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Abstract

With shrinking cycle times, clock skew has become an increas-
ingly difficult and important problem for high performance designs.
Traditionally, clock skew has been analyzed using case-files which
cannot model intra-die process variations and hence result in a very
optimistic skew analysis. In this paper, we present a statistical skew
analysis method to model intra-die process variations. We first
present a formal model of the statistical clock skew problem and then
propose an algorithm which is based on propagation of joint proba-
bility distribution functions in a bottom up fashion in a clock tree.
The analysis accounts for topological correlations between path
delays and has linear run time with the size of the clock tree. The
proposed method was tested on several large clock tree circuits,
including a clock tree from a large industrial high-performance
microprocessor. The results are compared with Monte Carlo simula-
tion for accuracy comparison and demonstrate the need for statisti-
cal analysis of clock skew.

1 INTRODUCTION

Clock skew results from the unequal propagation delay of clock
paths from the source of the clock tree to the various sink nodes at
the latch points and directly impacts the performance of a design.
With rapidly increasing clock frequencies, the allowable clock skew
is increasingly constrained, making clock skew a critical concern for
high-performance processors. Clock skew can be introduced either
at design time, during fabrication of the design, or during its opera-
tion. During the design phase, clock skew can arise due to unbal-
anced clock path delays resulting from unexpected changes in the
capacitive loading at the clock sinks and routing constraints. To
address this, extensive work has been performed on automatic sizing
and routing of clock trees to minimize skew during design time
[1][2][3]. However, even if clock skew constraints are met at design
time, process variations can introduce unwanted clock skew during
the fabrication of the chip, thereby compromising the obtainable per-
formance. Also, environmental fluctuations, such as power supply
variations and coupling noise can introduce clock skew during the
operation of the design and a number of methods for analyzing such
sources of clock skew have been presented in [4][5]

In this paper, we propose a statistical method to analyze the
impact of process variations on clock skew. Process variations result
in uncertainty in the device and interconnect characteristics, such as
effective gate length, doping concentrations, oxide thickness and
ILD thickness, and are a source of significant clock skew. In general,
process variations can be divided into inter-die and intra-die varia-
tions. Inter-die variations represent differences in device characteris-
tics from one die to the next, while intra-die variations represent
differences in device characteristics within a single die. Intra-die

variations can have a deterministic component due to topologically
dependencies of device processing, such as CMP effects and optical
proximity effects [6][7][8]. In some cases, such topological depen-
dencies are directly accounted for in the analysis of clock skew,
thereby reducing the statistical variation [9][10][11], whereas in
other cases, such variations are treated as random. Furthermore,
intra-die process variations exhibit spatial correlation, meaning that
devices close to each other are more likely to have similar character-
istics than those spaced far apart.

Traditionally, clock skew is computed using case analysis, where
all devices are assumed to have identical best-case, nominal, or
worst-case characteristics. Such analysis is appropriate for inter-die
process variations. However, it cannot model intra-die variations
where devices have different characteristics on the same die. Case
analysis therefore results in an optimistic skew estimate, as the mis-
match between the devices in a clock tree is ignored. With continu-
ous shrinking of process dimensions, intra-die variations are
becoming increasingly prominent and case-analysis is no longer
valid. It is therefore critical that a statistical analysis of the clock
skew be performed to determine the expected distribution of the
skew across the manufactured die. Once the skew distribution is
computed, the expected number of die meeting a specific skew can
be determined. Statistical analysis of clock skew is also useful during
the design of a clock tree to reduce its sensitivity to process varia-
tions and increase its robustness.

Recently, a number of methods for statistical clock skew analysis
based on Monte Carlo simulation have been proposed [12]. How-
ever, Monte Carlo based approaches can have very high run times,
especially for large clock designs. A probabilistic approach to clock
skew analysis was proposed in [13][14] having efficient run time.
However, this analysis is restricted to binary clock trees and also
uses a Gaussian distribution to approximate the maximum and mini-
mum of two Gaussian random variables, which may compromise the
accuracy of the analysis.

In this paper, we propose a new approach to clock skew analysis,
which accurately models intra-die process variations and has a linear
run-time complexity with circuit size. Our analysis is focussed on
random variations, meaning that topological dependencies are either
removed prior to the analysis or are treated as random variations. We
provide a formal definition of the statistical clock skew problem
from which we derive our proposed analysis method. Statistical
clock skew analysis is complicated by the correlation between the
minimum and maximum path delays in a clock tree. The approach
proposed in this paper uses joint probability density functions
(JPDFs) that preserve this correlation between minimum and maxi-
mum delays in an efficient manner. The JPDFs are propagated in a
bottom up fashion along the clock tree in a single pass, and we
present efficient methods for merging and propagating JPDFs during
the traversal. The proposed method computes the skew distribution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
914
requires prior specific permission and/or a fee. 
ICCAD’03, November 11-13, 2003, San Jose, California, USA. 
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00. 



for the entire clock tree as well as the skew distribution of all sub-
trees simultaneously and therefore allows the designer to identify
which portions of the clock tree are most sensitive to process varia-
tions. The presented methods were implemented and tested on a
number of clock tree circuits, including a large clock structure from
an industrial high-performance microprocessor design. Comparison
of results with Monte Carlo simulation confirms the correctness of
the approach and demonstrates its efficiency. Comparison with tradi-
tional case-analysis shows the importance of statistical clock skew
analysis.

