
Static Statistical Timing Analysis for Latch-based Pipeline Designs

Mango C.-T. Chao∗, Li-C. Wang∗, Kwang-Ting Cheng∗, Sandip Kundu∗∗

∗Department of ECE, UC-Santa Barbara
∗∗ Intel Corporation, Austin, Texas

Abstract
A latch-based timing analyzer is an essential tool for developing

high-speed pipeline designs. As process variations increasingly in-
fluence the timing characteristics of DSM designs, a timing analyzer
capable of handling process-induced timing variations for latch-
based pipeline designs becomes in demand. In this work, we present
a static statistical timing analyzer, STAP, for latch-based pipeline de-
signs. Our analyzer propagates statistical worst-case delays as well
as critical probabilities across the pipeline stages. We present an
efficient method to handle correlations due to reconvergent fanouts.
We also demonstrate the impact of not including the analysis of re-
convergent fanouts in latch-based pipeline designs. Comparing to a
Monte-Carlo based timing analyzer, our experiments show that STAP
can accurately evaluate the critical probability that a design violates
the timing constraints under a given statistical timing model. The
runtime comparison further demonstrates the efficiency of our STAP.

1. Introduction

For designs with level-sensitive latches, a signal may have a de-
lay larger than the clock period and may flush through the latches
without causing incorrect data propagation, whereas the delay of
a signal in designs with edge-triggered flip-flops must be smaller
than the clock period to ensure the correctness of data propagation
across flip-flop stages. Due to the characteristics of this clock steal-
ing, using level-sensitive latches is a popular methodology for high-
performance pipeline designs. Many researchers, [1, 2, 3], have con-
ducted research in timing analysis for latch-based designs in the early
90’s. However, prior works are based on fixed-delay timing models
that may no longer be effective to represent the timing behavior of
today’s deep sub-micron (DSM) designs.

With today’s manufacturing technology, the timing of a single de-
vice can be significantly influenced by process variations, resulting
in timing variations from chip to chip. Therefore, using a statistical
timing model in timing analysis becomes a natural extension to the
traditional fixed-delay analysis. However, once we come to use a
statistical timing model, timing analysis becomes a much more com-
plicated problem than that in fixed-timing domain.

Among many research works for statistical timing analysis (STA),
the Monte-Carlo based approaches [4, 5] are considered to be most
accurate. However, it can be very time-consuming for a Monte-Carlo
approach to obtain a convergent result for large designs. Block-based
approaches for STA were proposed in [6, 7, 8, 9, 10] as more effi-
cient alternatives to Monte-Carlo based STA. These approaches aim
to quickly obtain approximate results, and the accuracy of a block-
based STA is often compared to the results from a Monte-Carlo STA.

In [6], the STA approach propagates the worst-case output delay

of two discrete random variables based on an enumeration method.
It could not handle reconvergent fanouts effectively. The authors in
[7] propose a method to compute the upper bound and lower bound
of circuit worst-case delay and yet, the approach also relies on enu-
meration to handle reconvergent fanouts. The approach in [8] uti-
lizes a piece-wise linear model for representing cumulative density
functions and can compute the worst-case output delay efficiently.
The authors in [8] also propose a heuristic for handling reconvergent
fanouts, but not spatial correlations among delay random variables.
The works in [9, 10] apply the method in [11] to compute the worst-
case output delay by assuming that delay random variables are all
Gaussian. Both works propose an approach for handling spatial cor-
relations.

The timing analysis for latch-based pipeline designs with level-
sensitive latches is different from the timing analysis for combina-
tional designs or for flip-flop-based design because of the follow-
ing two characteristics. First, for level-sensitive latches, a delay in
one pipeline stage depends on the delays in the previous pipeline
stage. Second, on a pipeline design, we need to propagate not only
the longest/shortest delays from a primary input (PI) to a primary
output (PO) through the pipeline stages, but also the critical proba-
bilities that the delays on latches violate setup-time/hold-time con-
straints. This high dependency across the pipeline stages exacerbates
the impact of correlations among delay random variables, especially
the correlations resulting from reconvergent fanouts. Section 2.1 and
2.2 will detail these two properties in our timing analysis.

