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Abstract

The growing impact of within-die process variation has created

the need for statistical timing analysis, where gate delays are mod-

eled as random variables. Statistical timing analysis has traditionally

suffered from exponential run time complexity with circuit size, due

to arrival time dependencies created by reconverging paths in the cir-

cuit. In this paper, we propose a new approach to statistical timing

analysis that is based on statistical bounds of the circuit delay. Since

these bounds have linear run time complexity with circuit size, they

can be computed efficiently for large circuits. Since both a lower and

upper bound on the true statistical delay is available, the quality of

the bounds can be determined. If the computed bounds are not suffi-

ciently close to each other, we propose a heuristic to iteratively

improve the bounds using selective enumeration of the sample space

with additional run time. We demonstrate that the proposed bounds

have only a small error and that by carefully selecting an small set of

nodes for enumeration, this error can be further improved.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance analysis

General Terms
Algorithms, performance, reliability

1  Introduction
Traditionally, the variation in the underlying process parameters

have been modeled in static timing analysis (STA) using so-called

case analysis. In this methodology, best-case, nominal and worst-

case SPICE parameters sets are constructed and the timing analysis

is performed several times. Each execution of static timing analysis

is therefore deterministic, meaning that the analysis uses determinis-

tic delays for the gates and any statistical variation in the underlying

silicon is hidden. While this approach has been successfully used in

the past to model die-to-die variations, it is not able to accurately

model variations within a single die. Using a worst-case analysis for

these so-called within-die variations leads to very pessimistic analy-

sis results since it assumes that all devices on a die have worst-case

characteristics, ignoring their inherent statistical variation. The

emerging dominance of within-die variations therefore poses a

major obstacle for deterministic STA.

Process variations are due to uncertainty in the device and inter-

connect characteristics, such as effective gate length, doping concen-

trations, oxide thickness and ILD thickness. In general, these

variations can be divided into between-die variations (or inter-die

variation) and within-die variations (or intra-die variations). Within-

die variations can have a deterministic component due to topologi-

cally dependencies of device processing, such as CMP effects and

lithographic distortions. In some cases, such topological dependen-

cies can be directly accounted for in the analysis [1], whereas in

other cases, such variations are treated as random.
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In this paper, we propose a statistical STA method for modeling

random within-die process variations. Since between-die variations

can be adequately captured using case analysis, we focus on within-

die variations. We also treat all variations as random variations,

meaning that topological dependencies are either removed prior to

the analysis or are treated as random variations.

The extensive use of deterministic STA is in large part due to its

linear run time with circuit size. In contrast, statistical STA has an

underlying worst-case complexity that is exponential with circuit

size, which poses a fundamental obstacle to its practical application.

This high run time complexity is the result of reconverging paths in

the circuit which causes correlations between path delays due to

shared sections of such paths. A second source of correlation

between arrival times results from spatial and topological correlation

of the individual gate delays. Consequently, many statistical STA

approaches [2-3] have high runtimes, which makes them applicable

only to small circuits, or ignore the presence of correlations.

Recently, a number of new methods have been proposed to address

the increasing significance of process variations. In [4], a novel

method using discretized probability distributions is proposed. How-

ever, the run time of the method is exponential. In [5], a method

using statistical bounds is proposed with gate delays restricted to

Gaussian distributions. In [6], a path based statistical delay computa-

tion is presented using an accurate delay model. However, the analy-

sis is performed on one path at a time and the number of critical and

near-critical paths in a circuit can be very large. In [7], a new circuit

optimization method was proposed that reduces the number of near

critical paths in a circuit, thereby improving the statistical delay of

the circuit.

In this paper, we propose a new method for statistical STA. We

first provide a formal model of statistical STA and formulate its

exact solution. Since the computational complexity of this exact sta-

tistical STA is exponential with the circuit size, we present a new

method for computing bounds on the exact probability distribution

of the circuit. The computed bounds are themselves probability dis-

tribution functions that can be used to obtain a conservative estimate

of the circuit delay at any desired confidence point. By restricting

our analysis to bounds, we are able to preserve the linear run time

complexity of deterministic STA. Since we provide both a lower and

upper bound, we can determine the quality or error of the computed

bounds. If the bounds are not sufficiently close to each other, we pro-

pose a heuristic method to iteratively improve the computed bounds

using selective enumeration of the sample space. We show that by

enumerating a small set of so-called dependence nodes, the com-

puted bounds can be significantly improved with reasonable run

time. The proposed methods were implemented and tested on bench-

mark circuits. The difference between the expected values of the

upper and lower bound was shown to be small, ranging from 2 -

10%, and this difference could be reduced by 62% on average, using

the proposed selective enumeration method.