The remainder of this paper is organized as follows. In Section 2,
we present the problem definition and modeling assumptions. In
Section 3, we discuss our approach and implementation for statisti-
cal clock skew computation. In Section 4, we show experimental
results and comparisons with Monte Carlo simulation. Finally, in
Section 5, we draw our conclusions.

2 PROBLEM DEFINITION AND MODELING ASSUMPTIONS

In this section, we define the statistical clock skew problem and
discuss our modeling assumptions.

We consider clock networks as composed of driver gates, such as
buffers, inverters and distributed RLC interconnects. In this paper,
we restrict our analysis to clock networks that have a tree topology,
meaning that the circuit does not have reconvergent fanout. Some
very high-performance clock tree designs are constructed using
multi-driven meshes and can only be represented by directed acyclic
graphs (DAGs). While such DAG clock networks cannot be mod-
eled with our proposed approach, most clock networks, especially
those in ASIC design, have a tree topology. Also, the proposed for-
mulation forms a basis on which statistical skew analysis for DAG
clock networks can be built.

We represent a clock tree with a so-called timing tree, which is
similar to the well known timing graph, except that its topology is
restricted to a tree. The root of the tree is the primary clock driver
and the lowest level gates of the clock hierarchy are the sink nodes
that drive the latches in the design. An example of a clock tree and
its corresponding timing tree representation is shown in Figure 1.

Each edge in the timing tree represents the delay from a driver gate
input to an interconnect sink point and therefore represent the sum of
gate and interconnect delays. For most clock trees, the dominant fac-
tor in delay variation is the driver delay uncertainty, due to variabil-
ity of process parameters such as gate length [15]. In this paper, we
therefore focus on driver delay variation, although the analysis can
be easily extended to incorporate interconnect delay variability,
using variational interconnect modeling methods such as those dis-
cussed in [11]. Since timing trees are a special case of timing graphs,
they inherent all common attributes of timing graphs, such as the
definition of path delay, arrival times, critical paths, etc.

A deterministic timing tree (DTT) is defined as a timing tree
where each edge has a fixed delay. The skew of a DTT is defined in
terms of the minimum and maximum path delay in the timing tree, as
stated below:

Definition 1. The minimum delay of a DTT is the minimum of all
path delays dp,i from the root node to any of the sink nodes
{S1,S2,....Sn}.

(EQ 1)

Definition 2. The maximum delay of a DTT is the maximum of
all path delays dp,i from the root node to any of the sink nodes.

(EQ 2)

Definition 3. Clock skew for a DTT can be defined as the differ-
ence between the maximum delay and minimum delay of a DTT:

(EQ 3)

Clock skew therefore is the maximum arrival time difference
between any pair of sink nodes.

Typically, the aim of the designer is to create a clock tree with
zero skew, referred to as a zero-skew clock tree. However, in high-
performance design, clock skew is sometimes intentionally intro-
duced by the designer to accommodate unbalanced combinational
logic delays in the circuit, referred to as a non-zero skew clock tree.
By setting non-zero clock skew targets the designer effectively
enables cycle stealing or time borrowing which can improve the per-
formance of the design. However, any deviation of the skew from
their intended targets in a non-zero skew clock tree will degrade the
performance of the design in the same manner as it does for a zero-
skew clock tree. For clarity, we derive our analysis in this paper for a
zero-skew clock tree, noting that the analysis can be easily extended
to non-zero skew clock trees with intentional skew targets.

At design time, process variations create uncertainty in the gate
delays of the clock tree. Hence, we define a so-called probabilistic
timing tree (PTT), Tp where the delay of edge e is modeled with ran-

dom variable De. Each random variable De is characterized by its

probability density function pe(De). Although we formulate the clock

skew problem using continuous probability density functions, we
use discretized versions of these functions in our implementation,
similar to those discussed in [16].

