
Abstract
In this paper, we address the problem of signal pruning in static

timing analysis (STA). Traditionally, signals are propagated
through the circuit and are pruned, such that only the signal with
the latest arrival time at each node is propagated forward. This sig-
nal pruning is a key to the linear run time of STA. However, it was
previously observed that a signal with the latest arrival time may
not be the most critical signal, as an earlier signal with a larger
transition time can result in a longer delay in the down-stream
logic. Hence, arrival time based pruning can result in an optimistic
delay, incorrect critical paths, and discontinuities of the delay dur-
ing circuit optimization. Although algorithms were proposed to
remedy this issue, they rely on propagation of multiple signals and
have an exponential worst-case complexity. In this paper, we pro-
pose a new timing analysis algorithm, which uses a two pass tra-
versal of the circuit. In the initial backward traversal, we construct
delay tables which record the required time at a node as a function
of the transition time at that node. This is followed by a forward
traversal where signals are pruned not based on arrival times but
based on slack. The proposed algorithm corrects the accuracy
problems of the arrival time based pruning while at the same time
maintaining the linear run time of STA. We implemented our algo-
rithm and demonstrated its accuracy and efficiency.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance analysis
General Terms
Algorithms, performance, reliability

1 Introduction and Overview of Approach

Static timing analysis has become the primary tool for perfor-
mance verification in the semiconductor industry. It is based on the
propagation of signals through the circuit, where each signal is
comprised of an arrival time and a transition time. During the tra-
versal of the circuit, signals are pruned, such that only the signal
with the latest arrival time is selected for further propagation to the
down stream gates. Since only a single signal is propagated for
each node in the circuit, the run time of STA is linear with the cir-
cuit size. It is this linear run time characteristic that has allowed
STA to be applied to very large designs efficiently and is responsi-
ble in large part for its industrial success. Although the forward
propagation of signals is sufficient for computing the maximum
delay of the circuit, it has been common to also propagate so-
called required time signals in backward direction through the cir-

cuit. By subtraction the arrival time from the required time, slack is
computed at each node, which is useful for circuit optimization.

In the last two decades since the inception of STA [1][2], exten-
sive work has focussed on improving the accuracy of the analysis.
These works have focussed on different aspects, such as identifica-
tion of false paths [3][4], delay model accuracy [5], simultaneous
input switching effects [6], and different noise effects [7][8][9].
Hence, the accuracy of STA has improved significantly making it
feasible to use STA as a sign-off tool for high-performance
designs. However, despite these improvements, the basic arrival
time based signal pruning algorithm that is employed in STA has
remained relatively unchanged.

It was previously noted that the arrival time based pruning may
select the incorrect signal for forward propagation [10]. The objec-
tive of signal pruning is to select for each node the signal that will
result in the overall longest delay at the primary outputs of the cir-
cuit. We refer to this signal as the “critical signal”. However, the
critical signal may not be the signal with the latest arrival time.
This is illustrated below in Figure 1, where two different signals
are propagated through a small circuit, representing two possible
paths from the inputs to the output (A1-A3-A4 or B2-B3-B4). Signal

A originates from input n1 and signal B originates from input n2.

When both signals reach node n3, the pruning algorithm selects

one of them for forward propagation. Since the arrival time of sig-
nal B3 is greater then the arrival time of A3, the traditional arrival

time based pruning algorithm will select signal B3, discarding sig-

nal A3. However, the transition time of signal A3 is greater than

that of signal B3. Hence, the delay of gates g1 through g2 will be

larger for signal A than that for signal B, and signal A has an over-
all larger delay then signal B.

It is therefore clear that the traditional arrival time pruning
method may select the incorrect arrival time for forward propaga-

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
DAC 2004, June 7-11, 2004, San Diego, California, USA
Copyright 2004 ACM 1-58113-828-8/04/0006...$5.00.

Figure 1. Circuit example with incorrect signal pruning.