In this paper, we propose a static statistical timing analyzer, named
STAP, to evaluate the probability that a given latch-based pipeline
design violates the timing constraints under process-induced timing
variations. In STAP, we utilize the method in [11] to propagate the
worst-case delay random variables. The method can effectively con-
sider correlations among random variables. We also propose a sepa-
rate method for propagating the critical probabilities across pipeline
stages. Moreover, we present a technique for efficient manipulation
of the correlation data during the delay propagation analysis. We
compare STAP with a Monte-Carlo based approach sampling 10000
circuit instances. The experimental results demonstrate the accuracy
and the efficiency of STAP in terms of critical probability propaga-
tion and handling reconvergent fanouts.

2. Problem Formulation

2.1. Timing model for level-sensitive latches

In a pipeline design with level-sensitive latches, a delay on a
pipeline stage may affect the delay on the next stage in the next clock
cycle. Figure 1 illustrates this property. In Figure 1, a signal propa-

signal arrival &
departure time

: arrival time : departure time

T
C

T
P

latch i latch j latch k

clock signal

Figure 1: Relation between departure time and arrival time for a
level-sensitive latch.

gates from latch i to latch j and then to latch k, and all three latches
use the same clock phase. We use triangles and circles to represent
the signal departure time and arrival time, respectively. TC and TPi

represent the clock period and the width of the active interval of latch
phase Pi, respectively. If the signal arrives at a latch before the latch
becomes active, the departure of the signal for the next latch has to
wait until the current latch become active, e.g., the signal from latch i
to latch j in Figure 1. If the signal arrives at a latch during the active
interval, the signal can directly pass through the latch without any
waiting, e.g., the signal from latch j to latch k in Figure 1.

The relations among arrival times, departure times, TC, TPi , and
the worst-case delays follow the following SMO model [1]:

Di = max(Ai,TC −TPi) (1)

di = max(ai,TC −TPi) (2)

Ai = max(D j +∆ ji −EPjPi) (3)

ai = min(d j +δji −EPjPi) (4)

Ai ≤ TC −TPi −Si (5)

ai ≥ Hi (6)

where Di (di) represents the latest (earliest) signal departure time,
Ai (ai) represents the latest (earliest) signal arrival time, ∆ ji (δji) rep-
resents the maximum (minimum) delay from latch i to latch j, EPjPi

represents the forward phase shift from phase Pi to phase Pj, and Si
(Hi) represents the setup (hold) time of latch i.

Due to the above latch-based timing constraints, in a latch-based
pipeline design, the worst-case delay on one pipeline stage depend
on its departure time in the previous stage. This property prevents
us from applying a traditional timing analysis approach for combina-
tional designs or for flip-flop-based designs on latch-based pipeline
designs. A traditional timing analysis tool treats flip-flops as pseudo
primary inputs (PPIs) and pseudo primary outputs (PPOs). The anal-
ysis is only for finding out the worst-case delays between flip-flops.
It works fine because the departure time of an edge-triggered flip-
flop is always the same during each clock cycle. For example, in
Figure 1, the departure time for the edge-triggered flip-flop would be
always like that case depicted on latch j. For the signal on latch k in
Figure 1, the flip-flop would have latched the wrong data. Therefore,
for latch-based pipeline designs, we need to compute the worst-case
delay by propagating delays across multiple latch stages.

In the remaining of this paper, we primarily discuss the analy-
sis by considering the late-mode timing constraints, that is, Di, Ai,
and setup time constraints. The early-mode timing analysis can be
achieved with a similar approach.

2.2. Critical probabilities for latches

There are two events that a latch i may capture the wrong data.
The first event is that the worst-case arrival time Ai violates the setup
time constraint in equation (5) due to an overly long signal delay in
the current pipeline stage. We define this event as CECSi, the critical
event (failure) induced by the current pipeline stage. Then we can
define CPCS(i) as the probability that CECSi occurs.