For the purpose of our analysis, we assume that edge delays are
independent random variables. However, certain device parameters,
such as gate length, will exhibit spatial correlation, meaning that
drivers that are closely spaced together are more likely to have simi-Figure 1. Clock tree and its timing tree representation
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lar device parameters than those spaced further apart. Such spatial
correlations will introduce dependencies between the edge delay ran-
dom variables in the PTT. However, in typical process technologies,
spatial correlation is reported to drop off sharply for distances
greater than 100 - 300µm [17]. The driver gates in a clock tree are
typically spaced relatively far apart, as they are distributed evenly in
the die, with separation typically greater than 300µm. This therefore
diminishes the impact of spatial correlation for typical clock tree
designs. Also, spatial correlation of clock tree drivers tends to intro-
duce positive correlation between the minimum and maximum path
delays in a clock tree and hence, is expected to decrease the skew of
a clock tree [14], making our analysis which ignores spatial correla-
tion conservative. The current analysis also forms a frame work from
which spatial correlations can be incorporated in future extensions.

Since all edge delays take a deterministic value on a manufactured
die, the sample space consists of all possible die with different edge
delay combinations. The probability that a manufactured die has a
driver with a delay in interval [d1,d2] is:

(EQ 4)

Furthermore, since the edge delays are independent random vari-
ables, the probability of the occurrence of a particular combination
of edge delays is simply the product of the probabilities of the occur-
rence of each individual edge delay [20]. Finally, since all clock tree
characteristics, such as minimum and maximum path delay and skew
are defined over the sample space, they are also random variables. In
statistical clock skew analysis, the goal is to obtain the probability
density function (PDF) or the cumulative distribution function
(CDF) of the clock skew, based on the PDF or CDF of the edge
delays in the PTT.

3 PROPOSED APPROACH FOR STATISTICAL SKEW

COMPUTATION

We start with a formal definition of the CDF of clock skew over
the sample space of manufactured dice. The probability of skew s
being equal or less than value S can be expressed as the integral over
the sample space of the DTTs which satisfies . As mentioned,
the probability of occurrence of a DTT is the product of the probabil-
ities of occurrence of its individual edge delays pe,i(t) for each edge

i, which leads to the following expression for clock skew CDF:

(EQ 5)

where dmin and dmax are defined for a deterministic timing tree in

EQ1 and EQ2.

The brute force approach for computing the CDF of clock skew
would involve a complete enumeration of the sample space consist-
ing of all possible DTTs, computing the likelihood of their occur-
rence, and determining if the dmin and dmax associated with each

satisfies . This approach has exponential complexity

with respect to the number of edges in the graph and hence is not
practical.

A more intuitive approach would be to implement a statistical
timing analysis method that mirrors the approach for computing
skew in a deterministic timing tree, according to EQ1 through EQ3.
Using one of several statistical timing analysis methods presented in
[16][18][19][21], we can easily compute the earliest (minimum) and
latest (maximum) arrival time distributions of each clock sink in the
tree. We can then define the maximum and minimum delay of the
clock tree as random variables Dmax and Dmin, similar to that for the

DTT in EQ1 and EQ2, and attempt to compute their probability dis-
tributions by taking a statistical maximum and minimum over all
path delays. From the difference of these two random variables, the
skew is then obtained. Unfortunately, this approach is complicated
by the correlations that must be accounted for during the computa-
tion. First, the arrival times at sink nodes are correlated since timing
paths to sink nodes typically share multiple edges in the timing tree.
This correlation must be explicitly expressed when computing the
maximum and minimum clock tree delay distributions, which is
computationally difficult. Second, the minimum and maximum
clock tree delays themselves are correlated. This is immediately
obvious from the fact that minimum delay can never exceed the
maximum delay and vice versa. Therefore, the correlation between
the minimum and maximum PTT delays must be determined in order
to correctly compute the distribution of skew, again complicating the
analysis.

We therefore propose an alternate approach to statistical skew
analysis as detailed in the next section. The key idea is to avoid sep-
arate computation of the minimum and maximum PTT delays and
instead compute their joint probability distributions function (JPDF)
which preserves their correlation information. Furthermore, we show
that by propagating the JPDF of minimum and maximum PTT delay
in a single bottom up traversal of the clock tree, the JPDFs that are
merged during the traversal are independent, which simplifies the
analysis. From the JPDF of Dmin and Dmax, the distribution of the

clock skew is then computed in a straightforward manner. The prop-
agation and merging of JPDFs during the bottom up traversal of the
clock tree is performed using discretized distributions. We propose
an efficient method for merging of JPDFs during the traversal which

reduces the worst-case run time complexity for merging from O(n4)

to O(n2), where n is the number of discretizations in each dimension
of the JPDF. Note that the run time complexity in terms of circuit
size remains linear in all cases.