A1
n1

n2

n3 n4

A3 A4

B2 B3 B4

A1 A3 A4

B2 B3 B4

A1 < B2 A3 < B3 B4 < A4

g1 g2

Static Timing Analysis using Backward Signal Propagation
Dongwoo Lee, *Vladimir Zolotov, David Blaauw

University of Michigan, Ann Arbor, MI

*Motorola Inc. Austin, TX

39.3

664

tion. This can result in the computation of an optimistic circuit
delay in STA since critical signals are lost. In this case, the com-
puted critical path will also be incorrect, leading to possibly erro-
neous circuit optimization. Finally, the arrival time based pruning
can results in discontinuities of the circuit delay as a function of
the gate delays. This discontinuity arises when the delay of the
critical path changes suddenly as the pruning algorithm switches
from propagating one arrival time to another during circuit optimi-
zation. Such discontinuities can cause severe convergence prob-
lems for circuit optimization algorithms.

To address this problem in STA, several approaches have been
proposed. In [10], an STA algorithm was proposed using multiple
signal propagation, thereby guaranteeing that the critical signal is
propagated. A pruning criteria was presented to reduce the number
of propagated signals, however, the worst-case complexity of the
approach remains exponential with circuit size. Also, the algorithm
requires substantial change to the implementation of STA. In [11],
an algorithm is proposed where a new signal is constructed for
propagation by combining the latest arrival time among all signals
with the largest transition time among all signals. This constructed
signal is guaranteed to result in a worse overall circuit delay than
any of the true signals at a node. This approach therefore results in
the computation of a pessimistic circuit delay, but removes the dis-
continuity problem present in arrival time based pruning. An addi-
tional draw back of this approach is that the critical path can no
longer be clearly identified in a circuit since the propagated signals
are constructed by combining aspects of multiple signals. More
recently, this method was extended in [12] to reduce the conserva-
tism of the approach.

In this paper, we present a new STA algorithm. The approach is
unusual in that it first performs the backward traversal of the cir-
cuit, followed by a forward traversal, unlike traditional STA which
first performs a forward traversal followed by a backward tra-
versal. During the backward traversal, the required time is propa-
gated from the outputs of the circuit to the inputs. However, the
gate delays, and hence the required time, is a function of the transi-
tion time at a node. Therefore, we construct a table of the required
times at each node as a function of the transition time at that node.
We show how such a required time table can be constructed in a
single traversal of the circuit.

After the backward traversal, we perform a forward propagation
of signals in the circuit, pruning signals at each node. However,
counter to arrival time pruning, we select the signal with the worst
slack for propagation. Since for each signal at a node the transition
time is available, we can compute the required time for that signal
using the required time table, and hence the slack of the signal. The
slack of the signal represents its delay both leading up to that node,
as well as from that node to any of the primary outputs of the ciru-
cit. Therefore, the signal with the worst slack is guaranteed to be
the critical signal. We show that our approach eliminates the inac-
curacy of arrival time based pruning while at the same time main-
tain the linear run time of timing analysis. To our knowledge, this
is the first linear run time solution to this problem. We imple-
mented our proposed approach and demonstrated its accuracy in
comparison to exhaustive path traversal and compare its efficiency
to that of traditional STA.

The remainder of this paper is organized as follows. In section 2
we define basic concepts and the traditional STA approach. In Sec-
tion 3, we present our proposed STA algorithm, including its prop-

erties and applications. In Section 4, we present experimental
results and in Section 5, we conclude the paper.

2 Traditional STA Model and Definitions

In this section, we present a formal definition of a timing graph
and the traditional timing analysis algorithm using arrival time
based pruning. For the purpose of discussion, we do not include
the elimination of false paths due to logic or timing correlations in
a circuit in our formulation. The problem addressed in this paper is
orthogonal to the problem of false path elimination, and our pro-
posed solution can be applied to these methods as well.

We first define the so-called timing graph, on which a timing
analysis algorithm is performed.

Definition 1. A timing graph is defined as a directed graph having
exactly one source and one sink node: G={N,E,ns,nf}, where

N={n1,n2,...,nk} is a set of nodes, E={e1,e2,...,el}is a set of edges,

 is a source node, and is a sink node. Each edge

 is simply an ordered pair e=(ni,nj) of nodes.

The nodes in the timing graph correspond to nets in the circuit,
and the edges in the graph correspond to the connections between
gate inputs and outputs. Although circuits in general have multiple
inputs and outputs, we can trivially transform them to graphs with
a single source and sink by adding a virtual source and virtual sink.
Without loss of generality, we also assume that signal crossing
times are measured at 50% of the signal level.

Each edge E is assigned two functions: a delay function
de=de(si), which represents the signal propagation delay from a

gate’s input to its output, and a transition time function se=se(si),

which represents the transition time of the signal at the gate’s out-
put, where si is the transition time at the gate’s input.

