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1 ABSTRACT 
An efficient statistical timing analysis algorithm that can handle 

arbitrary (spatial and structural) causes of delay correlation is 
described. The algorithm derives the entire cumulative 
distribution function of the circuit delay using a new mathematical 
formulation. Spatial as well as structural correlations between gate 
and wire delays can be taken into account. The algorithm can 
handle node delays described by non-Gaussian distributions. 
Because the analytical computation of an exact cumulative 
distribution function for a probabilistic graph with arbitrary 
distributions is infeasible, we find tight upper and lower bounds 
on the true cumulative distribution. An efficient algorithm to 
compute the bounds is based on a PERT-like single traversal of 
the sub-graph containing the set of N deterministically longest 
paths. The efficiency and accuracy of the algorithm is 
demonstrated on a set of ISCAS’85 benchmarks. Across all the 
benchmarks, the average rms error between the exact distribution 
and lower bound is 0.7%, and the average maximum error at 95th 
percentile is 0.6%. The computation of bounds for the largest 
benchmark takes 39 seconds. 

Categories and Subject Descriptors 
B.8.2 [Performance and Reliability]: Performance analysis 
General Terms 
Algorithms, performance, reliability 
 

2 INTRODUCTION 
Statistical timing analysis is needed because the traditionally 

formulated worst-case timing analysis is no longer sufficient for 
timing verification of advanced chips. Multiple approaches have 
been proposed over the years to deal with the statistical timing 
problem. These methods rely either on the performance-space 
Monte-Carlo STA [1,2], the parameter-space integration methods 
[8], or the analytical approaches [3,4,6,10]. Monte-Carlo based 
and integration techniques are very accurate but computationally 
expensive and become infeasible in the presence of a large 
number of independent sources of variation and for large circuits. 
The central challenge for the analytical techniques is the 
computation of the probabilistic maximum of circuit delay. The 
proposed approaches for dealing with the challenge rely either on 
approximating the true distribution by a more convenient one 
[3,9,10], or on producing the bounds on the true distribution [5,6]. 

Several features seem to be required of a real statistical timing 
analysis tool. First, it must handle path delay correlation due to all 
possible sources, including reconvergence, spatial, and structural 
(non-spatial) correlation. Second, it should allow the analysis of 
timing graphs with arbitrarily distributed node delays (non-
Gaussian). Third, the statistical computation must be based on 
parametric statistical techniques which represent distributions in a 
compact parametric form (by moments), not histograms. Storing a 
full distribution (histogram) in memory for every nominal delay 
point is likely to be too expensive. Finally, given the designer’s 
overwhelming reliance on the standard STA tools such as 
PrimeTimeTM, using the statistical engine as the post-processor to 
the standard STA is an important feature. 

In this paper we describe a statistical static timing analysis tool 
that addresses the above requirements. The exact distribution of 
the longest path through a probabilistic timing graph appears 
intractable regardless of the assumed dependence structure [11]. 
In contrast to the approaches based on the approximations [8][9], 
we believe that computing accurate bounds on the exact 
distribution is more appropriate. It gives greater flexibility in 
modeling complex sources of uncertainty, and is essentially 
consistent with the existing timing paradigm, i.e. the worst-case 
timing is also a bound, albeit a poor one. We introduce several 
key mathematical and algorithmic advances. In Section 3, the new 
mathematical formulation for deriving the entire cdf of the longest 
circuit path is described. Arbitrary correlations between the delay 
of the nodes in the probabilistic timing graph, and arbitrary node 
delay distributions can be handled. In Section 4, an efficient 
algorithm for computing the bounds based on a PERT-like one 
pass traversal of the probabilistic timing graph is described. The 
runtime of the algorithm is O(V+E) where V, E are the number of 
nodes and edges in the sub-graph containing the N 
deterministically longest paths to be analyzed. In Section 5, the 
implementation details and the result of benchmark testing of the 
algorithm are presented.  

 

3 MATHEMATICAL BASIS FOR 
PROBABILISTIC BOUNDING 

3.1 Problem formulation 
The clock cycle of a chip is constrained by the maximum path 

delay, clockN1 TDD ≤}...max{ , where Di is the delay of the ith path 
in the circuit. The delay of each path is a random variable, 
described by a probability distribution. Because }...{ N1 DD  is a 
random vector, the value of }...max{ N1 DD  is also a random 
variable. Then, in order to estimate the statistical properties of the 
chip’s timing, we must find the distribution of }...max{ 1 NDD . 
The cumulative probability function of }...max{ N1 DD  is given by 

}}...{max{)( 1 tDDPtF N ≤= , or equivalently: 
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                        },...,,{)( 21 tDtDtDPtF N ≤≤≤=          (1) 

where F(t) is the cumulative probability function defined over the 
path delay probability space. The contribution of this work is a 
way to efficiently derive bounds on the cdf of circuit delay for any 
probabilistic timing graph, which is simply a timing graph with 
random node delays. 