3.1 Computation of Clock Skew Distribution.

We now define the joint probability density function (JPDF) and
the joint cumulative distribution function (JCDF) of minimum and
maximum PTT delays and then show how the skew, as defined in
EQ5 can be computed using such a JPDF. The JCDF of Dmin and

Dmax is defined over the sample space as follows:

(EQ 6)

where dp,i are clock tree path delays and minimum and maximum

operations are taken over all clock net sinks i. The joint probability
density function (JPDF) can be obtained from the JCDF through dif-
ferentiation:

P d1 D≤
e

d2≤( ) f De( ) Ded

d1

d2

∫=

s S≤

P S( ) P s S≤( )

… pe 1, t1( ) pe 2, t2( ) ..... pe n, tn( ) t1…d tnd∫
dm ax dm in– S≤

∫

= =

dmax dmin S≤–

P Dmin Dmax,( ) P min dp i,( ) Dmin max dp i,( ) Dmax≤,≤( )=
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(EQ 7)

For numerical computation, it is often more convenient to discretize
the JPDF. An example of the discretized JPDF for Dmin and Dmax is

shown in Figure 2, as a contour level plot. Here the darker regions
indicate the areas with higher probability. The entire distribution lies
above the Dmax = Dmin line. This follows from the obvious property

that Dmin can never be greater than Dmax.

Using the JPDF of Dmin and Dmax we can compute the probability

of manufacturing a chip with minimum and maximum delays within
the intervals [Dmin,1,Dmin,2] and [Dmax,1,Dmax,2] as follows:

(EQ 8)

We now write the expression of clock skew CDF in EQ5 in terms
of the JPDF of minimum and maximum PTT delays as follows:

, (EQ 9)

EQ9 follows directly from the definition of the JPDF in EQ8 and the
definition of clock skew in EQ5. Finally, we rewrite the integral in
EQ9 above using simple manipulation of the integral limits as fol-
lows:

(EQ 10)

Using the above expression of clock skew, and a given discretized
JPDF of Dmin and Dmax, the computation of the clock skew PDF can

be accomplished through simple integration. We now show how the
JPDF of Dmin and Dmax for a PTT can be efficiently computed using

a single bottom up traversal and how the final clock skew distribu-
tion is computed.

3.2 Joint Probability Distribution Computation.

We compute the JPDF p(Dmin, Dmax) for the minimum and maxi-

mum path delays in a PTT in a bottom up fashion. The JPDF pi(Dmin,

Dmax) for an internal node ni in the PTT represents the joint probabil-

ity distribution of minimum and maximum path delays from node ni

to any of the leaf nodes of ni. The JPDF pi(Dmin, Dmax) at node ni is

defined in terms of the JPDFs pj(Dmin, Dmax) at the children nj of

node ni. The JPDFs for all nodes in the PTT are therefore computed

using a single topological traversal of the clock tree starting at the
leaf nodes of the tree. After the JPDF of Dmin and Dmax is computed

for the root of the tree, we compute the skew distribution using the
integral in EQ10. Below, we first discuss how the JPDFs are com-
puted in a PTT tree and then how the final clock skew distribution is
computed.

Computing the JPDF of Dmin and Dmax.

We consider a parent node ni with two children nj1 and nj2, and

edges e1 and e2, as shown in Figure 3. Given the JPDF pj1(Dmin,

Dmax) at node nj1 and pj2(Dmin, Dmax) at nj2, and the edge delay

PDFs pe1(De1) of edge e1 and pe2(De2) of edge e2, we compute the

JPDF pi(Dmin, Dmax) at the parent node ni using the following two

operations:

1. Propagation: Each of the JPDFs pj1(Dmin, Dmax) and pj2(Dmin,

Dmax) computed at a child node nj1 and nj2 is propagated to par-

ent node ni along the respective edges e1 and e2 to obtain the

JPDFs pi1(Dmin, Dmax) and pi2(Dmin, Dmax). For node nj1 this is

performed by enumeration of all possible triples (Dmin,j1,

Dmax,j1, De1) of minimum and maximum path delays and edge

delay, corresponding to JPDF pj1(Dmin, Dmax) at node nj1 and the

delay PDF pe1(De1) of edge e1. Initially, the JPDF pi1(Dmin,

Dmax) at node ni is set to zero for all combinations of Dmin, Dmax.

Then, for each enumerated triplet, we compute the minimum and
maximum path delay at node ni by adding the edge delay to the

path delay at node nj1: Dmin,i1 = Dmin,j1 + De1 and Dmax,i1 =

Dmax,j1 + de1.

From our assumption that all edge delays are independent ran-
dom variables, it follows that the edge delay random variable
De1 is independent from random variables Dmin and Dmax at

node nj1. Therefore, the probability of occurrence of triplet

(Dmin,j1, Dmax,j1, De1) is

p Dmin Dmax,( )
Dmin Dmax∂

2

∂
∂

P Dmin Dmax,( )=

Figure 2. Joint distribution of Dmax/Dmin among a group of sinks
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Figure 3. Propagation and merging of JPDFs in a PTT
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(EQ 11)

which can be computed directly from the JPDF pj1(Dmin, Dmax)

and PDF pe1(De1). The probability value of the pi1(Dmin,i1,

Dmax,i1) of the JPDF at node ni is then incremented with the

probability of the occurrence of the triplet (Dmin,j1, Dmax,j1, De1).

