (tmin, tmax) = (max(t1,t3), max(t2,t4)).
Once again the error in the output CDF is given as follows

Errout =

∫ tmax

tmin

|(Capprox
out (t) − Caccurate

out (t)|dt (16)

Let Capprox
in1

, Capprox
in2

and Caccurate
in1

, Caccurate
in2

denote the accurate

and approximate CDFs for the input signals. Let Capprox
in1

= Caccurate
in1

+

δCin1 and Capprox
in2

= Caccurate
in2

+ δCin2. Using these relations and
simplifying, we can write equation 16 as follows

Errout =

∫ tmax

tmin

|Caccurate
in1 δCin2 + Caccurate

in2 δCin1|dt (17)

Let E1 =
∫ t2

t1
|Capprox

in1
−Caccurate

in1
|dt and E2 defined similarly for the

second input. Using |a + b| ≤ |a| + |b|, it can be shown that following
must hold.

Errout ≤

∫ tmax

tmin

|Caccurate
in1 δCin2|dt+

∫ tmax

tmin

|Caccurate
in2 δCin1|dt (18)

Errout ≤ E1 + E2 (19)
Although equation 19 is an upper bound on the error, this bound is

not good enough since it does not capture the criticality of the inputs.
As discussed in the previous section, the error in a non-critical fanin
would not affect the output error too much. Unfortunately, equation 19
does not capture this philosophy. Hence we refine this bound by making
some approximations on the input CDFs.

Figure 6 illustrates three possible overlaps between the two input
CDFs. In the first case, the CDFs have no overlap whatsoever. Here
t1 ≤ t2 ≤ t3 ≤ t4. In such a situation,Cout will be zero until tmin =
max(t1,t3) = t3 and will become 1 at tmax = max(t2,t4). Essentially
the second signal is always more critical than the first one. Also, since,
we have assumed the range of approximate and accurate curves to be the
same, the error is zero outside it. If we focus on equation 18, the second
term must be zero since over the range tmax, tmin = (t4,t3), the error
in the first signal is zero. Hence the entire output error is contributed
by E2. Analytically, this means that since signal-2 is critical, the error
contributed by signal-1 does not affect the output signal.

In the second case in figure 6, the two input signals overlap such that
t1 ≤ t3 ≤ t2 ≤ t4. Here tmin, tmax = (max(t1,t3)=t3, max(t2,t4)=t4).
In such a case, we assume that the two CDFs are lines with the following
slopes

S1 = 1/(t2 − t1) (20)
S2 = 1/(t4 − t3) (21)

This approximation is needed in order to evaluate a closed form ex-
pression for the output error in terms of the input errors. Hence the
input CDF Cin1(t) = S1(t - t1) ∀ t t1 ≤ t ≤ t2 and input CDF Cin2(t)
= S2(t - t3) ∀ t t3 ≤ t ≤ t4. Let us also approximate the error between
the accurate and approximate CDFs to be uniformly distributed. This
is illustrated in the following equations

δCin1(t) = E1/(t2 − t1) t1 ≤ t ≤ t2 (22)

= 0 otherwise (23)

δCin2(t) = E2/(t4 − t3) t3 ≤ t ≤ t4 (24)

= 0 otherwise (25)
Once again we would like to re-iterate the assumption that the range of

accurate and approximate CDFs are the same. This issue will be further
explained later. Equation 18 has two terms, each corresponding to the
error contributed by the respective inputs. For each term, the entire
range of integration is split into two parts: from tmin = t3 to t2 and

from t2 to tmax. The first term in equation 18,
∫ tmax

tmin

|Caccurate
in1

δCin2|dt

therefore gets split into two integrals. Using the simplifying assumptions
given by equations 20 and 24, this term can be written as follows∫ tmax

tmin

|Caccurate
in1

δCin2|dt = K2E2 (26)