We now define a path in timing graph G, and its path delay as
follows:

Definition 2. A path P of Timing Graph G={N,E,ns,nf} is a

sequence of its nodes P=(na,nb,...,nz) such that each pair of adja-

cent nodes ng and nh has an edge egh=(ng,nh).

A path P=(na,nb,...,nz) defines a sequence of edges

(eab,ebc,...,eyz). Given the transition time sa at the first node na of

path P, we can determine the signal transition times for all the
nodes on the path using the equation sj=sij(si) recursively, where sj

is the to-be-determined transition time at node nj, si is the transi-

tion time at the predecessor node ni, and sij is a transition time

function of the edge eij. After the signal transition time at each

node of a path is determined, the delay of the path is determined
using the following definition:

Definition 3. The path delay dP of path P is defined as

, where dij(si) is a delay of an edge eij on path P with

input transition time si, and the summation is over all edges

belonging to path P.

Finally, among all paths terminating at a node, we define the
path with the maximum arrival time as the critical path up to that
node.

�
�

�∈ �� �∈

� �∈

�
��

�
�

()

�
��

�∈
∑

665

Definition 4. A path having the maximum delay among all paths
with the same ending node is called critical.

The critical path from the source to the sink node nf of a timing

graph is referred to as the critical path of the timing graph, and its
path delay, d(G), is referred to as the delay of the timing graph. The
main objective of timing analysis is to find the correct critical path
in a timing graph and to compute its delay. It is clear that this criti-
cal path delay must be decreased in order to increase circuit perfor-
mance. Also, delay of a timing graph is a continuous function with
respect to its gate delays [10]. This property is important for circuit
optimization methods, since many of such methods rely on their
objective function being continuous.

The traditional approach for finding the critical path in a circuit
is based on the PERT algorithm and uses the propagation of signals
from the source node to the sink node. A signal is defined as fol-
lows:

Definition 5. A signal Sn at a node n is a triplet Sn={TA, s, P}

where n is the node at which the signal is situated, TA is its arrival

time at the node n, s is its transition time at the node n, and P=(ns,

na,..., n) is the signal propagation path from the source node ns to

the node of interest n.

The traditional timing analysis algorithm is shown in Figure 2.
The algorithm iterates through nodes in a timing graph in topologi-
cal order. As a signal is propagated forward through a timing edge
eki, its arrival time is increased by the edge delay dki(sk) and its

transition time is replaced with ski(sk), where sk is the transition of

the signal at the fanin node of the edge. The algorithm then selects
the signal with the latest arrival time and assigns it to node i.
Although in our notation a signal at a particular node records its
entire path to that node, in practice, a signal only needs to record
its predecessor node. Since only a single signal is propagated
through each edge, arrival time based STA has a run time complex-
ity that is linear with the number of edges in the timing graph.

3 Proposed STA Approach

 Instead of traversing the timing graph in direct topological order,
the proposed approach performs a traversal in reverse topological
order. Also, instead of computing arrival times at nodes the pro-
posed slack based STA algorithm computes delays from each node
to the sink node. The delay from a node to the sink node is depend-
ent on the transition time at that node. Hence, we compute delays

from a node to the sink node as functions of transition time. Al-
though it makes the algorithm slightly more complex, knowledge of
the delays as functions of transition time is critical for selecting the
correct signal for forward propagation in the second phase of the al-
gorithm. Also, this information can be very useful for circuit opti-
mization since it can be used to predict the variation of the circuit
timing in response to different transformations that change the tran-
sition time at a node.

3.1 Circuit delay as function of transition time

Initially, we examine the dependence of the timing graph delay
on the transition time at the source node sn. We then extend our

analysis to the delay from an arbitrary node in the circuit to the
sink node.

Since the delay and output transition time of individual gates are
a function of their input transition time, the delay of the timing
graph as a whole, as well as the transition time at the sink node are
a function of the transition time at the source node. Furthermore,
since the delay and output transition time are continuous functions
of input transition time, it is easy to prove that the delay and sink
node transition time of a timing graph are continuous functions of
the transition time at the source node, as stated in the following
property:

 Property 1: If the timing graph edges have delays and transition
times that are continuous functions de(si) and se(si) of edge input

transition times si, then the timing graph delay D and the sink sig-

nal transition time sf are continuous functions D(ss) and sf(ss) of

the transition time ss at the source node of the graph.

