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ABSTRACT
Uncertainty in circuit performance due to manufacturing and en-
vironmental variations is increasing with each new generation of
technology. It is therefore important to predict the performance of
a chip as a probabilistic quantity. This paper proposes three novel
algorithms forstatistical timing analysis and parametric yield pre-
diction of digital integrated circuits. The methods have been imple-
mented in the context of theEinsTimer static timing analyzer. Nu-
merical results are presented to study the strengths and weaknesses
of these complementary approaches. Across-the-chip variability
continues to be accommodated byEinsTimer’s “Linear Combina-
tion of Delay (LCD)” mode. Timing analysis results in the face of
statistical temperature andVdd variations are presented on an in-
dustrial ASIC part on which a bounded timing methodology leads
to surprisingly wrong results.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated circuits—Design aids

General Terms
Algorithms, verification

Keywords
Statistical timing, yield prediction

1. INTRODUCTION
Yield loss is broadly categorized intocatastrophic yield loss (due to
contamination and dust particles, for example) andparametric or
circuit-limited yield loss which impacts the spread of performance
of functional parts. This paper presents three algorithms for sta-
tistical timing analysis and parametric yield prediction of digital
integrated circuits due to both manufacturing and environmental
variations.

With each new generation of technology, variability in chip per-
formance is increasing. The increased variability renders existing
timing analysis methodology unnecessarily pessimistic and unre-
alistic. The traditional “bounded” static timing approach further

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0001 ...$5.00.

breaks down in the case of multiple voltage islands. The Interna-
tional Technology Road-map for Semiconductors (ITRS) [1] has
identified a clear need for statistical timing analysis.

The algorithms in this paper pay special attention to correlations.
Capturing and taking into account inherent correlations are abso-
lutely key to obtaining a correct result. Correlations occur because
different paths may share one or more gates, and because all gate
delays depend on some global parameters such as junction depth
or temperature. All methods in this paper fully take into account
both classes of correlations and are equipped to handledetermin-
istic across-the-chip variations. While the present work does not
directly handle statistical intra-chip variations, the last section of
the paper describes how these could be accommodated in the fu-
ture.

2. PREVIOUS WORK
Due to space limitations, it is impossible to do justice to the wealth
of literature on parametric statistical timing analysis and yield pre-
diction. The methods are broadly classified intoperformance-space
methods that manipulate timing variables such as arrival times and
slacks as statistical quantities, andparameter-space methods that
perform manipulations in the space of the sources of variation. In
performance-space, we are conceptually interested in integrating
the joint probability density function (JPDF) of the delays of all
paths over a cube of side equal to the required delay and of dimen-
sionality equal to the number of paths. In other words, it amounts
to the integration of a complicated JPDF over a simple integration
region in high-dimensional space. In parameter-space, on the other
hand, we are interested in integrating the JPDF of the sources of
parametric variation over a complexfeasible region in relatively
low-dimensional space.

Monte Carlo and modified Monte Carlo methods have often been
used as in [2] where yield is estimated by means of a surface inte-
gral of the feasible region. In the context of digital circuits, [3]
considers the probability of each path meeting its timing require-
ment, but ignores correlations between paths. An extremely effi-
cient discrete probability approach in performance-space was pro-
posed in [4], but path reconvergence is handled with difficulty and
global correlations are ignored. A good source of information about
statistical design is [5]. A recent performance-space probabilistic
framework was proposed in [6] but has a restricted domain of ap-
plication.