In contrast to other approaches, we assume that path delays, not 
node delays, are Gaussian. This assumption is not, however, as 
restrictive as it appears because of the distributional convergence 
under the Central Limit Theorem (CLT) [12]. CLT ensures that a 
sum of arbitrarily distributed random variables converges to a 
normal distribution. It is well known that in practice convergence 
occurs quite rapidly, for N=8-10 random variables, especially for 
distributions that are nearly Gaussian. Also, while the standard 
formulation of CLT is for independent random variables, the sum 
of correlated random variables is also guaranteed to converge to a 
normal distribution for most practical models of correlation [15]. 

Under the above model of path delay, we can handle node delay 
variation described by an arbitrary probability distribution 
(Gaussian or non-Gaussian). Not being limited to Gaussian 
distributions would permit us to handle non-linear dependencies 
of delay to process and environmental parameter variations. The 
statistical model of delay can then be found by a higher-order 
Taylor expansion of the gate and interconnect delay expressions, 
as compared to the typically used linear expansions [5][6][9]. This 
will improve the accuracy of statistical gate and interconnect 
delay models. 
 

3.2 Bounding the Distribution of Circuit 
Delay 

We now show how we can derive a bound on the cdf of the 
longest path delay propagating through the probabilistic timing 
graph that has the properties defined in the previous section. 
Specifically, we derive an upper and a lower bounds on 

1(( ) max{ ... } )NPF t D D t= ≤  

where Di is the delay of the ith path. We can re-write this equation 
as a cumulative probability: 

1(max{ ... } ) ( { })N iP D D t P D t=≤ ≤∩    (5) 

Assuming that the path delay vector is a Gaussian vector, the 
following theorem can be proven. 
Theorem 1. For any multi-normal random vector with a 
correlation matrix given by Σ  

 '( { }) ( { })i i iP D t P Z tΣ Σ≤ = ≤∩ ∩  (6) 

where  and ' ( )/ ~ (0,1)D Di ii it t Z Nµ σ= − .  

This theorem expresses the sought cumulative probability in terms 
of the distribution of a standard multivariate normal vector with 
an arbitrary correlation matrix. Note that the vector t’ that 
determines the set over which the probability content is evaluated 
is not equi-coordinate, i.e. '

it const≠ . The first step is to re-
express the cumulative probability of Eq. 6 by a cumulative 
probability of a vector with a well structured correlation matrix. 
This is needed because it will allow to later use accurate 
numerical methods to evaluate the cumulative probability. The 
following theorem can be used to do that [13]: 

ij ij

ij ij
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Corollary 1: Using Theorem 2, the cumulative distribution of Eq. 
6, can be bounded from below and from above by: 

 ' '
min( { }) ( { })i i i iP Z t P Z tΣ Σ≤ ≥ ≤∩ ∩  (7) 

              ' '
max( { }) ( { })i i i iP Z t P Z tΣ Σ≤ ≤ ≤∩ ∩        (8) 

where minΣ  (and maxΣ ) are generated by setting all their off-
diagonal elements to min min{ }ij ijΣ = Σ (and max max{ }ij ijΣ = Σ ) 
for all ≠i j .  

If min min{ }ij ijΣ = Σ  is small, the bound produced by Equations 7 
and 8 may be further improved by the following transformation. 
Let C be a subset of {1….N}, such that ij qρ ≥ for all 

 and i C j C∈ ∉ , then: 

' ' '( { }) { } { }i i i i i i
i C i C

P Z t P Z t P Z tΣ
∈ ∉

     ≤ ≥ ≤ ≤     
∩ ∩ ∩  

Then, to get the tightest bound, we will use the largest bound:  

' ' '
minmax ( { }), { } { }i i i i i i

i C i C

P Z t P Z t P Z tΣ
∈ ∉

        ≤ ≤ ≤        
∩ ∩ ∩  

The cumulative probabilities (7) and (8) are now described by 
correlation matrices with identical off-diagonal elements. Still, 
they require evaluating the probability content of a standard multi-
normal vector over the non-equicoodinate set, which is 
numerically expensive. To enable a more efficient numerical 
evaluation of these cumulative probabilities (c.p.), we now 
express them in terms of the equicoordinate probability. 

