
Weekly Report for Yu Hu’s work in week4

February 6, 2005

1 Work1: Analysis of the extension of Weiping Shi’s work

The first work of this week is to consider how to expand Weiping Shi’s work to handle triple candidates (RAT,
Capacitance, Power), i.e. (Q, C, E). In the following description, we use Q(v, α), C(v, α) and E(v, α) to denote
the the RAT, downstream capacitance and power dissipation at v under buffer assignment α, respectively.

I tried to organize all candidates in one candidate tree, but failed. The main cause is that there are three
possible orders for (Q, C, E) if we organize candidates by non-decreased order of Q as follows (We can find that
Q1 > Q2, C1 < C2, E1 < E2 won’t exist in non-redundant candidate tree, since α1 dominant α2.),

1. Q1 > Q2, C1 > C2, E1 > E2,

2. Q1 > Q2, C1 > C2, E1 < E2,

3. Q1 > Q2, C1 < C2, E1 > E2.

To implement the speedup technics in Shi’s DAC’03, we must make sure Q and C in the same order. In another
words, we can always organize the candidate tree with non-decreased order of both Q and C. Obviously, this is
impossible when we add E into consideration.

So, I decide to use a data structure similar as [Lillis ICCAD’95] to organize all candidates as subsets indexed
by E in strictly increased order, such as {E1, T1}, {E2, T2}, . . . , {En, Tn}, where Ei < Ej if i < j, and Ti is a
candidate tree whose nodes are (Q,C) pairs. Using such a data structure, we can perform two kinds of pruning.

A. Pruning redundancies in each candidates tree Ti. For two candidates α1 and α2 in the same candidate
tree Ti, obviously, E(α1) = E(α2), so we can just perform pruning based on (Q,C) pairs. Furthermore, we
can organize all (Q,C) pairs by non-decreased order of both Q and C. This makes us able to use Shi’s speedup
technics in his DAC’03 paper.

B. Pruning in E list. We can consider the following 3 operations in buffer insertion respectively:

Merging. New candidates are generated by exploring potential merges so that the new candidates are
generated in non-decreased order of E. When each new candidate is generated, its Q and C can be inserted
into a range-query tree (a binary search tree, whose nodes are (Q,C), ordered by C) to allow for pruning based
on just Q and C. The trick is that by visiting all new candidates in nondecreasing order of E, it is guaranteed
that each new candidate added to the range-query tree will be dominated in terms of E by the other candidates
already in the tree. Then one only needs to determine additional dominance in Q and C to see whether the
candidate should be rejected. This test can be done in time logarithmic in the size of the tree.

Adding a wire. Candidates are updated after a wire is added from the root of the current sub-tree.
Similarly as merging, we visit all candidates in nondecreasing order of E, and a temporary range-query tree is
maintained. Each time when a candidate is visited, check whether it’s redundant in the range-query tree. If
not, insert it into the tree.

Adding a buffer. One new candidate is generated in each {Ei, Ti} set, which has max(Qj−RbCj), j ∈ Ti.
Then we need to check the new candidates’ redundancies in non-decreased order of Ei similarly as before.

In both of the two kinds of pruning mentioned above, we can perform Predictive Pruning in [Shi DAC03].
This idea can be expanded as follows to handle power, For candidate α, P (v, α) = Q(v, α) − RbC(v, α), where

1



Rb is the resistance of the first buffer predictive used in the upstream of v. Given candidates α1 and α2, if
P (v, α1) > P (v, α2), C(v, α1) < C(v, α2), and E(v, α1) < E(v, α2), then we say α1 is b-dominant α2. The
statement is, ”If α1 is b-dominant α2, then α2 is redundant and pruned.” Furthermore, we have, ”If α1 and α2
do not b-dominant one another, then P (v, α1) > P (v, α2) if and only if Q(v, α1) > Q(v, α2).” So we can use
b-dominant to determine the redundancies.

For dual-Vdd buffer insertion, we have P (v, α) = Q(v, α)− RH
b C(v, α), when the upstream buffer is high-Vdd

one, otherwise, we have P (v, α) = Q(v, α)−RL
b C(v, α). Note that, when a wire is added, we can’t decide wether a

high-Vdd or low-Vdd buffer will be added in upstream if there’re no high-Vdd buffers in downstream, so we need
to generate both candidates (In [KingHo DAC05], it’s stated that the high-Vdd buffer peer is always inferior than
low-Vdd one. I can’t agree with it, since if we calculate the power of the wire by low-Vdd, then the immediate
buffer up the wire must be a low-Vdd one, which indicates that the Q after this low-Vdd buffer is smaller than
the high-Vdd peer.).

2 Work2: Implement the extension of Weiping Shi’s work into BIC
package (in processing)

Before implementation of the extension, I read the document and benchmarks of BIC package. After that, I
downloaded the GNU-AVL library (http://ftp.gnu.org/gnu/avl/), which contains a well-written package including
the implementation of several kinds of binary search trees, such as AVL tree and red-black tree. I will use this
package in my future implementation as my basic data structure to organize candidates. I’ve read the document
and part of the source code in the package.

The schedule for the implementation of the extension is as following steps,

1. Implement the framework of the algorithm. Firstly, I’ll implement the framework of the algorithm,
which is based on [Lillis ICCAD05]. Note that I don’t perform any pruning in this step.

2. Get the candidates distribution in each power value. As we know, in each subset {Ei, Ti}, if there
exist quite few candidates in Ti, then the efficiency of the speedup technics (Pruning redundancies in each
candidates tree Ti.) can be hardly shown. To prove/disprove this worry, I should get a statistic of the
candidates number in each power value.

3. Implement pruning in E list.

4. Implement pruning redundancies in each candidates tree Ti. If there exist many candidates in some
Ti in general cases, I will implement pruning redundancies in each candidates tree Ti based on [Shi DAC03].

At present, I’m processing in step1. The whole implementation is expected to be done in next week.

2