The same calculation is performed for node nj2 to compute the

JPDF pi2(Dmin, Dmax). The computation is shown in pseudo code

in Figure 4.

2. Merging: Using the two propagated JPDFs pi1(Dmin, Dmax) and

pi2(Dmin, Dmax), we compute the JPDF pi(Dmin, Dmax) at node ni.

This is performed by enumerating all possible quadruplets
(Dmin,i1, Dmax,i1, Dmin,i2, Dmax,i2) of minimum and maximum

path delays to ni corresponding to pi1(Dmin, Dmax) and pi2(Dmin,

Dmax). Again, we first initialize the JPDF pi(Dmin, Dmax) at node

ni with zero for all combinations of Dmin, Dmax. For each quadru-

plet, we then compute the minimum and maximum path delays at
node ni: Dmin,i = min(Dmin,i1, Dmin,i2) and Dmax,i = max(Dmax,i1,

Dmax,i2). Since the two JPDF at node nj1 and nj2 are computed in

a bottom up fashion, they are completely determined by the
delays of the subtrees rooted at the nodes nj1 and nj2. Since these

two subtrees are by definition disjoint, (meaning they do not
share any edges) it is clear that the random variables Dmin and

Dmax at nj1 are independent with respect to random variables

Dmin and Dmax at nj2. Also, the two edge delays De1 and De2 are

independent random variables. Therefore, the probability of
occurrence of quadruplet (Dmin,i1, Dmax,i1, Dmin,i2, Dmax,i2) is:

(EQ 12)

which can be obtained directly from the JPDF pi1(Dmin, Dmax)

and JPDF pi2(Dmin, Dmax). The value of the JPDF pi(Dmin,i,

Dmax,i) at node ni is then incremented with the probability of the

occurrence of quadruplet (Dmin,i1, Dmax,i1, Dmin,i2, Dmax,i2). The

computation is shown in pseudo code in Figure 5. Note that if
node ni has more than two children, the merging procedure is

iteratively repeated, each time merging a propagated JPDF from
a new child node with the JPDF resulting from the merging oper-
ation of already processed children.

By repeating the propagation and merging operations in a hierar-
chical fashion during a bottom up traversal of the PTT, the JPDFs of

Dmin and Dmax are computed for all nodes in the tree. The complex-

ity of the algorithm is linear with the number of edges in the clock
tree since each edge in the tree requires exactly one propagation and
merge operation. In terms of the discretization, the complexity of the

analysis is O(n3) for the propagation operation and O(n4) for the
merging operation, where n is the number of discretizations of the
edge delay PDF in each of the two dimensions of the JPDF. Since the
merging operation has the highest computational complexity in
terms of the number of discretization, we propose a more efficient
method for merging two JPDFs in the following Section which

reduces the complexity of the merging operation to O(n2).

It is important to note that the size of n increases as we propagate
JPDFs up the tree. Therefore, it is important to prune JPDFs as they
are propagated. However, in our benchmark testing presented in Sec-
tion 4 it was not necessary to perform pruning, as the clock trees in
consideration had a small number of levels of logic. Also, the effi-
ciency of the algorithm can be improved by exploiting the fact that
all the arrays of JPDFs have non-zero values only above their diago-
nals. This allows reduction in memory consumption by a factor of
two. The constant of proportionality for the run time complexity is
reduced by a factor of 2 for the propagation procedure by a factor of
4 for the merging procedure.

Also, the merging operation is simplified for nodes in the tree
whose children are leaf nodes. The JPDF pi1(Dmin, Dmax) propagated

from a leaf node is equal to the edge delay probability pe1(De1) of

the leaf edge for values Dmin = Dmax = De1, and is zero for all values

Dmin Dmax. This allows the enumeration for the merge operation

to be simplified from enumerating quadruplets to enumerating trip-
lets (De1, Dmin,i2, Dmax,i2) if child node nj1 is a leaf node, or enumer-

ating only pairs (De1, De2) if both children of ni are leaf nodes. The

complexity of merging therefore reduces to O(n3) or O(n2) for pro-
cessing leaf nodes of the PTT. In practice, most nodes of a clock tree
are leaf nodes which improves the run time of the algorithm.

Efficient Merging Procedure

Since the merge operation has the highest complexity in terms of
the number of discretizations, we introduce a new procedure based
on pre-computation of joint cumulative distribution functions
(JCDFs) and marginal JCDFs to improve the computational com-
plexity.