2  Statistical STA Formulation and Exact
Solution

The goal of statistical static timing analysis is to model the impact

of gate delay variations due to within-die process variations on the

circuit delay. Although at design time, the delay of each gate is

unknown, after a chip has been manufactured, the gate delays are

21.3
348



fixed and have a deterministic value for each particular die. The ran-

domness or variability of the circuit delay is therefore over the fabri-

cated die, and it is the cumulative distribution of the circuit delay

that statistical timing analysis aims to obtain. We now give the fol-

lowing definition of a timing graph:

Definition 1. A timing graph G is a directed graph having exactly

one source and one sink node: G={N,E,ns,nf}, where

N={n1,n2,...,nk} is a set of nodes, E={e1,e2,...,el} is a set of edges,

is the source node, and is the sink node and each

edge  is simply an ordered pair of nodes e=(ni,nj).

In our formulation, a deterministic timing graph GD represents a par-

ticular manufactured die, where each gate has a fixed delay value

and each edge e in GD is assigned a delay D(e) accordingly. After
fabrication, a deterministic timing graph GD can be conceptually for-
mulated for each die. However, during the design of a chip, the gate
delays are unknown and must be modeled as random variables. Each
gate delay is therefore specified either with a cumulative probability
distribution function (CDF) or probability density function (PDF).

A probabilistic timing graph GP is a timing graph whose edges are

assigned random variables of delay values. Since the PDF and CDF

represent the variation of gate delays, they have the following obvi-

ous but important property:

Property 1. A delay CDF equals 0 for all delay values less than

its minimum dmin and equals 1 for all values greater than its max-

imum dmax. A delay PDF is non-zero only on the interval [dmin,

dmax].

These properties follow from the fact that the delay of a real gate

cannot be less that some finite minimum dmin or more than some

finite maximum dmax. Similar to a number of previous statistical

STA methods [2-4,6], we assume statistical independence of all edge

delays. In practice, edge delays may be spatially or topologically

correlated, which complicates the analysis by creating additional

correlations between path delays. The contribution of this paper is

therefore that it provides an efficient solution to the problem of path

delay correlation due to path reconvergence. Note, however, that our

method does not restrict the shape of the CDF of edge delays to

some specific shape. To simplify the implementation of statistical

STA, it is often more convenient to approximate continuous PDFs

and CDFs with discrete functions although we will formulate the

problem with continuous functions. A discrete PDF can be repre-

sented by a sequence of delay/probability pairs (di, pi).

We now consider the sample space S of a probabilistic timing

graph GP, consisting of all deterministic timing graphs GD with edge

delays corresponding to the non-zero values of their probability dis-

tribution functions. Given a deterministic timing graph GD in S, we

can compute its delay D(GD), using any of the currently available

means, such as traditional static timing analysis. The delay D(GP) is

therefore defined on the sample space S and is a random variable.

The objective of statistical timing analysis is to find the CDF of

D(GP), which is defined as follows:

Definition 2. The cumulative probability distribution function of

the delay of a probabilistic timing graph is expressed as:

, (EQ 1)

where pi(ti) is the probability density function of the delay of edge i
and the integration is performed over the volume of sample space

where delay D(GD) of timing graph GD is less than t.

The cumulative probability distribution function of the graph

delay can be used in a number of ways. First, given a particular per-

formance constraint, the probability of obtaining a fabricated die that

meets or exceeds this constraint can be determined, referred to as the

performance yield. Conversely, given a required performance yield,

the minimum expected performance can be obtained. For instance, a

designer can determine the expected minimum performance of 95%

of the dies.

Independent Statistical Timing Analysis

Deterministic timing analysis has traditionally used an approach

where arrival times are propagated through the circuit in topological

order. We therefore derive such a propagation based approach for

computing the graph delay DGp. We first make the following useful

definition.