3.2.1 Bounding Cumulative Probability through 
Stochastic Majorization 

In this section we will show how we can bound the cumulative 
probabilities (7) and (8) by a partial ordering of the mean and 
variance vectors, using the techniques of the theory of 
majorization [14]. In order to derive the bounds, however, we will 
need to ensure that several criteria are met, since the bounding is 
predicated on several properties of the probability distributions.  

The notions of strong and weak majorization can be used to 
compare random variables and their distributions [13]. First, we 
introduce a set of formal definitions that allow comparing random 
variables and their distributions. The theorems in this section are 
shown without the proofs, which can be found in [13]. 
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The notions of strong and weak majorization can be extended to 
enable comparing random variables and their distributions.  
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Definition (Weak Stochastic Majorization) :

g Schur-convex (decreasing

Schur-concave) set .A
The key idea that we are exploiting in deriving bounds on the 
cumulative probabilities (7) and (8) is that for certain distributions 
stochastic inequalities can be established on the basis of a partial 
ordering of the parameter vectors using ordinary (deterministic) 
majorization.  

The class of random vectors which can be ordered via the 
ordering of their parameter vectors is limited to distributions that 
are Schur-convex (Schur-concave). The following theorems 
formalize this fact [13]: 

 Let the random variable  have a density

 for   (a location parameter vector). If is 

Schur-convave in , then  implies that 
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X f x

x f x x

X X

 

Thus, if the probability density function of random vector θX  
satisfies the properties of Theorem 3 and 4, then we can find a a 
random vector ξX  that will stochastically majorize, or bound the 

distribution of, θX . This is equivalent to saying that (by the 
definition of stochastic majorization) the probability content of 

ξX  over the appropriate set will bound the probability content of 

θX  over this set. This set must satisfy two properties. First, this 
set must enable computing the probability content that 
corresponds to our original purpose: the cumulative distribution of 

the path delay random vector. Second, by definition, it must be 
Borel-measurable and Schur-convex.  
The next theorem provides final answers: 

 (1) Let  be the multivariate normal random variable
with the mean vector .  The density function ( ) is 
Schur-concave.
(2) Let  denote the set { | , 1,..., } . This set is
Schur-

i

X
f x

A A x x a i N
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θ θ−

= ≤ =
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We can now point out that for A defined above, 
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The similar theorems can be stated for the case of weak stochastic 
majorization:  

 (1) Let  be the multivariate normal random variable

with the mean vector   The density function  is 

Schur-concave.

(2) Let  denote the set  . This set is

decrea

Theorem  7 :

. ( )

{ | , 1,..., }i

X

f x

A A x x a i N

θ

θ θ−

= ≤ =

sing and Schur-concave. 
If  then 

                            or

                    

Theorem 8 : ,

[ ] [ ],

( { }) ( { })i i i i

P X A P X A

P X a P X a

ξ θ

ξ θ

ξ θ

∈ ≤ ∈

+ ≤ ≤ + ≤

;;

∩ ∩
 

In the next section, we use the above results to bound the 
cumulative distribution of the path delay vector. In doing that, it 
will also become clear why the parallel notions of strong and 
weak stochastic majorization had to be developed. 
We can now easily find an equi-coordinate parameter vector that 
is majorized by the mean path delay vector t. Using the definition 
of majorization, one may check 

Fact 1. If 1( ,..., ) =
� Nt t t and 

1

1( ,..., ),  where 
N

i
i

t t t t t
N =

= = ∑�
, 

then 

     ( { }) ( { })→ ≤ ≤ ≤;
� � ∩ ∩i i it t P Z t P Z t  

It is impossible, however, to find an equi-coordinate parameter 
vector that (strongly) majorizes t. Here we need to resort to weak 
majorization. Using Theorem 8, we can show that:  