CPCS(i) = Prob{CECSi}
= Prob{Ai ≥ TC −TPi −Si} (7)

The other event when the latch i may store the wrong data is when
any latch j in the previous stage stores the wrong data and then prop-
agates the wrong data to latch i. We denote this event as CEPSi, the
critical event induced by the previous pipeline stage. With the CECSi
and CEPSi, we can define the critical event of a latch i as ICEi, the
combined critical event that CECSi, CEPSi, or both occur. Then we
define CPPS(i) and ICP(i) as the probabilities that CEPSi occurs and
ICEi occurs, respectively.

ICP(i) = Prob{ICEi}
= Prob{CECSi ∪CEPSi}, (8)

CPPS(i) = Prob{CEPSi}
= Prob{

[
j∼i

ICE j}, (9)

where j ∼ i means there is a path from latch j to latch i.
We further define the circuit critical probability, CCP, of a pipeline

design as

CCP = Prob{
[

j∈PO

ICE j}, (10)

The output of our STAP reports the circuit critical probability
CCP, and the ICP(i) for each latch i based on a given statistical delay
library with the parameters for each clock phase (TPi , EPjPi) and the
parameters for each latch (Si, Hi).

Therefore, in our STAP, we need not only to handle the worst-case
delay propagation, but also to handle the critical probability propa-
gation by an ”OR” operation over critical events. This is different
from the tradition statistical timing analysis which only considers the
worst-case delay propagation.

In Section 3, we will discuss how to propagate worst-case delays
and critical probabilities in our timing analysis tool.

2.3. Input/Output of STAP

The inputs of STAP are:

• a target pipeline circuit under analysis,
• statistical delay libraries,
• TPi , EPjPi , Si, Hi for each phase and latch, and
• the clock period, TC .

The outputs of STAP are:

• the circuit critical probability CCP, and
• ICP(i) for each latch i.

3. Statistical Timing Analysis Approach

3.1. Propagating worst-case delay

In our STAP, we build the timing graph by converting gates and
interconnects into nodes and edges. Each delay random variable of
a gate or an interconnect is modeled as a Gaussian distribution. For
two cascaded random variables, we compute its output delay random
variable by convolution. For two random variables converging at a
node, we compute its resulting output delay random variable by a
maximum operation (in late-mode analysis) or minimum operation
(in early-mode analysis).

We denote a random variable X by (µx,σ2
x), where µx and σ2

x
are the mean and variance of X . Given two random variables,
X(µx,σ2

x), Y (µy,σ2
y), and their correlation coefficient ρxy, the con-

volution Z(µz,σ2
z) = X +Y can be computed by µz = µx + µy and

σ2
z = σ2

x +σ2
y . We assume that the output distribution Z is still Gaus-

sian. The correlation coefficient between the output random variable
Z and any other random variable W can be computed by the equation,

ρzw = ρxw +ρyw (11)

The above computation of convolution of two random variables
can be found in any probability textbook.

As for computing the maximum, Z = Max(X ,Y), we follow the
methods proposed in [11]:

ϕ(x) = (2π)−1exp(−x2/2), (12)

Φ(x) =
Z x

−∞
ϕ(t)dt, (13)

a2 = σ2
x +σ2

y −2σxσyρxy, (14)

α = (µx −µy)/a. (15)

The mean µz, variance σ2
z , and correlation coefficient ρzw between

Z = Max(X ,Y) and any other random variable can be obtained by

µz = µxΦ(α)+µyΦ(−α)+aϕ(α), (16)

σ2
z = (µ2

x +σ2
x)Φ(α)+(µ2

y +σ2
y)Φ(−α)

+(µx +µy)aϕ(α)−µ2
z , (17)

ρzw = [ρxwσxΦ(α)+ρywσyΦ(−α)]/σz. (18)

By a similar derivation as that in [11], we can obtain the results
for the minimum operation Z = Min(X ,Y) as:

µz = µxΦ(−α)+µyΦ(α)−aϕ(α), (19)

σ2
z = (µ2

x +σ2
x)Φ(−α)+(µ2

y +σ2
y)Φ(α)

−(µx +µy)aϕ(α)−µ2
z , (20)

ρzw = [ρxwσxΦ(−α)+ρywσyΦ(α)]/σz. (21)

The output distribution of a maximum (or minimum) operation
from two Gaussian distributions is not a Gaussian distribution but
very close to. To express this quasi-Guessian distribution as a Gaus-
sian distribution, we can keep propagating the delay by above con-
volution, maximum and minimum operations. However, it is where
we may lose accuracy.