Here K2 = (S1/t4−t3)((t22−t32)/2−t1(t2−t3))+(t4−t2)/(t4−t3).
Similarly the second term in equation 18 can be simplified as follows

Output Arrival Time CDFError
Node Delay PDF

Error
Node Delay PDF

Error
E1

E2 SUM

SUM

E2out

E1out

EoutMAX

Figure 7: Error Injection in a Gate

∫ tmax

tmin

|Caccurate
in2 δCin1|dt = K1E1 (27)

Here K1 = (S2/(t2 − t1))((t22 − t32)/2 − t3(t2 − t3)). Therefore the
total error is given by K1E1 + K2E2.

Now let us consider the final case in figure 6. In this case one
input signal completely engulfs the other. In this case tmin, tmax is
given by (max(t1,t3)= t3, max(t2,t4) = t2). Under similar simplifying
assumptions form equations 21 and 22, we can re-express equation 18
as K1E1 + K2E2 with

K1 = (S2/(t2 − t1))((t42 − t32)/2 − t3(t4 − t3)) + (t2 − t4)/(t2 − t1)
K2 = (S1/t4 − t3)((t42 − t32)/2 − t1(t4 − t3))

It can be seen that in all cases the error is bounded by K1E1+K2E2
where K1 and K2 can be calculated using the proposed expressions. This
gives us a compact and effective way of estimating the output error given
the input errors and the ranges in which the input CDFs exist. It should
be noted that the upper bound property may not hold anymore.

The assumptions made on the nature of the CDFs considering them
to be linear ramps as given by equations 20 and 21 can be relaxed for
better accuracy. We could also consider them to be gaussian (or any
other distribution) and evaluate closed form expressions for K1 and K2
(under the assumption that the error is uniformly distributed).

Having delved into the details of how the error propagates in the
SUM and MAX function, now we will describe the way error budgeting
is performed for each node.

3.3 Error Budgeting for Runtime Optimiza-
tion

Given a user defined error budget at the primary outputs of a DAG, we
would like to assign error budgets to individual nodes in the DAG such
that overall error budget constraint is satisfied and maximum gains in
runtime could be achieved. Given the input DAG, let us add a sink node
and add directed edges from all POs to this sink node. We also assume
this sink node has zero delay.

Figure 7 illustrates the way error is injected into a gate. There are
two inputs with errors E1 and E2. First these input signals are SUMmed
with the corresponding input pin to output delay. At this point there is
an error injected that corresponds to the error corresponding to linear
approximation or quadratic approximation of the node delay PDFs as
shown in figure 7. These CDFs are then MAXed together to get the node
output arrival time CDF. Another error is added here which corresponds
to the linear approximation or quadratic approximation of the output
CDF as shown in figure 7. Hence there are two kinds of errors associated
with a gate: first is the one that gets injected due to simplification
of the node delay PDFs and other due to simplification of the node
output CDF. Hence in the entire DAG, each node has two variables
corresponding to node delay PDF simplification (assuming all gates are
2 inputs) and one variable for node output CDF simplification. Therefore
there are 3n error variables, where n is the number of nodes. Errors need
to be assigned to these variables such that the overall sum of the errors
for all variables is maximized and the error budget at the sink node is
satisfied. Formally this can be written as follows.

Maximize
∑

∀nodes:i

(epdf
input−j:i + epdf

input−k:i
+ ecdf

i:out) (28)

esink:out ≤ ERR − BUDGET (29)

edummy
input−j:i = K1sum

ij ej:out + K2sum
ij epdf

input−j:i ∀inputs − j : i ∀i (30)

edummy
out:i = K1max

i edummy
input−j:i + K2max

i edummy
input−k:i

∀i (31)

eout:i = edummy
out:i + ecdf

out:i ∀i (32)