Definition 3. A fanin subgraph GS,n of timing graph GP at node n
is a timing graph consisting of all edges and nodes of GP that lie

on a path from the source node ns of GP to node n.

Note also that the arrival time An at node n is equivalent to the graph

delay of the fanin subgraph GS,n. The objective of statistical timing

analysis is to compute the arrival time CDF of node n based on the

arrival time CDFs of its fanin nodes np. To compute the arrival time

of n, we must consider whether the arrival times of its fanin nodes np
are independent random variables. We therefore state the following

theorem:

Theorem 1. Two arrival times An,i and An,j at nodes ni and nj are

independent if the fanin subgraphs GS,i and GS,j at nodes ni and nj
are disjoint (meaning they have no common edges) or if all com-

mon edges have a deterministic delay.

The validity of Theorem 1 is intuitively obvious and a proof is omit-

ted for brevity. Given a node n with fanin nodes np,i, which have

independent arrival time Ap,i, we can compute the arrival time An at

node n as follows:

1. Sum the arrival time Ap,i at each node np,i with the edge delay of

the edge connecting np,i with n. Since the arrival time Ap,i and the

edge delay are independent, the PDF of An at node n is computed

through convolution of the PDF of Ap,i and the PDF of the edge

delay [9].

2. Compute the arrival time CDF An at node n by taking the statisti-

cal maximum of the CDFs using the following equation:

(EQ 2)

As also noted in [3], the computation of the arrival time PDFs in sta-

tistical timing analysis is therefore very similar to arrival time propa-

gation in deterministic timing analysis, where propagation of

deterministic arrival times is replaced with convolution and selection

of the latest arrival time is replaced with parallel reduction. The run

time complexity is linear with the size of the circuit. Unfortunately,

this procedure is only valid if the arrival times are independent for

each node in the circuit.

Exact Dependent Statistical Timing Analysis

If the fanin subgraphs GS,i of fanin nodes np,i of node n share one

or more edges with random delays, the arrival times Ap,i will be

dependent random variables and the statistical maximum in EQ2

cannot be applied. An example of such a graph is shown in Figure

1(a). To determine for which portions the subgraphs GS,i share

edges, we use the following definition of a dependence set.

Definition 4. Consider the set of k fanin nodes np,i of node n, with

fanin subgraphs GS,i, and the intersection graph GI={NI,EI} con-

sisting of the union of edges and nodes shared by two or more

subgraphs, excluding the source node ns. The dependence set of n
is the set of nodes {n1, n2,...., nd,...}, such that nd lies on the inter-

section graph, , and has one or more fanout edges ei that

do not lie on the intersection graph, .

ns N∈ n f N∈

e E∈

P D GP( ) t≤( ) p1 t1( ) p2 t2( )…dt1dt2…
D GD( ) t≤

∫=

PMax t( ) P t( ) Q t( )⋅=

nd NI∈

ei EI∉
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In Figure 1(a), the intersection graph GI for node nf is shaded and

consists of nodes {q, r, a, b, c, d}. The set of dependence nodes for

node nf is {b, d}, since these nodes are part of the intersection graph

GI and have fanout edges that are not part of GI. Note that nodes h
and e have empty dependence sets since their intersection graphs are

empty. Conceptually, dependence nodes mark the last points in the

graph where the fanin subgraphs of two or more fanin nodes are

shared and give rise to correlation between their arrival times. The

concept of dependence nodes is similar to that used in probabilistic

simulation [8]. We refer to a node in GP as a convergence node nc if

it has a non-empty dependence set and define the global set of

dependence nodes nD as the union of the dependence sets nd,i.

In order to compute the delay of a graph GP with one or more

dependence nodes, we sort the list of global dependence nodes in

topological order. We then consider the first node nD,1 in the ordered

set nD. In Figure 1(a), nD = {a,b,d}, and nD,1 = a. By selecting the

first node nD,1 in the list, we ensure that the fanin subgraph GS,1 at

node nD,1 does not contain any dependence nodes, and it follows that

we can replace GS,1 with a single edge e1 connecting source node ns
and nD,1, where the edge delay CDF D1 of e1 is equal to the arrival

time CDF A1 at nD,1, as shown in Figure 1(b). Similarly, it is clear

that the arrival time CDF A1 at nD,1 can be computed using indepen-

dent arrival time propagation.