Unfortunately, most existing methods take into account one or
other type of correlation mentioned above, but not both. They also
often neglect the dependence of slew and downstream load capac-
itance on the sources of variation. These drawbacks are addressed
in this paper.
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3. MODELING
All three methods presented in this paper assume that the delay
and slew of each arc of the timing graph are linear functions of the
sources of variation, similar to the assumptions in [7, 3, 8], for ex-
ample. However, the nominal delays and slews and the sensitivity
coefficients can be location-dependent to accommodate determinis-
tic intra-chip variability. The actual statistical timing analysis con-
sists of two phases. In the first phase, a representative set of paths
is gathered by the timing analysis program after a nominal tim-
ing analysis. The sensitivity coefficients of each “complete” path
(including the launching and capturing clock paths if any) are com-
puted and accumulated by path tracing procedures. In the second
phase, the statistical timing engine predicts the distribution of the
minimum of all the path slacks. All methods work off of a common
timing graph and path-tracing procedure.

The slack (difference between required arrival time and arrival
time for primary outputs or timing slack for latch timing tests) of
each ofP paths is modeled as

si = snom
i +

n

∑
j=1

Ai jδz j (1)

wheresi is the slack of theith path (a statistical quantity),snom
i is

the nominal slack,n is the number of global sources of variation,
Ai j is aP�n matrix of path sensitivities andδz j is the variation of
the jth global parameter from its nominal value. Delay, slew and
loading effects are taken into account in the coefficients ofA in our
implementation.

For a required slackη, we can write the feasible region

F = fδzjsnom
i +

n

∑
j=1

Ai jδz j � η; i = 1;2; � � � ;ng: (2)

Each of the above constraints represents ahyperplane in n-dimensional
parameter-space, on one side of which the circuit has sufficient
slack and on the other side of which it is a failing circuit. The
intersection of all the “good”half-spaces forms aconvex polytope
and is defined as thefeasible region. The goal of the parameter-
space methods is to integrate the JPDF of the sources of variation
in the feasible region. This procedure is repeated for a range ofη
values to produce the entire slack vs. yield curve.

4. PARALLELEPIPED METHOD
This section describes the first of the three novel statistical timing
algorithms, called the parallelepiped method, which is a parameter-
space method. The basic idea is to recursively divide the feasi-
ble region into the largest possible fully feasible parallelepipeds,
and integrate the JPDF of the underlying sources of variation over
these parallelepipeds instead of the original feasible region. The
approach does not require delays to have linear models (but the
bounds described below cannot be guaranteed with nonlinear mod-
els), and allows for arbitrary distributions of the sources of varia-
tion.

4.1 The algorithm
The basic reference on the parallelepiped approach is the second
algorithm of Cohen and Hickey [9]. The method rests on the fact
that if all vertices of ann-parallelepiped lie in any convex feasible
region, thenall points in the interior of the parallelepiped are feasi-
ble. With the above observation, the region of integration in the pa-
rameter space is recursively subdivided into progressively smaller
parallelepipeds until we find parallelepipeds all of whose vertices
are feasible. Then we simply sum up the weighted volume of the

Figure 1: Illustration of the parallelepiped method in 2 dimen-
sions to a recursion depth of 4.

feasible parallelepipeds to obtain a lower bound on the desired yield
as shown in the pseudo-code below for a single given performance
requirement.

procedure Vol(ll, recursionDepth){

if(recursionDepth < maxDepth){
if(all vertices of parallelepiped are feasible)

add integral of region to yield;
else{
subdivide region into smaller parallelepipeds;

for(each new parallelepiped p)
Vol(lowerLeft(p), recursionDepth+1);

}
}

}
Vol(lowerLeft(boundingBox), 0);

The algorithm begins by choosing aboundingBox that is known
to contain the feasible region. For statistical timing, the obvious
choice is the�4σ or �3σ box in n-dimensions. In the algorithm,
lowerLeft represents a function that returns the vertex of the par-
allelepiped that has the lowest coordinate in each dimension. Fig. 1
graphically illustrates the method in two dimensions. The yellow
(in color copies of this paper) or grey (in black-and-white copies)
regions contribute to the final yield computation, and obviously
provide a lower bound on the required probability integral. Note
that descent to the lowest level of recursion is confined to the bound-
aries of the feasible region.

