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ABSTRACT 
Due ro excessive reduction in the gate length. dopant concenrra- 
twns and the oxide rhichess, even the slightest of variations in 
rhese quantities can resulr in significanr variatiom in the perjor- 
mance of a device. 7% har resulred in a need for effirient and 
accurare techniques for performing Statistical Annlysis ofcircuirs. 
In this paper' we pmpose a methodology based on Bayesian Ner- 
works for computing the exactprobabiliry distribution of the delay 
of a circuit. In case of large circuits where it is nor possible ro 
compute the exacr disrriburion, we pmpose methodr ro reduce the 
problem size and get a righr lower bound on rhe exacf distriburion. 

1. Introduction 
As CMOS technology continues to move further into the nanome- 

ter regime, even the slightest of variations in parameters such as 
gate length, dopant concentrations and oxide thickness can result 
in significant variations in the performance of a device. The varia- 
tions cause uncertainty in the circuit performance make it difficult 
to accurately estimate the yield and forces designers to over design, 
resulting in suboptimal circniits [SI. 

The conventional methodology to model the effect of variations 
is to determine the circuit performance assuming for each gate the 
worst possible value of its delay. This can lead to very pessimistic 
designs. For example, [I41 shows that the worst case delay value 
for a 16-bit adder can be 30% more than the 30 delay value. Based 
on many independent sources of evidence, there appears to be a 
consensus emerging within the CAD and DA communities that the 
traditional. deterministic approach to the analysis of circuit behav- 
ior (both logical and temporal) will no longer be valid, and proba- 
bilistic methods based on stochastic models are more appropriate. 
An excellent discussion of the sources of uncertainty and the need 
for stochastic models appears in [IO]. 

Probabilistic Timing Analysis (PTA) is an approach to perform- 
ing timing analysis where the delays of gates andlor interconnect 
are random variables. The distributions of these individual ran- 
dom variables could be obtained by Monte Carlo SPICE simula- 
tion, varying some of the key device and process parameters. In 
this view, the delay of a circuit is also random variable, but one 
wluch is a very complex function of the gate and interconnect de- 
lay random variables. The central problem in PTA is to determine 
the probability distribution of the circuit delay. 

PTA is not new and dates back to the mid 1970s. where the focus 
was on computing the distribution of project completion times in 
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PERT networks 171. One of the key challenges of PTA is that it 
involves marima and sums of a large number of dependenr random 
variables. The first attempt to address the most general version of 
the problem appears in [13]. If M is a random variable that de- 
notes the arrival time at the circuit output, the solution proposed 
in [13] is to construct the probability distribution of a new random 
variable M* which is convexly larger than M. This requires solv- 
ing a constrained non-linear programming problem of very high 
dimensionality, and can be computationally prohibitive for modem 
circuits. 

The method proposed in [9] is to reduce the complexity of the 
underlying problem by obtaining symbolic expressions for the de- 
lays of the circuit. Another path based approach has been presented 
in[12] where the authors Stan with a set of critical nodes based on 
static timing analysis. Both the above approaches perform Monte 
Carlo simulations after initial pruning and can take care of false 
pathr. However, the number of paths in a circuit can increase sig- 
nificantly with the circuit size resulting in high complexity. 

The approach taken in 131, is to propagate PDFs through the 
graph, with numerical convolution and multiplication being per- 
formed at each step. In the presence of reconvergent paths, random 
variables are replaced by stochastically larger ones to obtain upper 
bounds on the PDF. The formulation will result in slightly loose 
bounds because the pin-to-pin delays of a gate for all fanins are 
assumed to be independent. 

One of the challenges faced with performing PTA is its compu- 
rational complexiry. Static timing analysis (STA) can be performed 
in time and space that is proportional to the circuit size. The com- 
plexity of computing the exact probability distribution of the delay 
of a circuit has been stated to be exponential either in the number 
of paths [IS] or in the circuit size [31, [Ill because of the presence 
of reconvergent fanouts. Even so, exact methods are still of interest 
as they can be applied to reduced circuits and lead to provably good 
upper or lower bounds. 