For simplicity, we assume that the edge delay PDF D1 is discrete

and is specified by a set of k delay, probability pairs (di, pi). Accord-

ing to our construction, random variable D1 does not depend on the

edge delays of other edges in the transformed graph Gp. Then, using

conditional probabilities [9], the arrival time PDF px(t) at node x, can

be computed as follows: , where px,i(t) is

the arrival time PDF at node x when the delay D1 of e1 is equal to di
and pi = P(D1 = di). We therefore compute the arrival time PDF px(t)
by performing k arrival time computations, each weighted by the

conditional probability pi. Since during the computation of px,i, edge

e1 has a deterministic delay it is no longer a random variable and

does not create dependence between arrival times. Node nD,1 is

therefore no longer a dependence node and we can propagate arrival

times using independent arrival time propagation until we encounter

the next global dependence node, nD,2. Here, we repeat the same

process, enumerating the arrival time PDF at nD,2 using conditional

probabilities and eliminating it as a dependence node.

Below is the procedure for dependent arrival time propagation:

1. Propagate arrival time PDFs in the circuit until the first depen-

dence node nd is encountered.

2. Enumerate the pairs (ti, pi) of the arrival time PDF at nd and for

each pair propagate ti with conditional probability pi.

3. Propagate ti, using independent arrival time propagation until the

next dependence node is encountered and repeat step 2.

4. Compute the final arrival time PDF at node x by summing the

conditional arrival time PDFs weighted by the product of their

conditional probabilities.

Since we recursively enumerate the arrival time PDFs of all

dependence nodes, the complexity of this approach grows exponen-

tially with the number of dependence nodes in a circuit. It can be

shown that the set of nodes at which arrival times are enumerated is

the sufficient and necessary set for exact computation of the arrival

time CDF. It is therefore not possible to enumerate fewer nodes

without creating arrival time dependencies in the circuit.

3  Statistical bounds
We now propose an efficient method for computing lower and

upper bounds on the exact arrival time CDF of GP. We define the

upper and low bounds of a CDF as follows:

Definition 5. The arrival time CDF Q(t) is a statistical upper

bound of the arrival time CDF P(t) if and only if for all t,
.

A similar definition can be formulated for lower bounds. Figure 2

shows two arrival time CDFs P(t) and Q(t), where Q(t) is an upper

bound on P(t). Note that the upper bound Q(t) is itself a valid CDF

and that all confidence points are bounded by Q(t) on P(t). By using

CDF Q(t) instead of P(t), we will overestimate the delay correspond-

ing to a performance yield, resulting in a conservative analysis for

late arrival times, as shown in Figure 2. Similarly, for a particular

required delay, the probability that a die will meet this delay con-

strain will be underestimated.

To efficiently compute an upper bound on the exact graph delay

CDF of Gp, we propose the following theorem for random variables:

Theorem 2. Let x, y and z be independent random variables that

satisfy Property 1. Let x1, x2 be random variables with CDFs that

are identical to the CDF of x. The CDF of random variable

max(x1+y, x2+z) is an upper bound on the CDF of the random

variable max(x+y, x+z).

The proof is omitted for brevity and is available in [10]. We can

graphically illustrate Theorem 2 as follows. Consider the simple

graph Gp1 shown in Figure 3(a) with delay equal to

max((da+db+dd), (da+dc+de)), where di is the delay of edge i. Fig-

Figure 1. Dependent arrival time computation for node n. In (a), the
intersection graph of nf is shaded and dependence nodes of nf are black.
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ure 3(b) shows the timing graph GP2 where edge a is split into edges

a1 and a2, each with the same delay CDFs as a. The graph delay of

GP2 is max((da1+db+dd), (da2+dc+de)). From Theorem 2, it follows

that GP2 has a graph delay CDF that is an upper bound on graph

delay CDF of the graph GP1. In fact, it is clear that the CDF of

arrival times at all nodes in GP2 are upper bounds on the CDF of

arrival times of corresponding nodes in GP1 and hence we refer

graph GP2 as an upper bound on graph GP1. In general, GP1 can have

a more complex structure with additional fanin and fanout edges at

node n2, etc. It can be shown that for a general timing graph GP1,

splitting an edge into multiple edges, as illustrated in Figure 3,

results in a graph GP2 that is an upper bound on GP1. Based on The-

orem 2, we now pose the following useful Corollary:

Corrolary 1. If for graph GP, arrival times are computed for all

nodes using the procedure of independent arrival time propaga-

tion, the computed arrival time CDFs will be an upper bound on

the true arrival time CDFs at those nodes.