P Dmin j1, Dmax j1, De1, ,( ) P Dmin j1, Dmax j1,,( ) P De1( )⋅=

Figure 4. JPDF Propagation Algorithm

1. Initialize pi1(Dmin, Dmax) to zero for all Dmin, Dmax

2. For each Dmin,j1 from {0,1,2,.....m} {

3. For each Dmax,j1 from {0,1,2,....n} {

4. For each De1 from {0,1,2,....p} {

5. Dmin,i1 = Dmin,j1 + De1

6. Dmax,i1 = Dmax,j1 + De1

7. pi1(Dmin,i1, Dmax,i1) = pi1(Dmin,i1, Dmax,i1) +

pj1(Dmin,j1, Dmin,j1) * pe1(De1)

8. } } }

P Dmin i1, Dmax i1, Dmin i2, Dmax i2,, , ,( )
P Dmin i1, Dmax i1,,( ) P Dmin i2, Dmax i2,,( )⋅=

Figure 5. Algorithm for Merging JPDFs

1. Initialize pi(Dmin, Dmax) to zero for all Dmin, Dmax

2. For each Dmin,i1 from {0,1,2,.....m} {

3. For each Dmax,i1 from {0,1,2,....n} {

4. For each Dmin,i2 from {0,1,2,.....p} {

5. For each Dmax,i2 from {0,1,2,....q} {

6. Dmin,i = min (Dmin,i1, Dmin,i2)

6. Dmax,i = max (Dmax,i1, Dmax,i2)

7. pi(Dmin,i, Dmax,i) = pi(Dmin,i, Dmax,i) +

pi1(Dmin,i1, Dmax,i1) * pi2(Dmin,i2, Dmax,i2)

8. } } } }

≠
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We consider the computation of JPDF pi(Dmin, Dmax) at node ni

by merging two JPDFs pj1(Dmin, Dmax) and pj2(Dmin, Dmax). From

the merging procedure presented in the previous section, it follows
that for each possible quadruplet of minimum/maximum path
lengths (Dmin,1, Dmax,1, Dmin,2, Dmax,2) the resulting path delay val-

ues Dmin and Dmax at ni are as follows:

Dmin = min(Dmin,1, Dmin,2), (EQ 13)

Dmax=max(Dmax,1,Dmax,2). (EQ 14)

From this it follows that and, simi-

larly that . In addition, we have the

following inequalities: , ,

. From EQ13 and EQ14 it is clear that either Dmin

= Dmin,1 or Dmin = Dmin,2 and Dmax = Dmax,1 or Dmax = Dmax,2.

Thus, the resulted JPDF pi(Dmin, Dmax) can be computed by consid-

ering the following four mutually exclusive cases for Dmin,1, Dmax,1,

Dmin,2, Dmax,2 and their probabilities:

case I: (EQ 15)

(EQ 16)

case II: (EQ 17)

(EQ 18)

case III: (EQ 19)

(EQ 20)

case IV: (EQ 21)

(EQ 22)

Based on the four mutually exclusive cases identified above, we can
obtain the following expression for JPDF pi(Dmin, Dmax):

(EQ 23)

where each term corresponds to each of the cases I through IV in
EQ15 - EQ21. Each of the non-trivial probability expressions in the
first two terms of EQ23 can be expressed with the following inte-
grals:

(EQ 24)

,(EQ 25)

, (EQ 26)

with similar integral expressions for the non-trivial probability terms
in the last two terms of EQ23. Note that since the expressions neces-
sary to compute EQ23 involve at most double integrals, EQ23 can be

computed with O(n2) computational complexity, where n is the num-
ber of discretizations of the JPDFs pj1 and pj2. However, the compu-

tation can be further improved in efficiency by precomputing the
following probability functions:

1. The joint cumulative distribution functions (JCDFs) Pj1 and Pj2,

where:

(EQ 27)

and Pj2 is expressed similarly.

2. The marginal PDFs pj1,min, pj1,max, pj2,min, and pj2,max, where:

, (EQ 28)

and pj1,max, pj2,min, and pj2,min computed similarly.

3. The marginal CDFs Pj1,min, Pj1,max, Pj2,min, and Pj2,max, where:

, (EQ 29)

and Pj1,max, Pj2,min, and Pj2,max can be computed similarly.

We can now express in EQ24 in

terms of JCDF Pj2 and marginal CDF Pj2,max as follows:

.

(EQ 30)

where the other integrals necessary to compute EQ23 can be
expressed similarly.