Since at worst we visit every leaf node of aq-ary tree whereq =
2n, and at each vertex we check feasibility of each path constraint,
we end up with a worst-case complexity ofO(Pn2(n�maxDepth)).
Pn is the complexity of checking the feasibility of one vertex. In
fact, if a static timer is employed, the feasibility of a vertex can be
established more efficiently. In any case, the method is exponential
in the product of the recursion depth and the dimensionality of the
manufacturing space. However, several tricks can be applied to
speed up this algorithm in practice.

1. If a particular path is infeasible at all vertices, the recursion
can stop at once. No matter how deep the recursion, that
particular path will not become feasible, so there is no good
yield to be had.

2. If a particular path is feasible at all vertices, that path can be
skipped as the recursion proceeds. This trick is implemented
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by simply maintaining a list of “skippable” paths that grows
as the depth of the recursion increases.

3. The number of recursion levels can be drastically reduced
by modifying the basic algorithm to additionally produce an
upper bound and a best estimate answer. The (strict) lower
bound is still the weighted volume of the yellow/grey region
of Fig. 1. At the lowest level of recursion, if at least one ver-
tex is feasible and at least one infeasible, the upper bound
gets the entire weighted volume of the parallelepiped (repre-
sented by the blue/black region in the Figure). Although not
a strict upper bound, in practice this estimate always exceeds
the exact yield. The “best estimate” result gets yield credit
proportional to the fraction of vertices that is feasible. With
this mechanism, we have found that three to four levels of re-
cursion are always sufficient for accurate results. The law of
large numbers helps, since each parallelepiped at the lowest
level of recursion contributes a signed error.

4. The parallelepiped method can handle any statistical distri-
bution of the underlying sources of variation, provided the
JPDF can be integrated over the volume of a parallelepiped.
If one or more sources of variation form a multi-variate nor-
mal distribution, that part of the integral can be expressed
as the product of differences of error functions in that sub-
space. The manufacturing space is first rotated and scaled so
as to obtain circular symmetry. Then the required error func-
tions are precomputed and stored in a single array of size
2n +1 to avoid repeated calls to the systemerf function.

The following tricks will further improve efficiency, but have not
yet been implemented.

1. Once a decision is made to recurse, only theinternal vertices
of the sub-parallelepipeds need to be visited, since feasibility
at the vertices of the parent parallelepiped has already been
ascertained.

2. Since the bulk of the weighted volume is near the center
of the JPDF, anadaptive grid scheme could be considered
which uses a finer grid near the origin of the∆z space, and a
progressively coarser grid towards the boundary of the bound-
ing box.

3. Recursion can be carried out by subdividing the parallelepiped
in one dimension at a time, and if a path is infeasible at all
vertices, for example, subdivision in the other dimensions is
obviated.

4.2 Modified algorithm
The above algorithm has been adapted to compute the entire yield-
vs.-slack curve at once instead of one point at a time. As each
parallelepiped is processed, the ramifications on yield forall per-
formances are simultaneously recorded before proceeding to the
next parallelepiped or next level of recursion. All CPU time results
in this paper use this modified method.

The basic idea is briefly explained here. Letsparent
min be the small-

est slack at any of the vertices of theparent parallelepiped. Then
for all slack belowsparent

min , the entire parent parallelepiped is in the
feasible region, and appropriate yield credit is given. As we re-
curse, we are only interested in slacks greater thansparent

min within
this volume. For each sub-parallelepiped at the present level of re-
cursion, yield credit corresponding to the smaller parallelepiped is
granted for all slack fromsparent

min to smin (lowest slack amongst the
vertices of the sub-parallelepiped). The upper bound and best guess
yields are similarly kept updated as the recursion proceeds.

Thus the entire yield curve is produced by a single recursive
loop. The modified algorithm computes identical results compared
to repeated invocation of the basic algorithm presented earlier. Mod-
ified versions of all of the tricks mentioned in conjunction with the
basic algorithm continue to be applicable, and have been imple-
mented in our prototype.