Equation 30 illustrates that when the input CDF is SUMmed with the
node PDF, then the output error is a linear combination of the input
error and the error injected by approximating the node delay PDF. The
values of the linear constants could be calculated as described in the
previous subsections. Equation 31 illustrates that the output CDF error
given the error injected by the MAX operation on two input signals.
This error is a linear combination of these two input errors. The output
CDF at node i is also approximated thereby introducing another error
into the formulation as shown in equation 32. There is a global error
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budget at the sink node. The objective is to maximize the total error
budget since this would be directly proportional to the overall runtime
improvements. There is still the issue of assigning the constants in the
above equations (essentially K1, K2 etc.). The last subsection derived
analytical formulae for these constants that were dependent on the range
of existence of each of the signals. These ranges can be easily derived for
all signals in the DAG as follows. First replace all node delays by their
minimum possible values and perform as static timing analysis (this gives
the lower limit on arrival time). Then replace all node delays by their
maximum possible values and perform static timing analysis (this gives
the upper limit on arrival time). The range of arrival times for all signals
essentially gives the range which is needed by the analytical formulae to
compute the K1 and K2 terms. This completes the description of the
budgeting formulation.

4 Linear and Quadratic Approxima-

tion Schemes
Our error budgeting scheme discussed in section 3 allocates an error to
each approximation step. If we can ensure that the approximation error
introduced at each step is within the error budget, we can control the
total error in the CDF of the output arrival time.

4.1 Piecewise Linear Approximation
We can approximate the PDF of gate delay and the arrival time CDF into
piecewise linear PDF and CDF respectively [4]. We are given an error
budget for each approximation step from the error budgeting technique
explained in section 3. The piecewise linearization could be iteratively
refined until the overall error is less than the budget. The piecewise
linear CDF and PDF can then be decomposed into a sum of ramps as
shown in figure 8(a) and (b) respectively. Hence, if an approximation
step has a large error budget, we can approximate it with very few lines
are get considerable runtime savings.

t1 2 3

1

2

3

t t t t t

1

2 3

4

1 2 3 4 5

(a) CDF (b) PDF

tt

Figure 8: Decomposing CDF and PDF into sum of ramps
The SUM operation as defined before would now be applied to the

piece-wise linear CDF (with n ramps) and piece-wise linear PDF (with
m ramps) and result in mn convolutions. We can then add up these con-
volution results to get the intermediate CDF after the SUM operation.
However, we will retain them in this decomposed form for the MAX
operation. The convolution between two ramps with slopes s1 and s2,
starting at t1 and t2 can be calculated as shown in figure 9(a). The
convolution result Co has a closed form expression given by

Co = s1s2(1/6t3 − (t1/2 + t2/2)t2 + (1/2t1
2 + 1/2t2

2 + t1t2)t

− (1/6t1
3 + 1/6t2

3 + 1/2t1t2
2 + 1/2t2t1

2)) (33)

t   +  t3 4

C1

max(t  + t 1 2  , t  + t3 4 )

C0 C1

C0

(b) MAX(a) SUM

C0

t   +  t21

s s

tt

1

1 2

2

t   +  t21

Figure 9: SUM and MAX

Hence, after the SUM operation we have each intermediate CDF rep-
resented as sum of mn cubic polynomials. The CDF of the arrival time
at the output of the gate is given by the MAX operation on the CDFs
obtained after the SUM operation on different input pins of the gate.
The closed form expression for the resulting CDF is just the product of
the CDFs from the SUM operation. Unlike the approach presented in

[4], we do not linearize the CDFs after the sum operation because this
step would inject unnecessary error into the CDFs. We can compute the
MAX operation on the two CDFs C0 (say with m0n0 cubic polynomials
after SUM) and C1 (say with m1n1 cubic polynomials after SUM) as
shown in figure 9(b) by taking the product of every pair of cubic poly-
nomials that were obtained for both the CDFs after the SUM operation
as given by equation 33. The MAX operation would therefore generate
(m0n0m1n1) polynomials of degree six which can be summed together
to get the CDF of the arrival time at the output of the gate as given by
equation 34.