In this paper we propose a different approach for computing the 
exact probability distribution of the circuit delay. The approach is 
based on representing the circuit as a Bayesian Network, which es- 
sentially prescribes an efficient method to factorize the joint dis- 
tribution to a oprimnl set of factors. The factorization is made 
possible by taking advantage of the structural dependencies in the 
circuit. While the theoretical complexity of th is approach is still 
exponential, unlike other exact methods. it is exponential in the 
maximum clique size of a graph derived from the circuit, and t ius 
maximum clique size grows much slower than the circuit size. We 
then present several transformations for reducing the size of the cir- 
cuit and show that th is leads to bounds on the PDF. We also present 
a method to incorporate wire delays in the analysis without con- 
siderably increasing the complexity. Note that in our formulation, 

http://sarveshOece.arizona.edu
http://sarmaQece.arizona.edu
http://umich.edu


gate delays are assumed to he independent random variables. Cor- 
relations between gate delays may arise due to many factors such 
as processing steps having different effects at different locations 
on the chip or due to spatial correlations between process parame- 
ters 131. [I51 shows that the expection of the maximum of uncor- 
related normal random variables is an upper hound on correlated 
normal random variables and gives an algorithm for finding the ex- 
pectation of the maximum over all path delays assuming they are 
uncorrelated. 

The organization of rest of the paper is as follows: In section 2, 
we give the problem formulation of PTA. Section 3 gives a brief 
introduction to Bayesian Networks and how they are used in our 
analysis. In section 4 we give various transformations we use for 
reducing the size of o u  problem. Section 6 shows how we can 
include the wire delays without increasing the number of nodes in 
the circuit. Finally, the experimental results and the Conclusions 
are given in Section 7 and 8 respectively. 

2. Problem Formulation 
A logic level netlist C is represented as a Directed Acyclic Graph 

(DAG) C = ( N ,  E )  where the nodes of C correspond to the gates or 
equivalently gate outputs in C and an edge represents a connection 
between the corresponding gates in C .  Associated with each node 
in G are two random variables: Xi which represents the arrival time 
of the output signal at that gate, and Di which represents the de- 
lay of the gate. We assume that the gate delays are hounded and 
constitute a finite set of alternatives. 

Let Xi he a node in G with delay D and with inputs from nodes 
labeled X , ,  ,Xi2, .  . .X i , .  Then 

X ,  = w { X i , , X ;  *,..., X i , } + O  (1) 

We want to find the distribution of arrival time of the primary out- 
puts01,02,..,0,,. Thedistributionof any signalX, inthecircuit is 
given in terms of its fan ins (X i ,  , X i , ,  . . . , X i k ) .  The arrival times of 
the fanins are not independent because of presence of reconvergent 
fanins. Hence finding a closed form expression for P ( X ;  _< r )  is not 
possible. Traversing all the way back to primay inputs will result 
in the anival time at the circuit output being represented in terms 
of the arrival times of all the gates in the circuit. Thus it seems that 
to compute the probability distribution of the max of the outputs 
will require us to first compute the joint distribution of the arrival 
times of all the nodes in the circuit. The space required for such a 
computation will be expanential in the circuit size. However, in the 
next section we show that through the use of Bayesian Networks, 
the computation of the joint distribution is not necessary. 

3. Introduction to Bayesian Networks 
In this section we explain how we can utilize Bayesian Networks 

(BNs) to obtain the exact probability distribution of a node in a 
DAG. BNs were introduced to circuit analysis by [41 to compute 
the switching activity of the signals. 

([SI). A Bayesian Network isa serofvari- 
ables and (I se1 of directed edges bemeen rhe variables which form 
a directedacyclic graph (DAG). Each variable A has aJinite num- 
berofmuruallyexclusiwesrareswhich ircan rakeandifB, , B z , . . , B .  
are its parents then we associate a condirional probabiliry disfribu- 
rion P(A/BI,Bz,..,B,) wirhrhnrnode. 

