
Weekly Report for Yu Hu’s work in week5

February 13, 2005

I continue working on the implementation of Weiping Shi’s work this week. My works include the follows,

1. I’ve implemented the framework of the work to handle single-Vdd power. The outline of the algorithm is
borrowed from John Lillis’s ICCCAD’95 work, in which all candidates are organized as subsets indexed by
E in strictly increased order, such as {E1, T1}, {E2, T2}, . . . , {En, Tn}, where Ei < Ej if i < j, and Ti is a
candidate tree whose nodes are (Q,C) pairs.

2. Tested by six benchmarks generated by King Ho (s1-s6), I obtained a statistic of candidates number in the
same power value. Table1 shows the results from experiments. In this table, column ”pnum” shows the
number of distinct power values, and column ”max subset num” shows the maximum candidates number
with the same power value, i.e. maximum candidates number in Tn in some subset {En, Tn}.

Table 1: Statistic of the number of candidates and power value
net pnum max subset num
s6 63 1830
s5 48 1080
s4 42 672
s3 18 160
s2 16 88
s1 15 80

From these observations, we found that the number of distinct power values 1 isn’t as many as we expected,
and the number of candidates with a same power value is much more than we expected. So I believe we can
perform Shi’s Dac’03 pruning technologies in each subset {Ei, Ti} to get a substantial speedup.

3. I’ve implemented a new pruning criterion, predictive pruning (in Weiping Shi’s DAC’03), in each subset
{Ei, Ti}. By using predictive pruning, we can prune the much more candidates and get some speedup.
Tested by s1-s6, table2 shows the experimental results. In this table, column ”non-tri-left”, ”non-tri-pruned”
and ”non-time” show the number of the candidates left after pruning, number of candidates pruned, and
running time (cpu-pm1.4GHz, mem-128M) using traditional criterion. Similarly, we can get the denotation
of column prefixed by ”p-”. Note that the fraction in square brackets denotes p-tri-left/non-tri-left.

Table 2: Predictive pruning vs. traditional pruning
net non-tri-left non-tri-pruned non-time p-tri-left p-tri-pruned p-time
s6 290451 119894 35.120s 78639 [1/4] 42143 30.386s
s5 169238 51935 0.984s 53026 [1/3] 21246 0.832s
s4 64714 26914 0.365s 20193 [1/3] 10775 0.331s
s3 24496 4409 0.213s 14139 [1/2] 3480 0.167s
s2 10961 1296 0.109s 6060 [1/2] 976 0.056s
s1 9830 1039 0.100s 5313 [1/2] 915 0.059s

From the experimental results, we can see that the predictive pruning can really prune much more redundant
candidates to narrow the search space. At present, there still exist some problems in my codes, in which the
power-slack tradeoff curves don’t match in some points before and after performing predictive pruning. I’m
trying to find why this problem exists.

1In my implementation for single-Vdd, power values are presented with sum of capacitances.

1