5. ELLIPSOID METHOD
This section describes the second of the three novel statistical tim-
ing algorithms, called the ellipsoid method, which is a parameter-
space method. The basic idea is to compute the maximum volume
n-dimensional ellipsoid that is entirely within the feasible region
(a similar idea was explored in [10]), and integrate the JPDF of
the sources of variation in the simpler ellipsoidal approximation
rather than the original feasible region. The integral provides a
lower bound on the yield. This method relies on a linear delay
model, but allows arbitrary distributions of the underlying sources
of variation.

5.1 Ellipse computation
There has been tremendous recent progress in solving the maxi-
mum volume ellipsoid problem. It is shown in [11] that ellipsoidal
volume maximization subject to linear constraints is a special case
of theMAXDET problem in which the determinant of a matrix is
maximized subject to linear matrix inequalities (LMIs). We start
with a set of linear inequality constraints that define a feasible re-
gion (2), and which can be expressed in matrix form as

F = f∆z j RT
i ∆z� ti; i = 1;2; � � � Pg; (3)

whereRT
i is the ith row of �A and ti = snom

i � η. An arbitrary
ellipsoid is expressed as a collection of points

E = fBy+d j kyk � 1g; (4)

whereB is a symmetric, positive-definite matrix that linearly trans-
forms all points in the unit sphere, andd is the center of the ellip-
soid. To find the largest ellipse in the feasible region, it is sufficient
to maximize the determinant of the transformation matrixB since
the volume of the ellipse is the volume of the unit sphere times the
determinant ofB. The requirement thatE � F means that

RT
i (By+d) � ti for all kyk � 1; i = 1;2; � � � ;P: (5)

This in turn means that

supkyk�1(R
T
i By+RT

i d)� ti; i = 1;2; � � � ;P (6)

or

kBRik+RT
i d � ti; i = 1;2; � � � ;P: (7)

To find the ellipsoid of largest volume inside the feasible regionF,
we solve the convex optimization problem

maximize logdetB

subject to B = BT
> 0

subject to kBRik+RT
i d � ti; i = 1;2; � � � ;P: (8)

Zhang and Gao [12] recently proposed an efficient, structure-
exploiting primal-dual optimization algorithm to solve (8), and have
made available public-domain MATLAB code. By manipulating
the optimality conditions and taking advantage of the properties
of transformation matrices of ellipsoids, this method solves for
fewer variables, can handle problems of larger dimensionality and
is vastly more efficient than the original implementation of [11]. In
addition to the linear slack constraints, bounding box constraints
(e.g., the�4σ box) are applied. An example of the ellipse com-
puted by the program in 2 dimensions is shown in Fig. 2.
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Figure 2: Largest ellipse in 2 dimensions bounded by hyper-
plane constraints and the 4σ box.

5.2 Integration
There remains the problem of integrating the JPDF of the sources
of variation over the resulting ellipsoidal approximation of the fea-
sible region. The yield is represented as

Z Z
: : :

Z
R�

JPDF(z1;z2; : : : ;zn)dzndzn�1 : : :dz1: (9)

whereR� is the ellipsoidal region. Instead of integrating over the
ellipsoid we perform a change of variables and integrate over the
unit sphere. Also,

δz1δz2 : : :δzn =

�����������

∂z1
∂y1

∂z1
∂y2

: : :
∂z1
∂yn

∂z2
∂y1

∂z2
∂y2

: : :
∂z2
∂yn

...
...

. . .
...