From the definition above, we see that our representation of the 

DEFINITION 3.1 

circuit is a Bayesian Network. 

DEFINITION 3.2. A graph is called complete i f e v e v  pair of 
venices are joined. A clique is a maximal complete subgraph. 

b 
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Figure 1: Moralization and ltiangulation of a DAG 

Consider the DAG shown in Figure I .  The classical approach for 
obtaining the probability distribution of the output X8 is to compute 
thejointprohabilitydistrihutionofXI,Xz, ... X8 a s P ( X 1 , X 2 ,  ... X 8 )  
and then compute P ( X 8 )  as 

The space complexity of this approach is O(mn) where m is the 
number of distinct values taken by each variable and n is the num- 
her of variables . Moreover it is not clear how to obtain this joint 
distribution. However, there exists an efficient way of computing 
the probability distribution of X s  hy factoring the joint distribution 
and performing efficient marginalization of these factors. For ex- 
ample, P ( X 8 )  can he obtained by 

From the above equation we see that we have scheduled the 
marginalizations such that we don't have to compute the joint proh. 
ability distribution of more than 3 variables at any time. 

The method is based on separating the nodes in the DAG into 
different subsets such that the joint distribution of the nodes in a 
subset can he computed and the marginal "ibution of any node 
can he obtained from these joint distributions. The DAG is first 
converted to an undirected graph by replacing the directed edges 
with undirected edges. Since the distribution of any node can he 
determined given the distribution of its parents, the node and its 
parents should lie in the same set. To ensure ths. the graph is 
moralized by connecting the parents of each node. To obtain the 
ordering in which to perform the marginalizations as shown in (21, 
we need to triangulate the graph and remove any chordless cycle of 
length greater than 3. The moralized and triangulated graphs along 
with the original DAG are shown in Figure 1. 

From the triangulated graph we can obtain different cliques. The 
subgraph on nodes X,,X7 and X8 in the Triangulated DAG in Fig- 
ure 1 forms a clique, whereas X, ,X , j3X7  a n d X 8  does not because 
the edge from X ,  to X8 is absent. Bayesian Networks help us to par- 
tition the circuit into different cliques so that we can obtain the dis- 
tribution of a node Nj by computing the joint distribution of nodes 
in a clique Cj such that N, E Ci. These cliques represent the sets over 
which we have to compute the joint distribution. Using this trian- 
gulated graph, we construct a clique tree as shown in Figure 2. An 
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Table 1: Maximum clique size in  benchmark circuits 
Circuit Nodes I Edges I Max. Clique size I No. of Cliques 

I 1  I 17 I A I R 

- . _ _  
C499 

Cl355 
C1908 
C2670 
~ 3 5 4 0  

. . . 
243 408 32 183 
587 1064 49 402 
913 I497 61 67 8 
1426 2075 89 1084 
1719  2936 189 1195 _~. ~ . ~. ~.~~ 

C5315 I 2485 I 4386 I 139 I 1701 
C7552 I 3719 I 6144 I 17 2593 I 

edge between two cliques represents that there are common va i -  
ahles between the two cliques. The details of the entire procedure 
are beyond the scope of this paper, however the detailed algorithms 
for performing each of these steps and their proofs are given in [17, 
8, 61. The probabilities of the inputs XI and Xz arc assigned to 
clique 1 whereas that of X3 is assigned to clique 2. Using Bayes 
theorem, the distribution of Ct is given by 

p(xt ,x2,x5) = p(x5/xt ,x2)P(xI )p(xZ) 
we assume that the input arrival times are independent ofeach other 
or their joint distribution is given to us. Thus we can compute the 
distribution of C, we can apply the same procedure for C2. After 
this, we can obtain the distribution of C3 as follows 