The goal of the above worst-case delay propagation is to obtain the
latest arrival time on each latch i (Ai in equation (3) and ai in equation
(4)). Instead of computing the worst-case delay between every two
connected latches in two separate pipeline stages (∆ji), we directly
compute the Ai by applying the above propagation operations from
the inputs of one pipeline stage to its outputs based on the topological
ordering, similar to a block-based timing analysis approach. Once a
PPO i is reached, we can compute the departure time Di of the latch
by equation (1) for the next pipeline stage. We continue to propagate
the worst-case delays from stage to stage until we reach all POs.

3.2. Propagating critical probabilities

For a random variable, the probability that this random variable
is larger than a fixed number can be easily calculated by its accu-
mulated density function. So after Ai is obtained by the above delay
propagation, we can immediately obtain its CPCS(i) by computing
the probability that Ai > ci, where ci is the value defined in the setup
time constraint (equation (5)). This property of quickly computing
critical probability for a random variable allows us to represent the
CPCS(i) as simply a Gaussian random variable n and a constant c.
Hence, we denote a critical probability by a tuple (n,c) in the follow-
ing discussion.

As for computing CPPS(i) and ICP(i) , we have to be able to do
the ”OR” operation based on two critical probabilities (n1,c1) and
(n2,c2). This is to compute the probability that either ”n1 > c1” or
”n2 > c2” would occur. The output critical probability is denoted as
(nout ,cout). We first consider the case that c1 = c2 = c. In this case,
we have

Prob{n1 > c∪n2 > c} = 1−Prob{Max(n1 ,n2) ≤ c}
= Prob{Max(n1 ,n2) > c} (22)

So in this case, nout = Max(n1,n2), cout = c.
For the general case with different c1 and c2, we just shift the

mean of n2 to fit the case in equation (22):

Prob{n1 > c1 ∪n2 > c2} = Prob{Max(n1 ,n2 +c1 −c2) > c1} (23)

In equation (9), if there are more than two CEPSs, then we can
decompose the ”OR” operation of all CEPSs into several consecutive
”OR” operations of two CEPSs.

For any latch i in the first pipeline stage, its ICP(i) is directly
equal to CPCS(i) because each ICP(j) is zero when j is a PI. So
each ICP(i) in the first pipeline stage can be represented by a tuple
(Ai,ci). By continually propagating all tuples to the latches in the
next pipeline stage, we can compute the ICP(i) for all POs in the last
stage.

One important reason that we propagate a critical probability as a
tuple (n,c) instead of as a constant value is that critical events may
have correlations to one another, even for those critical events not
in the same pipeline stages. If every critical event is independent,
then we can simply calculate the critical probability by multiplica-
tions and subtractions over constant values. However, this simple
approach would not be accurate. The accuracy of our STAP relies
on an effective method for handling correlations among random vari-
ables. This is why we selected the technique in [11] for implementing
STAP.

3.3. Handling correlation

The most important advantage of [11]’s method for propagating
worst-case delays is its ability to handle correlations between two
random variables. With equations (11), (18), and (21), the correlation
coefficient between the output random variable and any other random
variable can be updated. Hence, the correlations can be preserved for
the subsequent delay propagation.

The correlations among delay random variables may come from
the spatial correlations or from reconvergent fanouts. The spatial
correlations among random variables are determined by the circuit
layout and the manufacturing process. They can be specified in a
covariance matrix in advance. The authors in [9] use the principle
component analysis to extract a set of independent random variables
to represent the correlated random variables, and can relieve the bur-
den of holding a huge covariance matrix. The authors in [10] also
propose a canonical form of the delay model to represent the spatial
correlations.