∂zn
∂y1

∂zn
∂y2

: : :
∂zn
∂yn

�����������
δy1δy2 : : :δyn

= jBjδy1δy2 : : :δyn; (10)

where we make use of the fact that the Jacobian matrix is simply
the transformation matrixB which is computed by the convex opti-
mization problem discussed previously. Therefore the yieldY can
be written as

Y =
Z Z

: : :

Z
R�

JPDF(z)dz

=

Z Z
: : :

Z
R

JPDF(By+d)jBjdy: (11)

whereR is the unit sphere.
The integral in (11) is computed by a modification of the stochas-

tic integration method of Genz and Monahan [13]. The integration
is split up into the product of aradial andspherical part. The spher-
ical part is accomplished by applying Mysovskikh’s rules [14, 15]
to a series of spherical surfaces (or infinitesimal annulus shells),
and the radial part is computed by Gaussian quadrature. Spheri-
cal integration is performed by randomizing deterministic integra-
tion rules to obtain a higher degree of accuracy than conventional
Monte-Carlo integration. Integration is performed by applying a
degree-5 rule with(n+1)(n+2) points, giving the method poly-
nomial complexity. The basic set of points is randomly rotated to
get a new set of points. The quality of the radial integration can be
improved by increasing the number of spherical surfaces, whereas
the quality of the spherical integration can be improved by increas-
ing the number of points sampled on each spherical surface.

6. BINDING PROBABILITY METHOD
This section describes the last of the three novel statistical tim-
ing algorithms, called the binding probability method, which is a
performance-space method. The basic idea of this method is to
compute the probability distribution of the minimum slack of the
first two nominally most critical paths. Then a recursion is set up
to find the distribution of the minimum of this distribution and the
third most critical path, and so on. The difficult part, of course, is to
keep the correlations alive as the recursion proceeds. This method
rests on both the linear delay model as well as requiring the under-
lying parameter distributions to be Gaussian.

6.1 Computing PDF and binding probability
The slack of every path is a linear combination of the Gaussian
sources of variation, and hence is Gaussian. The algorithm begins
by taking the two nominally most critical paths and computing their
2�2 covariance matrix

Φ=

"
( ∂s1

∂z )
T

( ∂s2
∂z )

T

#
[V ]

�
∂s1

∂z
∂s2

∂z

�
=

�
AT

1
AT

2

�
[V ] [A1A2] (12)

wheres1 is the slack of the first path,s2 is the slack of the second
path,AT

i is theith row of A, z are the sources of variation andV is
then�n covariance matrix of the sources of variation. Comparing
to

Φ=

�
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

�
(13)

the variancesσ1, σ2 and the correlation coefficientρ can easily
be computed. Next, the distribution of min(s1;s2) is computed as
follows.

p1 = p(s1 = η) = 1p
2π

1
σ1

e�
1
2 (

η�µ1
σ1

)2

dη

p2 = p(s2 = η) = 1p
2π

1
σ2

e�
1
2 (

η�µ2
σ2

)2

dη

p3 = p(s1 � ηjp2) = 0:5+ 1
2erf

 �
η�µ1p

2σ1

�
�
�

η�µ2p
2σ2

�
ρp

1�ρ2

!

p4 = p(s2 � ηjp1) = 0:5+ 1
2erf

 �
η�µ2p

2σ2

�
�
�

η�µ1p
2σ1

�
ρp

1�ρ2

!
:

(14)
By sweeping through a range ofη values (theoretically from�∞
to ∞), the entire PDF of min(s1;s2) = p1p4 + p2p3 is computed.
Further, the probability that the first path dominates the second over
all possibleη values is called thebinding probability of the first
path,b1 =

R ∞
η=�∞ p1p4. Likewise, the probability that the second

path dominates isb2 = 1�b1 =
R ∞

η=�∞ p2p3. As a practical matter,
the algorithm sweepsη through a range that includes�3σ or�4σ
of both the paths being processed.

6.2 The recursion
The next step is to create afictitious path that captures the correla-
tions of all the paths processed so far. The fictitious path consists
of a linear combination of all the timing graph edges along path
1 with probabilityb1 and all the gates along path 2 with probabil-
ity b2; in other words, a vector consisting of a linear combination
of the slack sensitivities of the two paths is created, to be plugged
back into (12) for the covariance computation at the next step of
recursion. If one or the other path is always dominating (bind-
ing probability of unity), its sensitivities are preserved as is. The
distribution obtained above is then approximated to be Gaussian.
The algorithm proceeds by finding the probability distribution of
the minimum of this fictitious path slack and the third most criti-
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cal path, and so on, until the probability distribution changes by a
sufficiently small tolerance.