p(x6,x5,xZ) = (zk,)(z'$C>) =p(x6/xZ)P(x5,xZ) (3) 
x, x, 

where $c, is P(Xs,Xz.Xl) and @c2 is P(X6,X3/X2). This shows 
that the probability distribution of clique 3 can be obtained from 
that of cliques 2 and 1. Following the same procedure, we can 
obtain the joint distribution of the variables in clique 6 and obtain 
the marginal distribution of Xg from that. The complexity of this 
procedure is O(m'), where c is the size of the largest clique. Thus 
Bayesian Networks can be seen as an efficient tool for computing 
the distribution of any variable in the Network by dividing the net- 
work into smaller subsets and by computing the joint distribution 
over these subsets. As is evident from this example, the complexity 
is directly related to the maximum clique size of the DAG. 

The maximum clique size present in a BN is dependent on the 
amvunt of reconvergence in the netwvrk as well as  the maximum 
fanin in the circuit. Since the maximum fanin in a circuit is bounded 
(typically IO-IS) ,  the clique sizes will be much smaller than the 
circuit size. Moreover, the clique sizes also depend on the quality 
of heuristics used for the triangulation algorithm. Thus by using 
a better triangulation algorithm, we can further reduce the clique 
sizes. Fourth column in Table 1 shows the maximum clique sizes 
for the ISCAS85 benchmark circuits thus confirming that the clique 
size is a slow growing function of the circuit size. 

To specify the Bayesian Network we constmct the conditional 
probability distributions (CPDs) /'(Y/Xj,X,+t,..,Xkj for each of 
the nodes (Y) in the circuit as follows 

P(y /x j ,x j+ l ,  ..,xk) = c p ( Y , D  d/Xj,Xj+I, .-,Xk) 
d 

= cP(Y/Xj,Xj+l,..,Xk,D)P(D = d )  
d 

4. Graph Transformations 
The complexity of constructing the exact PDF of the circuit de- 

lay can be reduced eithn by devising new methods to reduce the 

W 
Figure 2: Clique tree of example circuit 

Figure 3: Reducing the Maximum Fanin in  the DAG 

circuit size and obtain tight lower bounds on the probability dis- 
tribution (PDF) of the delay. There are two main aspects of the 
problem where the reduction can be performed. 

1. Reduce the graph size based on transformations which will 

2. Reduce the size of CPDs in case of nodes with large fanins. 

In this section we present a set of results which can be used 
for performing transformations for reducing the complexity of the 
analysis. The proofs for all these transformations can be obtained 
in the extended version [Z]. 

removelcombine nodes, 

4.1 Fanins Reduction 
The size of the conditional probability distribution depends ex- 

ponentially on the number of fanins of a node. Hence if a node has 
k fanins where each one of them can take m distinct values, then 
the size required to store this distribution is O(mk+'), an additional 
dimension for the output of the node. Since in the original circuit, 
we can have a gates with large fanins (C53 15 has a maximum fanin 
of 9), the size of the largest CPD will be 0 ( m 9 )  . This size is ex- 
tremely large even for small m, hence we break the node as shown 
in Figure 3. The delay associated with each of the new nades is 0, 
whereas the last node has delay of the original node associated with 
it. Hence the complexity of storing the CpTs will be O(mJ). 

4.2 Reducing Switching Window Size 
We arc interested in computing the distribution .of the anival 

times over the switching window of the output. For yield analysis 
purposes, typically we aTe interested in the distribution close to the 
Latest Arrival Time (LAT). Hence by removing some events which 
result in an arrival time close to the Earliest Amval Time (EAT) of 
the outputs, we can prune out a significant number of nodes without 
sacrificing accuracy. The circuit size can be reduced using this idea 
by propagating a critical time (T') from the output to the primary 
inputs just as required time is propagated in STA. In h s  section we 
prove that by reducing the graph using this transformation results 
in obtaining a lower bound to the distribution of the circuit delay. 