The validity of Corrolary 1 can be seen by considering the timing

graph GP1 with dependence node a, as illustrated in Figure 1(a). Fol-

lowing the procedure for dependent arrival time propagation, we

replace subgraph GS,1 with a single edge e1, as shown in Figure 1(b),

where the edge delay CDF of e1 is equal to the arrival time CDF at a.

We now create a graph GP2, as shown in Figure 1(c), which bounds

GP1 by splitting edge e1, such that a is no longer a dependence node

in GP2. By repeating this process for all dependence nodes, we

obtain a timing graph GP,k that bounds the original timing graph GP1

and which has no dependence nodes. We can compute the exact

arrival times of GP,k by performing independent arrival time propa-

gation. Finally, it is easy to observe that we need not explicitly split

edge e1. Instead, we will compute identical arrival times to those of

GP,k by simply performing independent arrival time propagation on

graph GP1, as stated in Corrolary 1. This leads to the useful observa-

tion that an upper bound on the arrival times of a timing graph Gp is

obtained by ignoring the dependencies of arrival times and simply

applying the procedure for independent arrival time computation,

which has a linear run time complexity with circuit size. Similarly, a

lower bound can be computed as discussed in [10].

4  Selective Enumeration
In order to improve the quality of the bounds described in Section

3, we combine the bound computation with enumeration of a small

set of dependence nodes. Enumeration of dependence nodes

improves the computed bounds in two ways. First, the enumeration

partitions the sample space S and thereby reduces the dependencies

of arrival time CDFs. Second, when all dependence nodes of a par-

ticular convergence node are enumerated, the arrival times at this

convergence node become independent and the lower bound can be

computed using their statistical maximum according to EQ2, instead

of the minimum operation used for computing the lower bound of

dependent arrival times. Our objective is to obtain the maximum

improvement in the bounds through enumeration of a minimum

number of dependence nodes. We therefore need to select those

dependence nodes that most strongly impact the quality of the

bounds at the sink node. For simplicity, we measure the difference

between the upper and lower bounds as the difference of their

expected values and refer to this measure as the bound difference.

To illustrate the factors that influence the effectiveness of enumer-

ating a particular dependence node, we consider the circuit shown

Figure 4(a) with two correlated arrival times A1 and A2 that converge

at node n. We compare the upper and low bounds as well as the exact

arrival time at node n, while shifting the alignment of the CDF of A1

relative to the CDF of A2, by varying the delay of gate g1 as shown in

Figure 4(b). As the shift between A1 and A2 increases, the two

bounds rapidly converge to the true arrival time since the later arrival

time dominates the result and the dependence between the two

arrival times has little impact. Similarly, it is also possible that, while

two dependent arrival times give rise to a large bound difference at a

node, this bound difference does not propagate to the sink node. This

occurs when along the propagation path, the arrival time bound com-

bines with another arrival time bound that is aligned significantly

later and that dominates. Therefore, enumeration of a dependence

node is effective only if its arrival time PDFs align at one or more

convergence nodes and if the sink node is not shielded from the

arrival times at these convergence nodes.

Finding the minimum set of dependence nodes to obtain a

required improvement in the bound difference is clearly an intracta-

ble problem and requires a heuristic solution. We first compute an

enumeration merit for each dependence node nd, which is a measure

of the expected improvement in the bound difference by enumerat-

ing nd, as discussed in the following section. We then use an iterative

approach where dependence nodes are added to the set of enumer-

ated nodes in decreasing order of their enumeration merit. If in a par-

ticular iteration the added dependence node does not significantly

improve the bound, it is removed from the set of enumerated nodes

before a new dependence node is added. The algorithm is shown in

pseudo-code in Figure 5. The algorithm continues until either a

required bound difference has been obtained, or the allowed run time

is exceeded.