It is useful to note that in a real circuit any transition time s has a
positive, non-zero lower bound smin defined by the maximum

speed of logic gates switching. On the other hand, the transition
time is upper bounded by value smax defined by the maximum rea-

sonable delay of the circuit. From this, it is clear that both the delay
and transition time functions Di(sj) and si(sj) can be efficiently

approximated with a finite table at any required accuracy.

We now extend our analysis to the delay from an arbitrary node
in the graph to the sink node, and introduce the following useful
definition of a dependence graph.

Definition 6: For a node n in timing graph G=(N,E,ns,nf) with sink

node f, we define a node n dependence graph Gn= (Nn,En,n,nf) as

the subgraph of G such that it consists of all nodes and edges of
graph G belonging to at least one path from node n to the sink node
nf.

In Figure 3, we show the dependency graph of node n for an exam-
ple of timing graph. Solid edges are dependent edges of node n.
We refer to the delay of a dependence graph Gn as Dn. Note that

delay Dn is the delay of the slowest path from node n to the sink

node f of the timing graph G. The delay of the dependence graph at
n is dependent on the transition time at node n, meaning that Dn =

Dn (sn). Also, it is easy to see that if the sink node has a required

time trf and node n has a required time trn, then the delay of the

dependence graph at node n can be expressed as the difference of
these require times:

Dn = trf - t
r
n. (EQ 1)

1. Assign to the source node n0 the signal S0={T0, s0, P0}

where T0=0, P0=(n0)

2. Visit each node, i, in the graph in topological order:

2.1. For each incoming edge eki from node k to node i with

signal Sk=(Tk, sk, Pk), create a new signal Ski=(Tki, ski,

Pki) where Tki=Tk+dki(sk), ski=ski(sk), Pki=(Pk, ni)

2.2. From all signals Ski select signal Sl=(Tl,sl,Pl), where Tl =

max(Tki)

2.3. Assign the selected signal Sl to node ni.

Figure 2. Traditional timing analysis algorithm.

666

In addition to the delay from a node to the sink node, we also
define the delay De from an edge to the sink node, as follows.

Definition 7: The delay from edge eab=(na,nb) is the delay of the

longest path starting from this edge and ending at the sink node nf.

3.2 Backward propagation of signals

We now discuss how the delay from node n to the sink node nf

can be computed using backward propagation of signals. We
express the delay from node n to node nf recursively as a function

of the delay from its fanout nodes and its fanout edges. We con-
sider the graph fragment shown in Figure 4 where node n has
fanout nodes x, y, The delay Dnx(s) from edge (n, x) to the sink

node nf can be expressed in terms of the delay Dx(s) and the edge

delay function dnx(s) and transition time function snx(s) as follows:

Dnx(s) = Dx(snx(s)) + de(s) (EQ 2)

The delay from node n can now be computed as the maximum of
the delays from each of its fanout edges (n, x), (n, y), ... as follows:

Dn(s) = max(Dnx(s), Dny(s), ...) (EQ 3)

The algorithm for computing delays Dn(s) from nodes n in tim-

ing graph G={N,E,ns,nf} as a function of the signal transition

times at those nodes is shown in Figure 5. It traverses the timing
graph in reverse topological order starting from the sink node nf

and computes the delays from each node n using the values of the
delays from its fanout nodes. For simplicity, the function Df(s) = 0

although any other constant value could be used. Note that in prac-
tice, the function Dn(s) is represented by a linearly interpolated

table and that tables for all nodes in the graph are constructed in a
single backward traversal.

This algorithm computes delays from each node of the timing
graph including the source node. The delay from the source node is
the delay of the timing graph itself. Each delay is computed for all
possible values of signal transition times. The complexity of the
algorithm is O(NM) where N is number of nodes in the timing
graph G={N,E,ns,nf} and M is number of discretization points of

delays and transition times as a function of transition time.

The above algorithm does not compute signal transition time at
the sink node of the graph as a function of the transition time at its
source node. We therefore extend the algorithm such that a transi-
tion time function Sn(s) is computed, which expresses the transi-

tion time of the sink node nf as a function of the transition time of a

signal at node n. Again, we can define the edge transition time
function Snx(s) for edge (n, x) as the transition time at the sink node

nf as a function of the transition time of a signal that passes through

(n, x). Similar to EQ 2, Snx(s) is computed as follows:

Snx(s) = Sx(snx(s)) (EQ 4)

 Note that for the sink node itself, Sf(s) = s.