([IS]). I f X  and Y are WO random vori- 
ables with sample spaces Sx and Su, Su C Sx, then Y is stochasti- 
cally larger (s.1.) than X, denored by Y >$, X, ifand only if 

DEFINITION 4.1 

P(Y > I )  Z P ( X  >I) V t  ESy 
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Figure 4: Probability and Residual Probabilities 

Figure 4 shows that if Y is stochastically larger than X, then the 
probability distribution of Y is a lower hound on the probability dis- 
tribution of X .  Hence if we estimate the fraction of circuits whose 
delay will he greater than a critical value I (i.e. P ( X  > t ) ) ,  we will 
never underestimate this fraction if we replace X with a stochasti- 
cally larger random variable Y .  

In the following the term reduced DAG means the DAG obtained 
by reducing the switching window size. Let Yre,j he an output node 
in the reduced DAG and let Y he the corresponding node in h e  orig- 
inal DAG. The following sequence of results are aimed at demon- 
strating that Y,, >., Y .  

Let X' he a primary input in the reduced DAG and let X he the 
corresponding input in the original DAG. Let 1; he the required 
time associated with X as a result of propagating a critical time 
T* from the primary outputs to the primary inputs. Then X' = 
max{x,/t}. Since {X'st) E {X < t , l i  st] { X  < t } , X '  > $ , X .  
Thus all the inputs in the reduced DAG are stochastically larger 
than the corresponding inputs in the original DAG. 

Now consider an arbitrary node Y' in the reduced graph and let Y 
be corresponding node in the original DAG. After performing the 
Reduce Fanin transformation, either the two inputs to Y' originate 
from the same node as shown in Figure 5, or  they are independent. 
In either case that Y' is stochastically larger than Y .  

THEOREM 4.1. Let X I  and Xz be the random variables denot- 
ing the arrival times of two primary inputs of a circuit. Let X ;  
and X i  represerrr rhe mirdom variables deirotiitg the arrival rimes 
ofthe same primary inputs in the reduced DAG obtained by assign- 
ing a required time T* at rhe ourputs. Also let Y be represent an 
RV such rhar Y = max{Xl,X,} + D  and Y' be rhe corresponding 
arrival time in rhe reduced DAG. then assuming the inpur arrival 
times to be statistically independent, Y' ta Y. 
Hence the signals at level 2 (whose fanins are primary inputs) in 
the reduced DAG are s.1. than the corresponding signals in the 
original DAG. In a circuit, the only dependencies present are those 
caused by reconvergences. Hence for any signal, either its fanins 
are independent or the dependency is as described in Lemma(4.1). 
Since, the signals at level 2 in the reduced DAG are s.1. than the 
signals in original DAG, the signals at subsequent levels will also 
be stochastically larger. 

Figure 6 shows the original DAG and the reduced DAG by taking 
the critical time T* to he  the EAT of the output. The critical time at 
the input of each node is obtained by subtracting d,,,," of the node 
from its critical time. If there is an intemal node whose all fanins 
are removed (e.% Node 7 in Fiatue 6) .  the Lurest Arrival Time of . -  - . .  
that node is assigned a Probability of ' I  ' to ensure that it is s.1. than 
the same node in Original DAG. 

4.3 Inputs Reduction 
Depending on the relative alignment of the switching windows 

of the two inputs to anode, we can perform further reduction in the 
graph size. 

............. 
Figure 5: Dependencies between the fanins 

LEMMA 4.1. Let X and Y be rwo random variables, with sam- 
P~esPace[~X,uXiand[l~,UY~resPective~Y~ s n c h r h o t Y = X + m a x { D I ~ D Z ~  
where D l  and D2 are two Orher 

space [di,,,jn,dimar] and [dzmi.,d2mar1 respectively, Also let x' and 
Y' be fwo mndom variables, with sample space [l;, ux]  and [ I ; ,  U Y ]  

respectively, suchrhatX'=max{X,l$}, andY'=X'+max{Di,Dz} 
then Y' >_st Y.  

