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1. MOTIVATION
In statistical static timing analysis (SSTA), the maximum

function is a pain in terms of computing the probability
density function (PDF).

In this section, we derive closed formula to compute the
PDF of a maximum of two normal random variables with
correlation. We show that the newly computed PDF falls
into a more general class of normal distribution: called “skewed-
normal” distribution.

We argue that skewed-normal distribution should be used
for more accurate parametric variation modeling. New SSTA
framework should employ skewed-normal distribution, in-
stead of purely normal distribution.

Assume (X, Y ) are two random variables with correlation
that can be modeled as a bivariate normal distribution, i.e.,

f(x, y) =
1

2π(1 − ρ2)1/2
· exp(−x2 − 2ρ · x · y + y2

2(1 − ρ2)
) (1)

with the cumulative density function (CDF) given as

F (x, y) =

� x

−∞

� y

−∞

f(x, y) · dx · dy. (2)

Our question would be: if Z = max(X, Y ), what will be
the PDF for Z?

To derive the PDF of Z, we compute the CDF of Z first.
Because G(z) = P (Z ≤ z) = P (X ≤ z, Y ≤ z) = F (z, z).
Then we can compute the PDF of Z by taking the derivative
of G(z), i.e.,
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= 2 · φ(z) · Φ(z � 1 − ρ
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where φ(z) is the PDF of a normal distribution, while Φ(z � 1−ρ
1+ρ

)

is the CDF of a normal distribution taking value at z � 1−ρ
1+ρ

.

Equation says that the PDF of Z, which is the maximum
of X and Y , equals to two times of the product of a normal
PDF and a CDF at some particular values. This kind of
PDF indeed falls into another more general normal distritu-
ion, called “skewed-normal” distribution, which emerges in
recent statistics researches.
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