The computation of the node transition time function Sn(s) is

more complex and is tightly coupled to the computation of the
delay function Dn(s) shown in EQ 3. Both are computed simulta-

neously, as shown in Figure 6. The algorithm iterates through the
complete range of possible transition times. For each transition
time si, the edge delay functions Dnx(si), Dny(si), ... are evaluated

for each fanout edge and the maximum delay is selected. The edge

Figure 3. Dependency graph for node n

s fn

a

b
c

d

node n dependency graph consists of nodes n, c, d and
f and, edges (n,d), (n,c), (d,f) and (c,f)

Figure 4. Fragment of a timing graph

n

nx

ny

.

.

.

1. Assign to the sink node nf the delay function Df(s)=0

2.Visit each node n in the graph in reverse topological order
and perform the following:

2.1. For each outgoing (fanout) edge ex=(n,x) from node n

to node x propagate the delay Dnx(s) from node x

through the edge ex using formula (EQ2).

2.2. Compute the delay Dn(s) from node n to nf using for-

mula (EQ3)

2.3. Assign the computed delay Dn(s) to node n

Figure 5. Backward computation of dependence graph delay

1. For each transition time value si compute values of the

delay from node n to the sink node and transition time
functions Dn(si) by doing the following:

1.1. From the set of edge delay functions {Dnx(si),

Dny(si),...} select the function Dnx(si) such that

Dnx(si)=max(Dnx(si), Dny(si),...).

1.2. From the set of edge transition time functions {Snx(si),

Sny(si),...} select the function Snx(s) corresponding to

the same edge (n,x) that the delay function Dnx(si) cor-

responds to.

1.3. Assign the values of the selected functions for input
transition time si to the delay and transition time func-

tions at node n: Dn(si)=Dnx(si) and Sn(si)=Snx(si).

Figure 6. Computation of signal slew at a node.

667

transition time functions Snx(si), Sny(si), ... are also evaluated for all

fanout edges with input transition time si. Since the transition time

of the sink node is determined by the latest arriving signal, the
algorithm selects the transition time of the fanout edge, corre-
sponding to the selected maximum delay. In this manner, the delay
from node n to the sink node nf and its associated transition time

are computed for each value of si, until the complete delay func-

tion Dn(si) and slope function Sn(si) are defined for node n.

 One of the results of this algorithm is the transition time func-
tion of the source node Ss(s). This function gives values of the tran-

sition time at the sink node as a function of the transition time at
the source node of the timing graph. Hence, if only the delay and
transition time of the sink node are required in the static timing
analysis, the proposed backward propagation of signal is sufficient
for its computation. However, for many optimization tasks, such as
gate sizing and logic optimization, it is advantageous to also com-
pute the critical path and the slack at each node. We now show how
these can be computed using an additional forward propagation of
signals.

3.3 Arrival time, slack and critical path
computation

To compute the arrival time, slack and critical path for each
node of the timing graph, we propagate signals in topological order
through the circuit. We first consider a single propagated signal.
During its forward propagation, we compute its arrival time Tn and

transition time sn at node n. During the backward traversal,

described in the previous section, we obtained the delay function
Dn(s) representing the maximum delay from node n to the sink

node nf, as a function of the transition time at node n. Using the

transition time sn of a forward propagated signal at node n, it is

therefore possible to compute the required time trn for this signal,

using EQ 1 as follows:

trn = trf - Dn(sn) (EQ 5)

Using this required time, it is now possible to compute the slack
Sln of the propagated signal by subtracting its signal arrival time

from its signal required time:

Sln = trn - Tn (EQ 6)

In the same way, it is possible to compute the slack of all signals
that are propagated to node n. Since for each signal we can com-
pute its slack, we determine which signal will result in the latest
arrival time at the sink node (and hence the largest overall circuit
delay from) by selecting the signal with the most critical slack.
Note that a smaller or more negative slack value corresponds to a
higher criticality of a signal. Using the slack of the signals at node
n, it is possible to predict exactly which signal will be critical and
to only propagate this signal in the forward traversal. In this man-
ner, the arrival time, slack and critical path of all nodes in the cir-
cuit can be computed, as shown in Figure 7. Note the algorithm is
identical to that of traditional timing analysis shown in Figure 2,
except that the pruning criteria for selecting the propagated signal
has be modified to use the backward propagated delay functions.

