
Weekly Report for Yu Hu’s work in week6

February 20, 2005

1. Read King Ho’s code in BIC package.

I spent a couple of days to read BIC code carefully. Since the main goal of my first step of this project to
integrate Weiping’s work into BIC to handle single-Vdd buffer insertion problems (without tree construction),
I read code in two sub-directories ”buf determ” and ”share” and finally grasped whole framework of King
Ho’s code.

As King Ho’s explanation, ”buf determ” code can be run with ”-B n” parameter, which means sampling n
elements in each subset. If this parameter isn’t added, ”buf determ” will run in John Lillis’s alg., otherwise,
it’ll run in King Ho’s DAC’05 alg..

2. Make some experiments based on BIC package.

After read through BIC code, I made the following experiments:

Firstly, I organized all candidates as {C1, pairs1}, {C2, pairs2}, . . . , {Cn, pairsn}, where Ci is the capacitance
value of candidates∈subset {C1, pairs1} , Ci < Cj if i < j, and pairsi is a sub-subset whose elements are
(P, RAT ) pairs, where P is power dissipation of the current candidate. The executable produced as this
organization is called ”buf determ pq”.

Then, I organized all candidates as {P1, pairs1}, {P2, pairs2}, . . . , {Pn, pairsn}, where Pi is the power dissi-
pation value of candidates∈subset {P1, pairs1} , Pi < Pj if i < j, and pairsi is a sub-subset whose elements
are (C, RAT ) pairs, where C is capacitance of the current candidate. The executable produced as this or-
ganization is called ”buf determ cq”. We should note that, in both ”buf determ pq” and ”buf determ cq”,
elements in pairsi is organized as a Red-Black tree in King Ho’s implementation.

After that, I ran both ”buf determ pq” and ”buf determ cq” with s1-s4, and there’re two observations
obtained based on the comparison:

(a) The different power values of ”buf determ pq” is about twice less than ”buf determ cq”, and the average
number of elements in pairsi of ”buf determ pq” is twice larger. This means the pruning tree strategy
in King Ho’s DAC’05 paper will perform better under ”buf determ pq”. Furthermore, more candidates
can be pruned under ”buf determ pq”. The experimental results show that ”buf determ pq” is over 3
times faster than ”buf determ cq” without sampling.

(b) In both organization modes, the candidates number in pairsi is not large enough. There’re over 50% of
pairsi have less than 10 candidates. Obviously, this will worsen the efficiency of pruning tree strategy.
In another words, the efficiency of pruning tree will be shown if the tree has large elements, otherwise,
the overhead of maintaining the pruning tree (such as rotation and check nodes’ color) will overwhelm
the pruning efficiency, which makes the running time longer.

Based on observation(b) shown above, I rewrote the pruning strategy without using pruning tree, instead, I
used a simple vector to organize elements in pairsi. Tested with s1-s4, the experimental results show that I
got about 20% speedup upon Red-Black tree pruning in both ”buf determ pq” and ”buf determ cq”. Surely,
this verified the statements in observation(b).

Based on observation(a) and (b), I used vector instead of tree data structure to organize candidates in each
pairsi, and I used ”buf determ pq” mode to organize whole candidates in my implementation.

3. Combine aggressive predictive pruning and sampling into BIC and get some speedup.

(a) Firstly, I added predictive pruning into BIC, which means I used the minimal-output-resistance buffer
in buffer library to perform predictive pruning. But I found that little speedup can be obtained.

1



(b) Then I used maximal-output-resistance buffer to perform predictive pruning (aggressive predictive prun-
ing in Weiping Shi’s ASPDAC’05 paper), and obtained substantial speedup comparing with John Lillis’s
alg.. Also I found that the results produced after aggressive pruning are almost as the same as optimal
(Lillis’s alg.).

(c) After that, I combined aggressive pruning and sampling together. Using the same settings (sampling
parameter is set as 20) and testing with s1-s6 with single-Vdd buffers, I compared my new approach
with King Ho’s DAC’05 approach (SVB). I obtained over 3 times speedup upon King Ho’s approach,
meanwhile the solution produced by my new approach even has a little lower power dissipation with
the same RAT. The running time is shown as Tab.1. Note that the running time of John Lillis’s alg.
isn’t given here since it’s much slower than King Ho’s alo..

Table 1: Running time (Yu’s vs. King Ho’s)
net Yu’s King Ho’s
s1 1 3
s2 2 5
s3 3 13
s4 14 63
s5 37 154
s6 55 271

2