In each iteration of the algorithm, we enumerate the selected

dependence nodes and compute bounds on the CDF of the graph

delay. Similar to exact statistical STA, we enumerate all possible

arrival time values ti of a selected dependence node nd and compute

bounds on the graph delay weighted by the conditional probability pi
that the arrival time at nd has a value ti. This approach can be gener-

alized such that, instead of considering each individual value ti in the

discrete PDF of an arrival time, we split the PDF into several partial
PDFs pj(t), each partial PDF consisting of delay values in an interval

[tj,s, tj,e], as shown in Figure 5. We then compute the upper bound

pj,upper(t) and lower bound pj,lower(t) on the graph delay using the

method discussed in Section 3, where the arrival time PDF at node

nd is replaced with one of the partial PDFs pj(t). Before propagating

each partial PDF, we first scale it to have an area of 1, to ensure that

it is a valid PDF. Each case j corresponds an arrival time at nd in the

interval [tj,s, tj,e] and has a probability Pj of occurrence, equal to the

Figure 4. Expected values of bounds and exact arrival time at node n

as a function of the shift between expected values of A1 and A2.
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5.  If (bound difference at nf did not improve sufficiently)

6. remove last node from enumeration list.
7. }

Figure 5. Selective enumeration algorithm
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area of pj(t). We therefore again computed the final bound pbound(t)
on the PDF of the graph delay using conditional probabilities, as fol-

lows:

(EQ 3)

Partial enumeration of arrival times requires fewer bound compu-

tations than full enumeration, and therefore reduces the computa-

tional effort. The number of intervals used for enumeration of a

dependence node therefore provides a trade-off between the number

of nodes that can be enumerated and the granularity of their enumer-

ation. In practice, it was found that two intervals resulted in the most

efficient bound reduction.

Merit computation.

We employ a heuristic method to compute the enumeration merit

for a dependence node. For simplicity, we limit our discussion to the

enumeration merit for the upper bound, while similar considerations

apply to the lower bound. For the upper bound, an improvement of

the bound through selective enumeration can be thought of as a shift

of the bound PDF to the left (corresponding to lower arrival time val-

ues) so that it matches more closely with the exact arrival time PDF.

We therefore use the expected shift of the PDF as an indication of

the effectiveness of enumeration of a dependence node.

For each dependence node nd, arrival times with non-zero proba-

bility fall in a finite window [td
min, td

max]. We consider two intervals

in this window: a left interval wl,d = [tl,d
min, tl,d

max] and right interval

wr,d = [tr,d
min, tr,d

max], where both tl,d
max and tr,d

min are equal to the

median of the arrival time PDF, as shown in Figure 6(a). The integral

of the arrival time PDF over each interval is equal to 0.5 and each

interval represents 50% of all possible arrival times at dependence

node nd, over all die.

We now propagate the start and end points of intervals wl,d and

wr,d, using conventional timing analysis, to obtain corresponding

intervals wl,f = [tl,f
min, tl,f

max] and wr,f = [tr,f
min, tr,f

max] at the sink

node nf, as shown in Figure 6(b). During interval propagation, we

compute a left interval wi,l and a right interval wi,r for a node ni as

follows:

• Given a left interval wl,j = [tl,j
min, tl,j

max] that is propagated

through a gate g with minimum gate delay dg
min and maximum

gate delay dg
max, the left interval at the output of the gate is wl,i =

[tl,j
min + dg

min, tl,j
max + dg

max]. The right interval is computed

likewise.

• Given several left intervals [tl,1
min, tl,1

max], [tl,2
min tl,2

max],..., that

converge at a node, the combined left interval is [max(tl,1
min,

tl,2
min,...), max(tl,1

max, tl,2
max,...)]. The right interval is computed

likewise.

For nodes that do not fall in the fanout cone of dependence node nd,

left and right intervals are taken to be equal to the total interval at

that node.

The computed interval wl,f (wr,f) indicates the earliest and latest

possible arrival times at the sink node nf, resulting from an arrival

time at the dependence node nd that falls in the interval wl,d (wr,d).