Cout(t) = Σi,jCi
0(t)Cj

1
(t) (34)

In order to propagate this to the next fanout gate, we again perform
piecewise linearization of the CDF. The number of lines that this CDF
is decomposed into depends on the error budget allocated to output
linearization of this gate. We again repeat the iterative decomposition
until the error budget is met.

4.2 Hierarchical Quadratic Approximation

The approximation of the CDFs and PDFs can also be done using hi-
erarchical quadratic modeling [9, 10]. This has an advantage over lin-
ear approximation since quadratic approximation has lesser error. In
this work, we apply the philosophy of hierarchical quadratic modeling
in which the approximation is refined hierarchically till the approxima-
tion error is within the allocated error budget. We construct a minimal
equidistant hierarchical grid structure as shown in figure 10(a) for each
hierarchy level i. In this work we limit the maximum number of hier-
archical levels to four. Each hierarchical level doubles the number of
approximation quadratic polynomials used from the previous level. Be-
tween these approximation points the input signal is approximated as a
quadratic such that the error in approximation is minimum. If the overall
error is more than the assigned budget then another level approximating
points is added.

Gate Delay PDFArrival Time CDF

2t Time
1t

Prob Prob

Time
21 tt

1

(a) Grid Structure (b) Decomposition

maxmin

Level 1

Level 4

Level 3

Level 2

Figure 10: Grid Structure and Quadratic Decomposition

Details about the quadratic approximation techniques on hierarchi-
cal basis can be found in [9, 10]. Given a distribution as a CDF or a
PDF, we can decompose it into piecewise quadratic function analogous
to the piecewise linear case as shown in figure 10(b). The SUM operation
would now be applied to piecewise quadratic CDF (with say n quadrat-
ics) and piecewise quadratic PDF (with say m quadratics) and result
in mn polynomials of degree five. Similar to the linear case, we can
derive a closed form expression for this convolution the details of which
are omitted for brevity. We can compute the MAX operation on the two
CDFs C0 (say with 0n0 CDFs after SUM) and C1 (say with m1n1 CDFs
after SUM) by taking the product of every pair of degree five polyno-
mials that were obtained for both the CDFs after the SUM operation
as given by equation 33. The MAX operation would therefore generate
(m0n0m1n1) polynomials of degree ten which can be summed together
to get the CDF of the arrival time at the output of the gate as given by
equation 34. Although degree ten polynomials may sound too compli-
cated, these are just close form expressions and could be implemented
very easily. The output CDF needs to be approximated once again into
a piecewise quadratic simplification. This approximation could be done
depending on the error budget allocation for this gate.

5 Experimental Results
The statistical timing analysis framework with the proposed error bud-
geting paradigm was implemented in SIS [7]. A topological traversal
over the circuit is done in the first step to generate the error budget-
ing constraints using the LP formulations discussed in section 3. We use
CPLEX to solve the error budgeting problem and get an error budget for
each step of approximation in statistical timing analysis. We have used
the ISCAS/MCNC benchmarks in SIS for our experiments. The arrival
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Bench- Accu- Fixed Error Lin. Error Quad. Error
mark rate 3 line Budget Budget

C432 758 92 30.35 420 16.46 601 3.40
C499 1407 176 37.71 679 27.09 1056 9.45
C880 1160 151 13.87 487 8.75 863 1.11
C1908 1793 218 40.15 889 30.97 1249 2.31
C2670 2850 423 10.77 1283 4.36 1966 0.69
C3540 4071 500 11.02 1918 6.49 3146 1.171
C6288 11935 1930 13.47 5985 5.67 7473 2.71
C7552 9249 1467 5.65 3201 1.34 6562 0.48