THEOREM 4.2. I f A  andBarerheJaninsoJanodeCsuchfhat 
the latesr arrival rime of A is 5 than the earliesr arrival rime of 
B. then we can remove A from the fanin oJC without affecting its 
pmbability distribution of C. 

with 

Note that [31 also uses this transformation. We can remove A 
from the entire graph only if all fanouts from A which satisfy the 
above condition. We can also remove all the nodes in the fanin cone 
of A. if none of the nodes fanout to a node outside this cone. 

4.4 Series Reduction 
We also perform a much widely known form of transformation 

which reduces the complexity of analysis hy combining two nodes 
as shown in Figure 7. 

Let the delays of the two nodes be DI and 0 2  respectively. The 
delay of the reduced node is D = DI i D 2 .  Since we have as- 

So far we have shown that the primary inputs of the reduced 
DAG are stochastically larger than the primary inputs in the origi- 
nal DAG. We have also shown that if two paths from a signal which 
iss.1. than the corresponding signal in the original DAG reconverge 
at some node, then the signal at the point of reconvergence will also 
be stochastically larger, To complete the validity of this transfor- 
mation, we need to show that the signals at second level are also 
s.l. than the signals at first level in the original DAG. 
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Figure 7: DAG before and  after Series Reduction 

(+) 
Figure 8: Flowchart for the entire process 

sumed that there is no correlation between the gate delays, from 
general probability theory 1161. we know that the probability den- 
sity of the sum of two independent random variables is obtained by 
convolving their probability density functions. 

5. Process Flow 
Figure 8 shows the flowchart Corresponding to the steps involved 

in our analysis. We start the analysis by performing the different 
transformations in the given order. After reducing the DAG, we 
traverse nodes in topological order to find a node which is the point 
ofreconvergence. If we find such a node, we extract this node along 
with its fanin cone. We compute the CPDs for all the nodes in this 
subgraph and perform the BN-based analysis to compute the PDFs 
of all the nodes in this subgraph. 

After this analysis, we can remove all the nodes which don't 
fanout to a node outside this fanin cone. Also since we have com- 
puted the PDF of the node at which the paths reconverge, we can 
remove its fanin edges. Tlus will reduce the complexity of the re- 
maining subgraph. But this procedure amonnts to making this node 
independent of all the nodes in its fanin cone and can result in re- 
ducing the quality of the bound. 

Once we have analysed all the subgraphs containing reconver- 
gences, we perform the analysis on the remaining DAG and obtain 
the PDF of the output. 

6. What about Wine Delays? 
Even though a significant amount of work has gone into devel- 

opment of PTA tools, the problem of including wire delays and 
still performing the analysis efficiently has not been discussed in 
detail. With the design process going into nanometer scale, ihe in- 
terconnect delays have started to increase sharply primarily because 
thinner wires result in higher resistance and their close proximity 
results in higher capacitance. This leads to a higher RC value and 
thus larger delay. 

L-4- 
Figure 9 Compound Node for Wire Delays 

A simple way to include the wire delays is to insert a node on 
each of the edges of the DAG, however this procedure will increase 
the DAG size by the number of edges in the DAG. This number can 
be as high as twice the number of nodes, hence it will significantly 
increase the size of the DAG. In this section we present an efficient 
way of including wire delays, without increasing the number of 
nodes in the DAG along with only a minor increase in the memory 
space. 

We first insert dummy nodes corresponding to the interconnect 
delays on each of the edges as shown in Figure 9. Let us denote 
by DA: and DE, the interconnect delays corresponding to the edges 
connecting A to C and B to C respectively. Let TA, TB and Tc rep- 
resent the anival times at A, B and C respectively. We assume that 
the gate and interconnect delays are independent, thus delay ran- 
dom variables DA,, DE, and D are independent of each other. To 
keep the DAG size the same, we now combine the three nodes into 
a compound node. To cany on with our analysis, we only need the 
CPD corresponding to this compoundnode. Hence we comDute the 
CPD of th_s node as follows. 