At the end of this procedure, the binding probabilities accumu-
lated along the way give us the probability that any given path is
critical, and in fact the probability that any given branch of the tim-
ing graph is critical. Such diagnostics can be used to guide yield-
aware optimization.

7. IMPLEMENTATION
All three methods presented in this paper have been implemented
in C++ as a prototype component calledEinsStat in theEinsTimer
static timing analysis environment. The program runs underNut-

shell with TCL scripting capabilities. In the case of the ellipsoid
method, the maximum volume ellipsoidMATLAB code of Zhang
and Gao [12] was converted via theMATLAB compiler to C++.

The “front-end” collects the worst paths, and computes their
nominal slacks and sensitivities directly off the EinsTimer timing
graph. Currently, a user-specified number of worst data paths are
collected throughout the entire design (which could easily be ex-
tended to collect all paths within a user-specified slack window).
For each path, a corresponding downstream (setup) test slack is
computed – this implicitly takes into account the most critical clock
path leading to the test. “Full paths” are traced from the clock
source, through the launching latch, through the data path, to the
capturing latch and back to the clock source. This way, common
clock path correlations are fully captured.

Sensitivities with respect to global environmental conditions are
determined by finite differences as our analytical delay models [16]
are characterized as functions of voltage and temperature. In addi-
tion, the underlying delay calculations fully account for input slew
and downstream pin capacitance dependencies on the sources of
variation.

8. NUMERICAL RESULTS
Two flavors of numerical results will be presented in this section.
The first is results obtained from statistical analysis of a real-world
200K gate ASIC design with environmental variations, while leav-
ing manufacturing parameters at their “slow chip” setting. The sec-
ond set of results is from running artificially generated problems
with a large number of nominally equally critical paths and ran-
dom sensitivities.

A 200K gate ASIC circuit was first analyzed with individual tem-
perature and voltage variations, leading to a surprising result. The
EinsTimer best-case result was the worst slack of all and the nom-
inal result was the best slack! Further investigation revealed that
this chip has a short primary-input-to-latch path, whose slack dete-
riorates rapidly with lower temperature and higherVdd because the
clock is disproportionately sped up. At higher temperatures and
lower Vdd values, latch-to-latch paths with more traditional slack
sensitivities dominate. This type of surprising result is easily un-
earthed with statistical analysis.

Fig. 3 shows statistical timing results on the 200K gate ASIC cir-
cuit with simultaneous temperature and voltage variations. The Y
axis represents yield and the X axis represents slack. Superposed
on the same plot are results obtained by runningEinsTimer 1,200
times at a regular grid of sample temperature/Vdd pairs and con-
verting the sample points to probabilities. All methods are pretty
accurate, except the binding probability method that is unable to
accurately capture the highly skewed slack distribution in this case.
CPU times on an IBM Risc/System 6000 model 43P-S85 are shown
in Table 1. Although results are shown here with only two sources
of environmental variation, the anticipated applications of these

Table 1: CPU times on 200K gate ASIC
Method 15,000 10,000

paths paths
RepeatedEinsTimer runs 68 hours
Monte Carlo 1M samples 855 s 60 s
Parallelepipeds 141 s 20 s
Binding probability 152 s 20 s
Ellipsoid Out of memory 3.41 hours

-0.6 -0.4 -0.2 0.0 0.2
Slack (ns)

0.0

0.5

1.0

Yi
eld

Binding probability

Ellipsoid

Parallelepiped lower bound

Parallelepiped upper bound

Parallelepiped, Monte
Carlo and repeated
EinsTimer runs

Figure 3: Statistical timing results on 200K gate ASIC.

methods are to solve the problem of timing circuits with multiple
voltage islands and to take manufacturing variations into account.