Also, the two intervals wl,f and wr,f at the sink node will overlap,

meaning that tl,f
max > tr,f

min due to the uncertainty of gate delays and

the merging of intervals at convergence nodes. Since the probability

of an arrival time occurring in either interval wl,d or wr,d at node nd is

0.5, the probability of an arrival time occurring in either interval wl,f
and wr,f at the sink node will be greater than or equal to 0.5, due to

the overlap of the intervals, as shown in Figure 6(b). Hence, after
enumeration of dependence node nd, the area of the arrival time PDF

over either interval will be greater or equal to 0.5, as shown in Figure

6(c). However, due to the inherent error in bound computation, the

arrival time PDF at the sink node without enumeration can be signif-

icantly skew to the right, as shown in Figure 6(d). In this case, the

area under the left interval can be less than 0.5. The amount by

which the area is less than 0.5 before enumeration is a good indicator

of the expected shift of the arrival time PDF resulting from enumera-

tion. The enumeration merit of dependence node nd is hence com-

puted as follows:

, (EQ 4)

where al,f is the area of the arrival time PDF at the sink node over the

left interval wl,f = [tl,f
min, tl,f

max]. Note that the enumeration merit of

a dependence node for lower bound computation can be computed

similarly by observing the amount by which the arrival time PDF at

the sink node over the right interval is less than 0.5.

A dependence node will have a high enumeration merit for upper

bound computation if its left and right intervals at the sink node do

not overlap significantly and if the PDF at the sink node is skewed

towards the right interval, as shown in Figure 7(a). This occurs when

the arrival times of the dependence node align at a convergence node

and if the convergence node is not shielded from the sink node. On

the other hand, if the arrival times do not align at a convergence

node, the PDF at the convergence node has no significant skew rela-

tive to the intervals, as shown in Figure 7(b), and the computed enu-

Figure 5. Arrival time PDF and partial PDFs for three intervals.
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meration merit will be small or zero. Also, if the arrival time PDF at

a convergence node is shielded from the sink node, the left and right

intervals at the sink node will be largely overlapping, as shown in

Figure 7(c), thereby also resulting in a low enumeration merit.

Each dependence node requires a separate propagation of left and

right intervals. However, for implementation efficiency, we propa-

gate intervals for all dependence nodes simultaneously. The list of

propagated left and right intervals is pruned at each node in the

graph and only the k smallest left and right intervals are propagated.

This ensures linear computational complexity of the merit computa-

tion with circuit size. In our experiments k was set to 20. Note that

different enumeration nodes are selected for the lower and upper

bounds and each bound is computed separately. Finally, we verified

the effectiveness of the proposed enumeration merit computation by

comparing the ranking of all dependence nodes based on their enu-

meration merit with their ranking based on the actual improvement

of the bound when a dependence node is enumerated. It was found

that there is a good match between the two rankings and that 90% of

the nodes matched between the top 10% nodes of both rankings.

5  Results
The upper and lower bound computation, as well as the proposed

refinement method were implemented and tested on the ISCAS [11]

benchmark circuits. The computed bounds were compared with

either exact statistical timing analysis, discussed in Section 2, or

with Monte Carlo simulation, for larger circuits. For each gate in the

circuit, a delay distribution was specified with a standard deviation

ranging from 10% - 15% of the mean of the distribution. A Gaussian

distribution, truncated at the 3 sigma point, was used.

Table 1 shows the results for the bound computation and selective

enumeration. For each circuit, the total number of nodes (column 2)

and the total number of dependence nodes (column 3) are shown.

The statistical upper and lower bounds (column 5) have a relatively

small difference in their expected value ranging from 2.25% to

10.45% (column 6). Although we only report the expected value in

Table 1, the computed bounds are CDFs and allow the computation

of other confidence points. For all circuits, the run time of the bound

computation did not exceed 5 seconds. Also, the Monte Carlo results

(column 4) fall between the computed bounds, as expected.