The delay at the output C i s  given by 

rC = mar{ TA + D ~ , ,  TS + D ~ ! }  + D 

The probability distribution of Tc conditioned on TA and TB, 
P(Tc = t / r A , e )  can be computed as follows 

(4) 

Hence, given a particular l ~ , t ~  and tc, we can obtain the corre- 
sponding value of the conditional probability of Tc with respect to 
TA and TS from (4). We see that the number of nodes in the DAG 
remains the same hut there is a slight increase in the complexity 
because the number of distinct values taken by each of the signal 
(m) increases. 

7. Experimental Setup and Results 
We performed our analysis on ISCAS85 benchmark circuits and 

compared OUT results with 10,oW runs of Monte Carlo simulations. 
The delays of the gates were mapped using a user specified library 
for assigning different delay distributions depending on the gate 
type and the faninslfanouts. We ran our simulations on a Sun 2801 
server having 2 Sparc 111 processors 900 MHz, and 4 GB RAM. 

The Reduce fanin and Swirching Window Reducrion transforma- 
tions were implemented in PERL and the resulting DAG was given 
as an input to MATLAB program. The Inputs Reduction and Se- 
ries Reduction transformations and the remaining procedures were 
implemented in MATLAB. The BN-based analysis was done using 
Bayesian Network Toolbox in MATLAB [I]. 

Table 2 shows the reduction in gate sizes we obtain after per- 
forming Switching Window and Series Reduction transformations. 
We can obtain as much as 90% reduclion in the circuit sizes and the 
average reduction obtained was 71%. 
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Figure 10 Sim. and Predicted Arrival times for C5315 

Circuit Nodes Nodes Remaining after 1 %red. 
Swil. Win. I Seriesred. I 

88% 
494 446 24% . .  .. ~ 

1908 I 913 I 179 I 107 I 88% I 

C531S 2485 90% 
C75S2 3719 660 469 87% 

We took the percentage variation in the delay ((dm-dmjn)/dmenn) 
to range from 20 - 40%. The SW reduction was performed with the 
critical time as the EAT of the output. The EAT was propagated 
to the primary inputs by subtracting d,;, of each gate encountered 
in the path. The amount of reduction using the S w i t c h i n g  Window 
transformation depends on the percentage variation in the delay. 

We could obtain the exact distribution for C17. Because of large 
number of reconvergences present in other circuits we obtained 
their bounds. In Table 3 we see that the worst case difference in 
the simulated (MC) and predicted (BN) 30 values is less than 3%. 
The runtime of our procedure was significantly less than the Monte- 
Carlo simulations. 

for residual probability of 0.3. We see that the predicted residual 
probability is always greater than the simulated residual probabil- 

Figure 10 shows the simulated and predicted anival time of CS3 15 

ity. Hence we never underestimate the fraction of circuits whose 
delay is greater than a given critical time. 

Since the computations have been performed in MATLAB, the 
runtime of OUT analysis is much slower than if we had a Bayesian 
Networks package implemented C/C++. Hence significant speedups 
can be obtained by implementing the code in C. 

8. Conclusions 
We introduced a new methodology for performing PTA of cir- 

cuits. We showed that the problem of finding exact probability dis- 
tribution of the arrival time of a signal in the circuit is exponential 
in the maximum clique sire of a graph derived from the circuit. 
We presented various analytical results using which we performed 
different graph transformations to reduce the problem size without 
having significant effect on the accuracy. We introduced a method 
for incorporating wire delays in the analysis without significant in- 
crease in the complexity. Our transformations can result in as much 
as 90% reduction in the circuit size with the average reduction be- 
ing 71%. Also the maximum difference in the computed 30  values 
and the simulated 3 0  values is less than 3% which shows the accu- 
racy of the approach. 
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