The second set of results are from randomly generated problems
with a large number of nominally equally critical paths. Fig. 4a
shows the growth in CPU time as a function of the number of paths
analyzed, with the number of sources of variation fixed at 4 and
100 points requested on the slack curve. The ellipsoid method has
polynomial complexity in the number of paths, while the others are
linear. Fig. 4b shows the growth in CPU time as a function of the
number of points requested on the yield curve (number of variations
fixed at 4, number of paths at 1,000). With the exception of the el-
lipsoid method, all the methods are insensitive to first order to the
number of data points requested. Finally, Fig. 4c shows the growth
of CPU time with the number of sources of variation (paths fixed
at 1,000 and data points at 100). To first order, the Monte Carlo
and binding probability methods are unaffected by the number of
parameters, whereas the ellipsoid method has polynomial depen-
dence and the parallelepiped method has exponential dependence
which dominates the run time above 6 dimensions.

9. COMPARISONS
The parallelepiped method is very fast and accurate at low-dimensionality,
but has exponential growth of CPU time with the number of sources
of variation. The CPU time is independent to first order of the
number of points requested on the yield curve, and linear with the
number of paths selected. Hence it is best suited to accurate but
low-dimensionality analysis.

The ellipsoid method, on the other hand, handles high-dimensionality
extremely well and successfully handled problems with over 20
sources of variation. However, it has linear growth with the num-
ber of points requested on the slack curve, and polynomial growth
with the number of paths. Thus it is most effective when the di-
mensionality is high and the number of paths can be filtered down
to a manageable number.
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Figure 4a. CPU time vs. number Figure 4b. CPU time vs. number Figure 4c. CPU time vs. number
of paths. of data points requested of sources of variation.

The binding probability method is extremely fast, and consis-
tently outperforms all the other methods. It is also the least ac-
curate of the methods proposed, both because of the Gaussian ap-
proximation, and because of the loss of accuracy in propagating
correlations. The complexity is linear in the product of the number
of paths and the number of data points requested on the yield curve,
but is relatively insensitive to the number of sources of variation.

The three methods therefore provide a complementary arsenal of
techniques depending on the situation at hand.

10. CONCLUSIONS AND FUTURE WORK
This paper presented three algorithms for statistical timing analysis
that pay a great deal of attention to the inherent correlation between
the delays of gates and paths on a chip. Each method has strengths
and weaknesses, and by implementing all three in a common in-
frastructure and with a common interface, the best features of each
method can be exploited as the situation demands. Results of sta-
tistical timing analysis on a 200K gate ASIC were presented.

There are several avenues of future work. Several measures to
improve efficiency were suggested in the body of this manuscript.
Various diagnostics can be inferred from these methods, too. For
example, in the ellipsoid method, the major and minor axes of the
ellipse tell us the least and most important directions in which to
nudge the circuit for improved parametric yield, and the most im-
portant manufacturing parameters on which to improve control if
possible. The binding probability method gives us a rank-ordered
set of gates, the improvement of whose delays will have the most
impact on improving yield. The extreme efficiency of the binding
probability method is motivating some new research into handling
skewed distributions in this method. Extending the method to com-
pute yield gradients will enable automated yield-aware optimiza-
tion.

Two other extensions are intriguing. The first is to compute
the so-called L¨owner-John ellipsoid, which is the smallest ellip-
soid that circumscribes the feasible region, so as to obtain an upper
bound on the yield. The second is to obtain a simplicial decom-
position of the feasible region (see [17] for an excellent survey)
and then to integrate the JPDF of the sources of variation over the
resulting simplices.

Finally, statistical intra-chip variation can be accommodated in
a number of ways. One technique is to have a position-dependent
random variable, upon which the delays of all gates depend. An-
other is to divide the chip into regions, with each region having a
common set of random variables. The variables of nearby regions
are tightly correlated, while those that are far apart are only loosely

correlated.
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