Using the proposed slack based timing analysis, the critical sig-
nal at each node is selected for propagation, and hence the inaccu-

racies of the traditional timing algorithm are eliminated. Also, the
discontinuities of circuit delay with gate delays that occur in this
algorithm are eliminated making the proposed STA highly suitable
for circuit optimization applications.

In the forward traversal of the proposed algorithm only a single
arrival time is propagated at each node and hence the linear run
time of STA is preserved. The overall run time is dominated by the
backward traversal, which has a complexity O(NM) where N is the
number of nodes in the timing graph and M is the number of dis-
cretization points of the delay functions. Note however that only a
single backward traversal is performed and hence, the traversal
overhead is incurred only once, regardless of the discretization
size. Similarly, a number of other operations, such as the computa-
tion of the output loading condition are shared for all discretization
points. Therefore, it was found that in practice, the run time over-
head due to the backward traversal of the proposed approach was
relatively minor.

Also, the number of discretization M represents a run time/accu-
racy trade-off. As the number of discretizations is reduced, the run
time reduces, but the accuracy of the delay functions reduces due
to interpolation error. Hence, if insufficient discretization points
are used, it is possible that the wrong signal is selected for propa-
gation in the forward traversal due to the approximation of the
delay functions. However, it can be easily shown that the error in
the computed delay of the circuit is bounded by the error in the
delay function representation for each level of the circuit. In prac-
tice, as shown in the next Section, a discretization of 7 points was
sufficient to obtain an exact match between the proposed algorithm
and exhaustive timing analysis.

4 Experimental Results

The proposed timing analysis algorithm was implemented and
tested on the MCNC benchmark circuits [13]. For each tested cir-
cuit, three timing analysis approaches were compared: the tradition-
al timing analysis approach using arrival time based pruning, the
proposed timing analysis approach using slack based pruning, and
an exhaustive timing analysis approach which traverses all paths in
the circuit using a depth-first-search. The last approach has a very
high run time and was implemented only to provide a comparison
with an “exact” approach. For the proposed slack based STA ap-
proach, the delay functions were represented using 7 piecewise lin-
ear discretizations.

1. Assign to the source node n0 the signal S0={T0, s0, P0}

where T0=0, P0=(n0)

2. Visit each node, i, in the graph in topological order:

2.1. For each incoming edge eki from node k to node i with

signal Sk=(Tk, sk, Pk), create a new signal Ski=(Tki, ski,

Pki) where Tki=Tk+dki(sk), ski=ski(sk), Pki=(Pk, ni)

2.2. For signal Tki compute the slack Slki = trf - Di(ski) - Tki,

where Di(si) is the delay function at node i computed in

the backward traversal

2.3. From all signals Ski select signal Sl=(Tl,sl,Pl), where

Slli= min(Slki)

2.3. Assign the selected signal Sl to node ni.

Figure 7. Slack based timing analysis algorithm.

668

The benchmark circuits were synthesized using a commercial
0.18µm technology library. The timing analysis algorithms operat-
ed on the delay characterization tables provided with the library.
Arrival times at the circuit inputs were chosen such that the impact
of slope propagation on the circuit delay was observable, thereby
providing a more stringent test of the correctness of the proposed al-
gorithm. Out of 10 test circuits, it was found that 9 show a differ-
ence between the arrival time based STA and the exact STA. The
results for these circuits are shown in Table 1. For each circuit, the
exact, arrival time based, and the proposed slack based STA timing
results are shown in columns 5, 6, and 7, respectively. The run time
for arrival time STA and slack based STA are shown in columns 8
and 9, respectively. Note that for all circuits, the timing analysis re-
sults of the proposed backward STA approach matched that of the
exact STA approach. Also, the run time of the proposed STA ap-
proach is increased over that of the traditional STA by only 33% on
average.

5 Conclusions

 In this paper, we have presented a new STA approach which
uses slack based pruning of propagated signals and thereby
removes the inaccuracies present in the traditional STA approach.
Since only a single arrival time is propagated for each node in the
circuit, the linear run time of STA is preserved. We demonstrate
that the proposed approach computes circuit delays that match
those computed with an exact STA algorithm, while incurring only
a modest run time increase over the traditional STA approach.
Since the proposed method removes the discontinuities in circuit
delay present in traditional STA, the approach is particularly useful
for circuit optimization methods.