In Table 1 we also show the bounds after selective enumeration

(columns 7) and the percentage improvement of their difference

compared to the original bounds (column 8). Excluding the first cir-

cuit, the improvement of the bounds using selective enumeration

ranged between 22 - 86% with an average of 62%. For these circuits,

the number of dependence nodes selected for enumeration was

small, ranging from 9 to 13 nodes, showing the somewhat surprising

result that enumerating only a few carefully chosen nodes can signif-

icantly improve the bound. The run time of the selective enumera-

tion method (column 9) is modest, not exceeding 187 seconds for all

test cases. Figure 8 shows the CDFs for the proposed lower and

upper bound with and without selective refinement as well as the

CDF obtained through Monte-Carlo simulation for the circuit c7552.

6  Conclusions
In this paper, we have proposed an efficient method for computing

bounds on the statistical behavior of circuit delay due to within-chip

process variations. We first presented an exact statistical timing anal-

ysis method. Since this method has exponential run time complexity

with circuit size, we show how statistical bounds on the graph delay

can be computed with linear run time complexity. In order to reduce

the difference between the bounds, we proposed an iterative refine-

ment technique which selectively enumerates dependence nodes in

the circuit.

Acknowledgements
This research was supported by SRC contract 2001-HJ-959 and

NSF grant CCR-0205227.

References
[1] V.Mehrotra, S.L.Sam, D.Boning, et al, “A methodology for

modeling the effects of systematic within-die interconnect and

device variation on circuit performance,” Proc. DAC 2000.

[2] S. Devadas, H. F. Jyu, K. Keutzer, S. Malik, “Statistical timing

analysis of combinational circuits “, Proc. ICCD 1992, pp. 38 -

43

[3] M. Berkelaar, “Statistical Delay Calculation, a Linear Time

Method,” Proc. TAU 1997

[4] J.J Liou, K.T. Cheng, S. Kundu, A. Krstic, “Fast Statistical

Timing Analysis By Probabilistic Event Propagation”, Proc.

DAC 2001

[5] M. Orshansky, K. Keutzer, “A general probabilistic framework

for worst-case timing analysis”, Proc. DAC 2002.

[6] A. Gattiker, S.Nassif, R.Dinakar, C.Long “Timing Yield Esti-

mation from Static Timing Analysis”, Proc. ISQED 2001

[7] X. Bai, C. Visweswariah, P. Strenski, D. Hathaway, “Uncer-

tainty-aware circuit optimization”, Proc. DAC 2002.

[8] F. Najm, R. Burch, P. Yang, I. Hajj, “Probabilistic simulation

for reliability analysis of CMOS VLSI circuits” IEEE Trans. on

CAD, 1990

[9] Feller, W., P. “An Introduction to Probability Theory and its

Applications”, Vol. 1,2   John Wiley & Sons, New York, 1970.

[10] A.Agarwal, D.Blaauw, V.Zolotov, S.Vrudhula, “Statistical Tim-

ing Analysis using Bounds”, Proc. DATE 2003.

[11] F. Brglez, H.Fujiwara, “A Neutral Netlist of 10 Combinatorial

Benchmark Circuits”, Proc. ISCAS, 1985, pp.695-698

Table 1. Results of bound computation and refinement.

circuit
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monte

carlo

bound selective enum bound

total dep. n.
lower /

upper

%

dif

lower /

upper

%

impr

time

(sec)

c17 13  3 1.4 1.37 / 1.42 4 1.40 / 1.40 100 8

c499 198  53 7.7 7.45 / 8.06 8 7.61 / 7.77 73 43

c432 245  59 5.2 4.73 / 5.28 10 4.98 / 5.22 58 40

c880 445  64 9.3 9.06 / 9.44 4 9.24 / 9.30 86 34

c1355 589  250 10.2 9.44 / 10.4 10 9.73 / 10.4 37 117

c1908 915 249 14.5 14.3 / 14.8 4 14.5 / 14.7 76 45

c2670 1428 268 12.8 12.5 / 13.1 5 12.7 / 13.0 65 49

c3540 1721 480 17.0 16.7 / 17.4 4 16.9 / 17.2 60 66

c5315 2487 264 17.3 17.3 / 17.7 2 17.3 / 17.5 43 76

c6288 2450 1197 46.9 45.2 / 48.6 7 45.7 / 48.3 22 187

c7552 3721 1050 15.9 15.6 / 16.1 3 15.8 / 16.0 67 150

Figure 7. Left and right arrival time intervals and bound PDFs.
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