Fact 2. If 1( ,..., ) =
� kt t t and min (min{ },...,min{ })=t t t , then 

min min     ( { }) ( { })i i it t P Z t P Z t→ ≤ ≤ ≤;;
� ∩ ∩  

Indeed, let min 0t t t= − ≤+
�

, 0 {0,..., 0}=
%

. Then, 0 t∆ff
%

 and 

min min( { }) ( { }) ( { 0 })i i i i iP Z t P Z t t P Z t≤ = + ≤ ≥ + ≤+
�∩ ∩ ∩  

We have finally bounded the original cumulative probability by 
cumulative probabilities expressed in terms of an equi-coordinate 
vector, a correlation matrix with identical off-diagonal elements, 
and the standard multivariate normal N(0,1) vector. 
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3.2.2 Evaluating the Cumulative Probability 
The prior transformations reduced the problem to estimating the 

cumulative probabilities of a well-structured object whose 
probability content is amenable to numerical evaluation. This can 
be done by using pre-generated look up tables for a wide range of 
dimensionalities, coordinates, and correlation coefficients. The 
tables have been generated via the Monte-Carlo integration of the 
cumulative probability of a multivariate standard normal vector 
for a range of: (1) vector cardinalities (e.g. number of paths, N); 
(2) the off-diagonal correlation coefficients. To reduce the data 
storage requirements, interpolation is used to find the cumulative 
probability values.  
 

4 ALGORITHM FOR COMPUTING 
CIRCUIT DELAY DISTRIBUTION 

4.1 Linear Additive Statistical Delay Model  
The exposition above assumed that the path-to-path covariance 

matrix is given. In reality, there will be a significant cost to 
computing this matrix since this operation is 2( )O N  with the 
number of paths N. In this section, we derive a set of results that 
allow computing the correlation matrix and the vector of 
variances in an algorithmically efficient manner.  

The efficient algorithm to compute the bounds is based on the 
realization that for linear additive models of statistical 
dependence between the delays of nodes in the probabilistic 
timing graph, the computation of bounds is greatly simplified. It 
turns out that under this model, the binary relation of correlation 
can be converted into a unary relation that reflects the degree of 
correlation of a node delay variation to the common level of 
variation among the nodes. This transformation allows key 
computational improvements. The linear additive statistical model 
is a natural result of ascribing the total node delay variation to two 
components: inter-chip (or chip-to-chip) and intra-chip (or within-
chip) components of variation [16]: 

inter intrad d d= +  

 The first is due to the chip-to-chip, wafer-to-wafer, and lot-to-
lot variations in the processing conditions. The second is due to 
local variations on the same chip. Note that the environmental 
variations can also be captured by the intra-chip source of 
variation.  

We will now work in the space of node delays. For the purpose 
of notational simplicity, in this section we refer to delay by x. For 
reasons of greater analytical suitability, we write the statistical 
delay model as a sum of two independent weighted random 
variables:  

i i i ix b z a y= +  

where xi is the overall delay of node i, iy  is the node-specific 
component of variation, and z  is the chip-level component of 
variation. The yi and z can be modeled as independent random 
variables with { } { } 0iE z E y= =  and { } { } 1iVar y Var z= = . 
Together, the coefficients a and b determine the variance of x and 
the correlation of x to the chip-level component of variation:  

2 2{ } { } { }i i i i iVar x a Var y bVar z V= + =  

Most importantly, the above formulation allows us to 
parsimoniously represent the relation of correlation between 
nodes. It’s easy to show by writing out the covariance expression 
term by term that: 

1/2 1/2 2 2 2 2

cov( , )
( , )

{ } { }
i j i j

i j
i j i i j j

x x bb
cor x x

Var x Var x a b a b
= =

+ +
 

We now introduce a concept of node-to-chip correlation. This is 
the correlation of any particular node delay to the common, chip-
to-chip delay variation. It is this transformation that breaks the 
computational bottleneck. The transformation is achieved by 
introducing the pure chip-level variation ox z= , defined by ao= 

0 and bo = 1. Then, 2 2
0( , )i i i icor x x b a b= + . 

Obviously, the binary relationship of correlation between the 
delay of node i, and the chip-level variation is expressed 
exclusively in terms of the attributes that describe the statistical 
structure of delay of node i. To further drive this point home, we 
will use the following notation to highlight the unary nature of the 
node-to-chip correlation: ( , )i o icor x x c= . Now we can express 
the relationship of correlation between the two node delays as: 

( , )i j i jcor x x c c= ⋅ . 