However, for the correlations from reconvergent fanouts, the en-
tire covariance matrix cannot be built until the timing analyzer starts
propagating delays. So once we generate a new output random vari-
able, we need to update its correlation coefficients with all other ran-
dom variables. This will result in large memory consumption and
require the timing analyzer to dynamically expand the covariance
matrix.

In STAP, we use a correlation list for each random variable to
record the non-zero correlation coefficient with other variables. After
every convoluation or maximum operation, the output random vari-
able Z will inherit the correlation coefficients from its input random
variables X and Y , and then update its correlation coefficients with
equation (11) or equation (18). For each correlated random variable
W in the correlation list of Z, we add the same correlation coefficient
into the correlation list of W .

Two rules in STAP are applied to minimize the size of the cor-
relation list. First, after updating the correlation coefficients with
equation (11) or with equation (18), we remove the correlation coef-
ficients smaller than a given threshold (this threshold is set as 0.001
in our experiments). Especially after the maximum operation, some
correlation coefficients from one input random variable may all be-
come very small due to the factor Φ(α) or Φ(−α) in equation (18).
Second, for a random variable W in the correlation list, if no random
variable will be produced from W by any convolution or maximum
operation, then we remove W .

A B=max{AI ,

I1

I2

AI1=A+I 1

AI2=A+I 2

a b

i1

i2

AI 2}1

Figure 2: Example for reconvergent fanout.

Figure 2 shows a rather simple example to illustrate how to han-
dle correlations for a reconvergent fanout. Node a and b represent
two gates, and i1 and i2 represent two interconnects from a to b. A
represents the output delay distribution of gate A. I1 and I2 represent
the delay random variables of i1 and i2. Initially, only the random
variable itself is in the correlation list of the random variable. After
we compute AI1 = A + I1, AI1, A and I1 are in the correlation list of
AI1. By the second rule, I1 will be remove since no variable will de-
rive from I1 anymore. AI1 is then added into the correlation list of A.

Next, after we compute AI2 = A + I2, AI2, AI1, A, and I2 are in the
correlation list of AI2. Then I2 and A can both be removed according
to the second rule. When we compute B = max{AI1,AI2}, we can
find out the correlation coefficient from their correlation lists. The
final correlation list of B will only contains B itself.

4. Experimental Results

In our experiment, all statistical delay parameters were obtained
through pre-characterization of cell libraries using a Monte-Carlo-
based SPICE simulator (ELDO) [12] based on a 0.25µm, 2.5V
CMOS technology. The pipeline circuits in our experiment are gener-
ated by modifying ISCAS benchmark circuits into designs with four
pipeline stages based on each circuit’s topology. In these designs, we
try to balance the maximum number of gates for all paths between
two stages and across different stages. All experiments use a single
phase clock. We did not consider spatial correlations in these experi-
ments. However, we note that STAP is capable of considering spatial
correlations by using the method in [9] or [10].

clock(ps) 3200 3150 3000 2950 2900 2850 2800
MC STA 0.69 2.42 6.87 21.94 50.10 75.71 94.77

STAP 0.15 1.30 6.77 22.37 48.93 75.99 92.50
difference -0.54 -1.12 -0.10 0.43 -1.17 0.28 -2.27

Table 1: CCP (%) comparisons between MC STA and STAP on 4-staged
benchmark circuit c6288

To validate the accuracy of our STAP, we also implement a Monte-
Carlo based timing analyzer, MC STA. In all experiments, the results
from MC STA are based on 10000 sampling iterations. Both tools
calculate the circuit critical probability CCP.

Table 1 shows the CCP comparison between our STAP and
MC STA on a 4-stage pipeline circuit modified from c6288 by giv-
ing different clock periods. The first row in Table 1 shows the given
clock periods. The second and third rows show the CCP calculated
by MC STA and STAP, respectively, for each corresponding clock
period. The last row shows the CCP difference between STAP and
MC STA. As the results of the table show, our STAP can match the
result of MC STA with a difference from -2.27% to 0.42% over dif-
ferent clock periods.