Acknowledgements

The authors would like to thank Youngmin Kim for his work
and help. The work has been supported by NSF, SRC, GSRC/
DARPA, IBM, and Intel.

References

[1] Hitchcock, R.B., “Timing verification and the Timing
Analysis program”, Proc., IEEE/ACM Design Automation
Conference, 1982, pp.594-604.

[2] Jouppi, N.P., “Timing analysis for nMOS VLSI”, IEEE/
ACM Design Automation Conf., 1983, pp. 411-418.

[3] S.Devadas, K.Keutzer, S.Malik, “Computation of Floating
Mode Delay in Combinational Circuit: Theory and Algo-
rithms”, IEEE Trans. on Computer Aided Design, Vol. 12,
No. 12, pp. 1913-1923, Dec. 1993.

[4] D. H. C. Du, S. H. C. Yen, S. Ghanta, “On the general False
path problem in timing analysis”, Proc., IEEE/ACM
Design Automation Conference, 1989, pp. 555-560.

[5] Ayman I. Kayssi, Karem A. Sakallah, Trevor N.Mudge,
“The Impact of Signal Transition Time on Path Delay
Computation”, IEEE Transactions on circuits and systems-
II: Analog and digital signal processing, Vol. 40, No. 5, pp.
302-309, May 1993.

[6] H.Yalcin, J.P.Hayes, “Event propagation conditions in cir-
cuit delay computation”, ACM Transactions on Design
Automation of Electronic Systems, July 1997.

[7] K. Shepard, V. Narayanan, “Noise in Deep Submicron Dig-
ital Design,” Proc. ICCAD 1996, pp. 524-531.

[8] S. Sapatnekar, “Capturing the Effect of Crosstalk on
Delay,” Proc. VLSI Design 2000, pp. 364-369, January
2000.

[9] G. Bai, S. Bobba, I. Hajj, “Static timing analysis including
power supply noise effect on propagation delay in VLSI
circuits,” Proc. DAC, 2001, pp. 295 -300.

[10] D. Blaauw, V. Zolotov, and S. Sundareswaran, “Slope
Propagation in Static Timing Analysis,” IEEE Transactions
on Computer-Aided Design, Vol. 21, No. 10, pp. 1180-
1195, October 2002.

[11] Chandu Visweswariah, Andrew R.Conn, “Formulation of
Static Circuit Optimization with Reduced Size, Degeneracy
and Redundancy by Timing Graph Manipulation”, ICCAD,
1999, pp.244-251.

[12] J.F. Lee, D.L. Ostapko, J.Soreff, C.K. Wong, “On Signal
bounding problem in timing analysis”, ICCAD 2001, pp.
507- 514.

[13] http://www.cbl.ncsu.edu.

Table 1. Timing and run time comparisons

Circuit STA timing results (ns) Run time (msec)

Name Gates Inputs
Max.
level

Exact

Arrival time
based

(difference %
vs. exact)

Proposed
slack based

(difference %
vs. exact)

Arrival time
based

Proposed
slack based

(increased % vs.
arrival time based)

i1 41 25 5 4.16 3.95 (5.1%) 4.16 (0%) 2 3 (50%)

i2 189 201 10 4.18 3.87 (7.4%) 4.18 (0%) 13 16 (23%)

i3 120 132 6 2.34 2.34 (0%) 2.34 (0%) 9 11 (22%)

i4 160 192 12 4.39 4.33 (1.4%) 4.39 (0%) 12 14 (17%)

i5 198 133 18 5.84 5.77 (1.3%) 5.84 (0%) 11 14 (27%)

i6 390 138 6 6.73 6.63 (1.5%) 6.73 (0%) 18 24 (33%)

i7 510 199 7 6.75 6.66 (1.3%) 6.75 (0%) 24 33 (38%)

i8 749 133 13 7.26 6.38 (12.0%) 7.26 (0%) 32 46 (44%)

i9 473 88 12 4.44 4.31 (2.8%) 4.44 (0%) 19 29 (53%)

i10 1912 257 50 12.5 11.6 (7.5%) 12.5 (0%) 89 109 (22%)

669