Dmin Dmin 1, Dmin Dmin 2,≤,≤

Dmax Dmax 1, Dmax Dmax 2,≥,≥

Dmin Dmax≤ Dmin 1, Dmax 1,≤

Dmin 2, Dmax 2,≤

Dmin Dmin 1, Dmax, Dmax 1,
Dmin Dmin 2, Dmax 2, Dmax< < <

,= =

P1 pj1 Dmin Dmax,( ) pj2 Dmin Dmin 2,< Dmax 2, Dmax<,( )⋅=

Dmin Dmin 1, Dmax, Dmax 2,= =
Dmax 1,

,
Dmax≤ Dmin Dmin 2,<,

P2 pj1 Dmin Dmax 1, Dmax≤,( ) pj2 Dmin Dmin 2,< Dmax,( )⋅=

Dmin Dmin 2, Dmax, Dmax 2,
Dmin Dmin 1, Dmax 1, Dmax≤ ≤ ≤

,= =

P3 pj1 Dmin Dmin 1,≤ Dmax 1, Dmax≤,( ) pj2 Dmin Dmax,( )⋅=

Dmin Dmin 2, Dmax, Dmax 1,= =
Dmax 2,

,
Dmax< Dmin Dmin 1,≤,

P4 pj1 Dmin Dmin 1,≤ Dmax,( ) pj2 Dmin Dmax 2, Dmax<,( )⋅=

pi Dmin Dmax,( ) P1 P2 P3 P4+ + += =

pj1 Dmin Dmax,( ) pj2 Dmin Dmin 2,< Dmax 2, Dmax<,( )⋅
pj1 Dmin Dmax 1, Dmax≤,( ) pj2 Dmin Dmin 2,< Dmax,( )⋅
pj1 Dmin Dmin 1,≤ Dmax 1, Dmax≤,( ) pj2 Dmin Dmax,( )⋅
pj1 Dmin Dmin 1,≤ Dmax,( ) pj2 Dmin Dmax 2, Dmax<,( )⋅

+
+
+

pj2 Dmin Dmin 2,< Dmax 2, Dmax<,( )

pj2 Dmin 2, Dmax 2,,( ) Dmin 2,d Dmax 2,d

Dm in

∞

∫
0

Dm ax

∫=

pj1 Dmin Dmax 1, Dmax≤,( ) pj1 Dmin Dmax 1,,( ) Dmax 1,d

Dm in

Dm ax

∫=

pj2 Dmin Dmin 2,< Dmax,( ) pj2 Dmin 2, Dmax,( ) Dmin 2,d

Dm in

Dm ax

∫=

Pj1 Dmin Dmax,( ) P tmin Dmin≤ tmax Dmax≤,( )

pj1 tmin tmax,( ) tmind tmaxd

0

Dm in

∫
0

Dm ax

∫

= =

pj1 min, Dmin( ) pj1 Dmin tmax,( ) tmaxd

0

∞

∫=

Pj1 min, Dmin( ) P tmin Dmin≤( ) pj1 min, tmin( ) tmind

0

Dm in

∫= =

pj2 Dmin Dmin 2,< Dmax 2, Dmax<,( )

pj2 Dmin Dmin 2,< Dmax 2, Dmax<,( ) =

Pj2 max, Dmax( ) Pj2 Dmin Dmax,( )–
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Hence, we precompute JCDFs and marginal CDFs from the JPDF
pj1(Dmin,1, Dmax,1) and pj2(Dmin,2, Dmax,2) once, and then compute

all terms in EQ23 directly from these JCDFs and marginal CDFs
avoiding repeated numerical integration and improving the computa-
tional efficiency. By following the above method, the computational

complexity of the merging operation is reduced to O(n2) where n is
the number of discretizations of the JPDFs pj1 and pj2. However, the

computational complexity of propagation remains O(n3), and hence
the overall computational complexity in terms of the number of dis-

cretizations is reduced from O(n4) to O(n3). The run time complexity
in terms of the number of edges in the PTT remains linear.

Computing the Skew Probability Distribution.

Once the JPDF of Dmin and Dmax is computed at the root node of

the PTT, it can be used for computing the probability distribution of
clock skew. We simply enumerate all possible pairs (Dmin, Dmax) of

the JPDF and for each pair compute the associated skew s = Dmax-

Dmin. We then update the probability of occurrence of this skew with

the probability of occurrence of the pair (Dmin, Dmax). The algorithm

is shown in pseudo code in Figure 6. The complexity of the algo-

rithm is O(n2) where n is the number of discretizations.

Since a JPDF of Dmin and Dmax is obtained for all nodes in the

PTT during the bottom-up traversal, it is possible to compute the
skew distribution for individual sub-trees in the PTT with minimal
runtime overhead. This allows the designer to compare the expected
variability of different parts of a clock tree which can be helpful to
determine which parts are most prone to process variations. The pro-
posed algorithms therefore provide not only a way for predicting the
expected clock skew in manufactured die, but also a means to guide
the designer in improving the robustness of the clock tree to process
variations.

4 EXPERIMENTAL RESULTS

The proposed method for statistical clock skew computation was
implemented and tested on a number of clock tree benchmark cir-
cuits, including a large industrial clock tree from an industrial high
performance microprocessor in 130 nm technology. The other clock
tree benchmark circuits were synthesized with varying number of
levels and sinks to examine the operation of the algorithm under dif-
ferent configurations. Gate delay PDFs with standard deviation of
10-15% of the mean delay were used. Gaussian distributions trun-
cated at their 3 point were used for the PDFs. We also imple-
mented Monte Carlo simulation to obtain the skew distribution for
comparison with our proposed method.