This is the key result because it allows representing a binary 
operator as a product of two unary operators. Note, however, that 
this is simply an algorithmically convenient way of capturing the 
fact that random variables described by linear additive statistical 
models have an specially simple structure of correlation. 
It is easy to see that the above definition can be extended to 
compute the correlation between two sums: 

1 2

1 2

1 1 2 2

1 1

22
1 1

2 2

1 1 1 1

( ) ( )
( , )

k k

i jk k
i j

i j
k k k ki j

i i j j
i i j j

b b
cor x x

a b a b

= =

= =

= = = =

⋅
=

     + +        

∑ ∑
∑ ∑

∑ ∑ ∑ ∑
 

where ai , bi and ai, bj  are the statistical coefficients of the nodes 
from the first and second groups of summands. 

The node-to-chip correlation can be directly computed by 
setting the second sum to be the chip-level variation, z. This 
simply requires setting k2=1, ao= 0 and bo=1. Then, setting k=k1,  

   1
,0 2

1
2

1 1

( , )

k

ik
i

k i
k ki

i i
i i

b
f cor x z

a b

=

=

= =

=
  +    

∑
∑

∑ ∑
�        (9) 

Finally, note that using the above notation, the correlation 
between two sums of node delays can be expressed succinctly by: 

1 2

1 2 1 2, ,0 ,0
1 1

( , )
k k

k k i j k k
i j

f cor x x f f
= =

=∑ ∑�  

Again, we can represent a binary operator that describes the 
correlation between sums of nodes, as a product of two unary 
operators. 
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4.2 Efficient Computation of the Bounds 
From the full probabilistic timing graph G, we first extract a 

sub-graph G’ that contains N deterministically (with respect to the 
mean delay value) longest paths using an efficient path-extraction 
algorithm, e.g. [17]. Assuming the longest path is known ( maxD ) 
and the timing threshold ( D∆ ) is set, the N longest paths with 
delays in the interval max max{ , }D D D−∆  can be extracted in a 
very reasonable time. We now use the unary correlation to 
describe an efficient algorithm for computing the lower and upper 
bounds on the circuit delay cdf. This algorithm has the 
computational complexity of O(V+E) where V, E are the number 
of nodes and edges in G’. The algorithm computes all the 
variables needed for establishing the bounds in a single PERT-like 
pass of the graph.  

The first key ingredient is the update formula for computing the 
correlation of the sum of (k+1) variables based on the node-to-
chip correlation of k variables and the node-to-chip correlation of 
the (k+1)th node:   

Theorem 10. The update formula is 
21,0
,0

1
k

k

f
f

α
α β−+

+=
+ +

 

where
2

1 1
22

( ) ( )
k kb b
h k h k

α + ++� , 
2
1
2( )

ka
h k

β +� , 
1

( )
k

i
i

h k b
=
∑� ,  and 

2

1

( )
k

i
i

g k a
=
∑� . 

This expression would allow an exact computation of path-to-
path delay correlation, and path variance, for all paths through the 
timing graph. It is clearly impossible to compute the full 
correlation matrix in a one-pass manner. The second ingredient is 
the realization that the computation of the entire path-to-path 
correlation matrix is unnecessary, since the bounds rely only on 
the minimum and maximum values of the correlation matrix. With 
that in mind, we can use an efficient graph-traversal algorithm to 
compute only the smallest (largest) path-to-path correlation, rather 
than every path-to-path correlation. The algorithm is based on the 
following two theorems. By directly analyzing the unary 
definition of path-to-path correlations ( , ,0 ,01 2 1 2k k k kf f f= ) we can 

see that: 
Theorem 11: The minimum (maximum) path-to-path correlation 
in a timing graph is given by the product of two smallest (largest) 
path-to-chip correlations in the graph.  
At the same time, we are guaranteed to find the two smallest 
(largest) path-to-chip correlation values by propagating them in a 
PERT-like fashion from the primary inputs to the primary outputs: 
Theorem 12. Computing two smallest (largest) path-to-chip 
correlations in the probabilistic timing graph can be done in a 
single traversal of a graph.  

Similarly, the maximum and minimum path variance can be 
computed in one PERT-like traversal of the graph. We can show 
that, defining the variance update function, VU: 

2 2
1 1 1( 1) 2 ( )k k kVU k a h k b b+ + ++ + +�

1

1 1

{ } { } ( 1)
k k

i i
i i

Var x Var x VU k
+

= =

= + +∑ ∑  

In summary, all the variables needed for computing the bounds 
on the true cdf can be found in a single traversal of the timing 
graph. 
 