Table 1: Runtime and Error Comparison

time distributions at the primary inputs were taken to be Gaussian (in
CDF form) and the gate delay distributions were taken to be Gaussian
as well (in PDF form). We have ignored the global corellations in this
work and reconvergent fanouts were handled similar to [4]. Since our
error budgeting approach uses an adaptive scheme to approximate each
distribution depending on its corresponding allocated error budget, we
limit the maximum number of segments used to make piecewise linear
approximation to 16 lines and the minimum segments to be 3 lines (
[4] uses fixed 3 line scheme). Piecewise quadratic approximations have
maximum 4 hierarchy levels (or 8 quadratic polynomials). We gener-
ate an accurate CDF for the output arrival time for each benchmark
to make comparisons in runtime, error budget and the quality of solu-
tion between our adaptive approach and the 3 line fixed linearization
approach proposed in [4].
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Figure 11: Runtime Results
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Figure 12: STA Results

Table 1 shows the runtime and error comparison between fixed 3-line
approximation and our adaptive error budgeting scheme (both linear and
quadratic). Columns 2, 3, 5 and 7 give the runtimes for the accurate,
fixed 3-line, linear and quadratic cases respectively. The comparisons
for error are made with respect to the accurate case using equation 5.
Our adaptive linear approximation scheme using error budgeting give
solutions which are bounded by the fixed 3-line linearization scheme
from [4] and the accurate solution both in terms of runtime and quality
of solution. We also note that the runtime of quadratic approximation
is lower than that of the accurate distribution while the solution quality
obtained from the quadratic scheme is very close to the accurate one.
This shows the efficiency of quadratic approximation. However, when
compared with linear approximation, it has a higher runtime but better
solution quality as well.

Figures 11(b) and 11(a) show the tradeoff between the error budget
and runtime. Hence, we can exploit this tradeoff to reduce the runtime
of statistical timing analysis.

Figures 12(a) and 12(b) show the CDFs at the primary outputs for
two different benchmarks. The error budget assigned to both the linear
approximation scheme and the quadratic approximation scheme were the
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Figure 13: Error Budgeting Tradeoff

same. We can see from the figures that linear approximation schemes
using error budgeting gives better solution quality as compared with
fixed 3-line approximation. For the same error budget, quadratic ap-
proximation scheme gives us better solution quality but at the cost of a
higher runtime when compared with linear approximation scheme. We
can clearly see that the solution quality of the quadratic approximation
is very close to the accurate distribution for both cases but the run-
time are better by 20.7% for C432 and 31.1% for C2670 respectively as
shown in table 1. These observations clearly bring out the effective of the
quadratic scheme over the linear scheme in terms of the solution quality.
The proposed concept of error budgeting is effective in saving runtime
while preserving the solution quality.

The tradeoff between error budget and solution quality obtained in
statistical timing analysis is another key observation from the experi-
ments. Now we try to study the effect of changing the assigned error
budget during statistical timing analysis. Figures 11(b) and 11(a) show
the effect of increasing the error budget on runtime. From figures 13(a)
and 13(b), we can see that as the error budget increases, the solution
quality from linear approximation decreases. Hence there is a direct
tradeoff between the error budget and the corresponding solution qual-
ity and runtime.

6 Conclusion and Future Work
In this work we have proposed a novel error budgeting formulation that
can be used effectively to inject high error at non-critical nodes giving
savings in runtime while maintaining the quality of the solution. The
more the error budget that we can tolerate, the more are the runtime
savings from our proposed error budgeting scheme. Our solution quality
for very low error budgets is very close to the accurate distribution even
though we are significantly better in terms of runtime. We have also
shown that the quadratic approximation scheme gives us better qual-
ity solutions for the same error budget when compared with the linear
approximation scheme.

An interesting direction of future work is to investigate a hybrid ap-
proach for error budgeting driven statistical timing analysis using hy-
brid linear and quadratic approximation techniques. Additionally, we
also need to consider corellations between gate delay distributions which
have been assumed to be independent in this work.
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