MC STA STAP Comparison
circuit clock CCP runtime CCP runtime CCP dif. speedup

(ps) (%) (s) (%) (s) (%) (X)
c880 640 31.53 25.2 38.04 0.2 6.51 126.6

c1355 650 3.64 27.4 4.71 0.4 1.07 68.4
c6288 2850 75.71 113.4 75.99 1.3 0.28 87.2
s1488 850 83.05 38.5 82.64 0.6 -0.41 64.1
s5378 820 28.71 167.6 28.86 0.9 0.15 186.2
s9234 1380 43.45 283.5 48.50 1.6 5.05 177.2
s38417 1070 10.94 1213.6 8.91 15.3 -2.03 79.3

Avg. 2.21 112.7

Table 2: CCP (%) and runtime comparisons between MC STA and STAP
on 4-staged pipeline circuits built from ISCAS benchmark.

Table 2 compares CCP and runtimes between STAP and MC STA
on more benchmark circuits. For each benchmark, we report its CCP
and runtime based on one selected clock period. Column 1 and 2
list the benchmarks and its given clock period. Column 3 and 4 list
the CCP and runtimes for MC STA. Column 5 and 6 list the CCP
and runtimes for STAP. Column 7 lists the CCP difference between

STAP and MC STA. Column 8 calculate the speedup factor obtained
from STAP over MC STA.

These experiments demonstrate the accuracy and efficiency of
STAP, which can achieve a 112.7 X speedup over MC STA with only
a 2.21% average accuracy loss in CCP. The longest runtime is on the
pipeline design modified from s38417. For this design, it only took
15.3 seconds. This indicates the capability of STAP for analyzing
larger pipeline circuits.

MC STA STA No Cor STA Stage Indep
circuit clock(ps) CCP(%) CCP(%) CPP dif.(%) CCP(%) CCP dif.(%)
c880 640 31.53 38.03 6.50 38.04 6.51

c1355 650 3.64 9.51 5.87 4.69 1.05
c6288 2850 75.71 100.00 24.29 77.82 2.11
s1488 850 83.05 0.00 -83.05 0.00 -83.05
s5378 820 28.71 41.33 12.62 33.77 5.06
s9234 1380 43.45 63.51 20.06 48.50 5.05

s38417 1070 10.94 100.00 61.24 100.00 61.24

avg. 30.52 23.44

Table 3: CCP (%) comparisons between MC STA, STA No Cor,
STA Stage Indep on 4-staged pipeline circuits built from ISCAS benchmark.

In Table 3, we try to observe the effect of considering correla-
tions caused by reconvergent fanouts. In STA No Cor, the effects
of recovergent fanouts are ignored. The analysis assumes that ev-
ery delay random variable is independent. In STA Stage Indep, only
the effects of reconvergent fanouts within one pipeline stage are con-
sidered. The correlations due to reconvergent fanouts across two or
more pipeline stages are ignored.

Table 3 compares the CCP difference between STA No Cor and
MC STA in Column 5, where the average difference is 30.52%.
The CPP difference between STA Stage Indep and MC STA is
listed in Column 7, where the average difference is 23.44%. Both
STA No Cor and STA Stage Indep have much larger CPP differ-
ences than STAP. More importantly, in some cases, STA No Cor
and STA Stage Indep may report similar results and yet, the results
can totally contradict the CPP reported by MC STA. For example, in
the cases of s1488 and s38417, STA No Cor and STA Stage Indep
agree on their results, but the results are far from those computed by
MC STA. From these experiments, we see the importance of han-
dling reconvergent fanouts in the analysis for pipeline designs.