5 RESULTS 
The algorithms described in Sections 3 and 4 have been 

implemented in C, and have been run on Windows PC with CPU 
2.4 GHz and 512 MB memory. Below is our flow’s pseudo-code: 

 
The algorithms have been tested on a set of combinational 

ISCAS85 benchmark circuits. The 3 σ values of node delays were 
set at 15-20% of the mean values. The node delays were described 
by a correlation matrix with entries ranging from 0.8-0.95. The 
exact cumulative distribution function was computed via Monte-
Carlo runs of the deterministic static timing analysis algorithm 
with samples taken from the relevant correlated gate delay 
distributions. For each simulation, 1000 iterations of Monte Carlo 
were run.  
The bounds generated by the algorithm follow the Monte Carlo 
distribution very closely (Figure 1 and 2a). Table 1 shows the 
errors of both upper and lower bounds with respect to the exact 
distribution. The bounds were computed for N=20 and 50 longest 
paths. Across the benchmarks, the lower bound rms error is 0.3%-
1.4% while the upper bound rms error is 0.7%-2.1%. Note that we 
are specifically interested in the lower bound since it gives us a 
conservative value of circuit delay at any confidence level. 
Importantly, the lower bound becomes tighter at higher 
confidence levels, giving a more reliable estimate of parametric 
yield: at the 95th percentile the maximum error across all the 
benchmark circuits is 0.7%. Figure 2b demonstrates that 
accurately accounting for node delay correlations is crucial in 
predicting the shape of cdf: the mean value of an uncorrelated 
case is larger than that of the correlated one, while the spread is 
much smaller. 
Table 1 also contains the evaluation of run time of the algorithm. 
The Monte Carlo (for 1000 samples) is substantially slower than 
our algorithm. The bounding algorithm is very fast: the runtime is 

1. Pre-generate cumulative probability tables for different 
sample size and correlations. 

2. Using standard STA based on mean delay values, extract 
N longest paths  with delays in max max{ , }D D D−∆  

3. In a single traversal of the timing graph: 
� Compute max and min path-to-path correlations 

( min
ijΣ  and max

ijΣ ) 
� Compute min and max path variance among M paths 

4. Compute from the tables lower and upper bounds on 
circuit delay cdf. 

Figure 1. Comparison of Monte Carlo cdf and bounds for the 
benchmark circuit c1908. The lower bound rms error is 0.6%. 
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under 20s for N=20 and under 40s for N=50 longest paths, over 
all the benchmarks. (At the same time, the longest path extraction 
takes up to 90% of total runtime - 188s and 210s for N=20,50). 
Figure 3 shows a close-to-linear growth in the runtime of the 
algorithm as a function of circuit size, which makes practical the 
use of the algorithm for significantly larger circuits. 
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Bounding Error RMS (%) Run-time (sec) 
          

Benchmark 
Number 
of nodes Lower 

Bound 
Upper 
Bound 

95th 
percentile 
error (%) 

Run-time (sec)  
(Monte Carlo) Path  

Extraction 
Bounding 
Algorithm 

c17 13 1.0/0.8 1.2/1.5 0.7/0.6 8 0.994/1.2 0.006/0.010
c432 245 0.4/0.3 1.2/1.4 0.02/0.02 435 23/30 2/4
c499 198 1.2/1.0 2.1/2.4 0.4/0.3 810 30/37 3/5
c880 445 1.1/0.9 1.7/1.9 0.5/0.5 1258 39/45 5/8

c1355 589 1.3/1.1 1.8/2.1 .001/.001 1567 54/60 8/17
c1908 915 0.6/0.4 0.8/0.9 .001/.001 1815 65/82 9/20
c2670 1428 0.7/0.5 0.7/1.1 0.02/0.02 2084 78/97 10/22
c3540 1721 0.8/0.7 0.8/0.8 0.1/0.1 2250 89/102 12/28
c5315 2487 0.8/0.6 1.1/1.2 0.2/0.2 2480 110/138 13/34
c6288 2450 1.1/0.9 1.2/1.6 0.6/0.5 2615 153/179 15/36
c7552 3721 1.0/0.8 1.4/1.5 0.2/0.2 2819 188/210 17/39

Table 1. Prediction errors and run-time for Monte-Carlo and for bounding algorithm (double entries are values for 20/50 paths). 

Figure 3. Run time of the algorithm for different circuit sizes. 

Figure 2. a) Comparison of cdfs for c7552. The lower bound
rms error is 1.0%; b) Change in cdf for c7552 depending on
the level of node delay correlations. 
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