The results for the proposed algorithm and Monte Carlo simula-
tion are shown in Table 1. Columns 2 and 3 show the number of sink
nodes and the number logic levels for the tree, respectively. Column
4 shows the average and maximum number of fanouts for the tree.
The industrial test case is circuit T7 with 12,000 sink nodes and a
maximum fanout of 500. Columns 5 and 6 show the mean and 99%
confidence value of the computed skew using Monte Carlo simula-
tions and the proposed algorithm, while the last column shows the
percent error between the mean and 99% confidence points obtained
by our approach and Monte Carlo simulation. Approximately 10,000
simulations were used to achieve a good accuracy with Monte Carlo
simulation. The maximum error is negligible, demonstrating the cor-
rectness of the proposed approach. In column 7, the run-time in sec-
onds for our algorithm is shown, which includes parsing the
benchmarks, generating PDFs for the edge delays, bottom up propa-
gation of JPDFs and skew computation. Figure 7 shows a plot of the
skew CDF for clock tree T3 while Figure 8 shows a 3-D representa-
tion of the JPDF of Dmin and Dmax at the root of clock tree of T7.

In Table 2, we show a comparison between our algorithm, worst-
case skew analysis and traditional case-analysis. In worst-case skew
analysis, a deterministic delay is assigned to each gate within its +/-
90% or +/- 99% confidence point range. The delay of each gate is
independently chosen from this range such that the total skew of the
clock tree is maximized. The results are shown in column 3 and
demonstrate that worst-case skew analysis can significantly overesti-
mate the likelihood of skew, with overestimates ranging from 22 to
over 100%. In traditional case-analysis, we again perform a deter-
ministic analysis but this time we use case-files and all gates are set
at their 90% or 99% delay values. The results are shown in column 5
and demonstrate that case-analysis is highly optimistic since it
ignores the mismatch between drivers due to intra-die process varia-
tion.

Figure 6. Skew Computation Algorithm

1. Initialize p(s) to zero for all s
2. For each Dmin from {0,1,2,.....m} {

3. For each Dmax from {0,1,2,....n} {

6. s = Dmax - Dmin

7. p(s) = p(s) + pi(Dmin, Dmax)

8. } }

σ Figure 7. CDF of skew for clock tree T3
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5 CONCLUSIONS

In conclusion, we have presented a method for modelling the
effects of process variations on clock skew. We have shown how the
distribution of the clock skew can be efficiently obtained from the
joint probability distribution function (JPDF) of minimum and maxi-
mum clock tree delay. We proposed an algorithm which is linear
with circuit size, and demonstrated the efficiency of the algorithm.
We verified the correctness of our algorithm by comparing with
Monte Carlo simulations. We also compared our statistical approach
with worst-case skew analysis and case-analysis and demonstrated
the importance of statistical analysis of clock tree skew.
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Table 1. Results of our algorithm and monte carlo

Circuit Monte
Carlo
mean/

99% pt.
(ps)

Our
Algorithm

mean/
99% pt.

(ps)

run
time
(s)

%
error of
mean/

99% pt.

tree
no.

#sink
nodes

#
levels

avg/max
fanouts

T1 16 6 1.4/2 31.27/50.78 31.21/51.06 0.1 0.19/0.50

T2 120 7 1.7/6 49.82/69.29 49.76/68.92 1 0.12/0.53

T3 1200 5 1.9/50 51.86/64.16 51.93/64.29 3 0.13/0.20

T4 2400 5 1.9/100 52.45/64.19 52.43/64.15 6 0.04/0.07

T5 4800 5 1.9/200 53.96/64.99 53.90/65.25 8 0.11/0.39

T6 6000 5 2/250 53.20/64.54 53.25/64.67 14 0.09/0.20

T7 12000 5 2/500 54.45/65.39 54.49/65.38 28 0.08/0.02

Table 2. Results of our algorithm, worst-case and traditional
case analysis

Ckt Analysis for 90% / 99% confidence points (ps)

tree
no.

Our
algorithm

Worst-Case
skew

analysis
%error

Traditional
case

analysis
%error

T1 39.73/51.06 100/105 152/106 1.70/2.22 -95.7/-95.6

T2 58.25/68.92 120/130 106/88.6 2.73/3.93 -95.3/-94.2

T3 57.44/64.29 75/85 30.5/32.2 2.05/3.39 -96.4/-94.7

T4 57.58/64.15 70/80 21.5/24.7 1.88/2.82 -96.7/-94.9

T5 59.02/65.25 75/85 27.0/30.2 1.95/3.26 -96.6/-95.0

T6 58.39/64.67 70/85 19.8/31.4 1.91/3.18 -96.7/-95.1

T7 59.27/65.38 70/80 18.1/22.3 1.84/2.82 -96.8/-95.6
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