circuit c880 c1355 c6288 s1488 s5378 s9234 s38417 avg.
clock 640 650 2850 850 820 1380 1070

w/o reduce 0.40 1.5 32.50 1.7 4.6 8.1 86.4
w reduce 0.2 0.4 1.3 0.6 0.9 1.6 15.3

speedup(X) 2.0 3.8 25.0 2.8 5.1 5.1 5.6 7.1

Table 4: Runtime comparison of STAP with correlation list reduction and
without reduction (Section 3.3)

In the last experiment, we try to show the efficiency and effec-
tiveness of the way we maintain the data in the correlation lists (sec-
tion 3.3). In table 4 we compare the STAP performance using the
reduction rules described in section 3.3 and the STAP performance
without using those rules. Table 4 shows that on average, we obtain
a 7.1X runtime speedup by employing the reduction rules. The CPPs
obtained with or without those rules are almost the same.

5. Conclusion

This paper presents STAP, a static statistical timing analyzer for
latch-based pipeline designs. By performing convolution, maxi-

mum, minimum, and ”OR” operations on random variables, STAP
propagates worst-case delays as well as critical probabilities from
one pipeline stage to another. More importantly, STAP can ef-
ficiently handle correlations caused by reconvergent fanouts using
dynamically-maintained correlation lists associated with delay ran-
dom variables. By comparing the accuracy and efficiency of STAP to
a Monte-Carlo based timing analyzer, we demonstrate the feasibility
and superiority of STAP through experiments on various benchmark
circuits.

References

[1] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun, Check Tc
and min Tc: Timing verification and optimal clocking of syn-
chronous digital circuits, ACM/IEEE International Conference
on Computer Aided Design, pp.552-555, November 1990.

[2] T. M. Burks, K. A. Sakallah, and T. N. Mudge, Identifica-
tion of Critical Paths in Circuits with Level-Sensitive Latches,
ACM/IEEE International Conference on Computer Aided De-
sign, pp.137-141, November 1992.

[3] J. Lee, D. T. Tang, and C. K. Wong, A Timing Analysis Al-
gorithm for Circuits with Level-Sensitive Latches, ACM/IEEE
International Conference on Computer Aided Design, pp.535-
543, November 1994.

[4] J.-J. Liou, K.-T. Cheng, and D. Mukherjee, Path Selection For
Delay Testing of Deep Sub-micron Devices Using Statistical
Performance Sensitivity Analysis, IEEE VLSI Test Symposium,
pp. 97-104, April 2000.

[5] J.-J. Liou, A. Krstic, Y.-M. Jiang, and K.-T. Cheng, Path Se-
lection and Pattern Generation for Dynamic Timing Analysis
considering power supply noise effects, ACM/IEEE Interna-
tional Conference on Computer Aided Design, pp. 493-496,
Nov 2000.

[6] J.-J. Liou, K.-T. Cheng, S. Kundu, and A. Krstic, Fast Sta-
tistical Timing Analysisby by Probabilistic Event Propagation,
ACM/IEEE Design Automation Conference, pp. 661-666, June
2001.

[7] A. Agarwal, D. Blaauw, V. Zolotov, and S. Vrudhula, Statistical
Timing Analysis using Bounds, ACM/IEEE Design, Automa-
tion and Test in Europe Conference and Exhibition, pp. 62-67,
March 2003.

[8] A. Devgan, and C. Kashyap, Block-based Static Timing Anal-
ysis with Uncertainty, ACM/IEEE International Conference on
Computer Aided Design, pp.607-614, November 2003.

[9] H. Chang and S. S. Sapatnekar, Statistical Timing Analy-
sis Considering Spatial Correlations Using A Single PERT-like
Traversal, ACM/IEEE International Conference on Computer
Aided Design, pp.621-625, November 2003.

[10] C. Visweswariah, K. Ravindran and K. Kalafala, First-
Order Parameterized Block-Based Statistical Timing Analysis,
ACM/IEEE workshop on timing issures in the specification and
synthesis of digital systems, pp.17-24, February 2004.

[11] C. E. Clark, The Greatest of a Finite Set of Random Variables,
Operation Research, vol.9, pp.85-91, 1961.

[12] Eldo v4.4.x User’s Manual. 1996.

