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1. MOTIVATION
In statistical static timing analysis (SSTA), the maximum

function is a pain in terms of computing the probability
density function (PDF).

In this section, we derive closed formula to compute the
PDF of a maximum of two normal random variables with
correlation. We show that the newly computed PDF falls
into a more general class of normal distribution: called “skewed-
normal” distribution.

We argue that skewed-normal distribution should be used
for more accurate parametric variation modeling. New SSTA
framework should employ skewed-normal distribution, in-
stead of purely normal distribution.

Assume (X, Y ) are two random variables with correlation
that can be modeled as a bivariate normal distribution, i.e.,

f(x, y) =
1

2π(1 − ρ2)1/2
· exp(−x2 − 2ρ · x · y + y2

2(1 − ρ2)
) (1)

with the cumulative density function (CDF) given as

F (x, y) =

� x

−∞

� y

−∞

f(x, y) · dx · dy. (2)

Our question would be: if Z = max(X, Y ), what will be
the PDF for Z?

To derive the PDF of Z, we compute the CDF of Z first.
Because G(z) = P (Z ≤ z) = P (X ≤ z, Y ≤ z) = F (z, z).
Then we can compute the PDF of Z by taking the derivative
of G(z), i.e.,
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where φ(z) is the PDF of a normal distribution, while Φ(z � 1−ρ
1+ρ

)

is the CDF of a normal distribution taking value at z � 1−ρ
1+ρ

.

Equation says that the PDF of Z, which is the maximum
of X and Y , equals to two times of the product of a normal
PDF and a CDF at some particular values. This kind of
PDF indeed falls into another more general normal distri-
bution, called “skewed-normal” distribution, which emerges
in recent statistics researches.

Now we give the formal definition of skewed-normal dis-
tribution as follows:

Definition 1. Skewed-normal distribution is a dis-
tribution of random variable Z with the PDF given as

g(z) = 2 · φ(z) · Φ(α · z) (4)

where φ(z) and Φ(z) are PDF and CDF of a standard nor-
mal distribution N (0, 1), and α is a skew factor (shape pa-
rameter).

To appreciate why α is called a skew factor for the skewed-
normal distribution, we plot three different g(z) with differ-
ent skew factors in Figure 1. From the figure, we can see
that when α = 0, g(z) becomes the standard normal distri-
bution N(0, 1); when α < 0, g(z) is negatively skewed; and
when α > 0, g(z) is positively skewed. In another word,
skewed-normal distribution is a more general class of PDF
that includes the standard normal distribution as a special
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Figure 1: Illustration of skewed-normal distribution.

case because of the extra freedom given by the skew factor
α.

Because the PDF of the maximum of two normal variables

(1) has the exact form as (4) with α = � 1−ρ
1+ρ

, we would ex-

pect that the PDF should also exhibit the skewness as shown
in Figure 1. However, current SSTA practice is to model the
maximum function as a normal distribution owning in part
to the factor that they may not aware of the closed form
solution as shown in (1) and the difficulty in obtaining a
general formula for the maximum function of two arbitrary
distribution.

Based upon the above observation, we believe that skewed-
normal distribution should be used as a more general PDF
model for parametric variations in order to obtain accurate
SSTA. The reasons are multi-fold: (1) skewed-normal dis-
tribution is the exact formula when we take the maximum
of two normal variations; (2) as we shall see in the next sec-
tion, skewed-normal distribution is also suitable for device
parametric characterization; (3) skewed-normal distribution
have many properties that are in parallel with the conven-
tional normal distribution, which makes the mathematical
manipulation of these random variables as easy as the con-
ventional normal distribution but with large flexibility; and
(4) we believe that for most systematic variations, skewness
is more prevalent than symmetry in general. For example,
a large portion of process variation is due to the difficulty
in print the small features exactly. However, the difficulty
should become less prominent as the geometry size becomes
increasingly large.

2. RANDOM LEFF INDUCED DELAY VARI-
ATION

In this section, we extract the device delay parametric
variation in the presence of process variation via Monte
Carlo simulation. Because of the lack of access to the real
sources of foundry process variations, we only model the
random Leff variation using 65nm BSIM model in this sec-
tion. Moreover, we assume the variation of Leff to be a
symmetric normal distribution to represent the common wis-
dom regarding to process variations. However, we will show
that even under this very simple and symmetric setting, the
skewness of delay variation is omnipresent.

A minimum size two-stage buffer is used for Hspice sim-
ulation in order to extract the gate delay parametric. The
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Figure 2: Normal probability plot of the delay dis-

tribution.

standard deviation of Leff variation is set as 10% of the
mean value in our experiment. We run Monte Carlo simu-
lation 2000 times and measure the intrinsic delay of buffers
when different Leff values are assumed.

To test whether or not the delay parametric variation is
a normal distribution, we show the normal probability plot
in Figure 2, where each cross dot is a measured delay from
Hspice simulation. The dashed line represents a normal dis-
tribution by assuming the underlying PDF of delay is a nor-
mal distribution. Any data that deviate from the straight
line defy the normality assumption. It is apparent from the
figure that the delay is not a normal distribution.

We further plot the PDF of the collected delay data in
Figure 3. Apparently, the PDF shows skewness with a long
tail to the right. To model such a distribution in a closed
mathematical form, people always assume a known type of
PDF for the data, and then do a maximum-likelihood curve
fitting to decide the exact formula for the PDF. Normal dis-
tribution has been assumed extensively to model parametric
variations in literature due to its simplicity and well-known
properties. However, as we have already seen in Figure 3
that the skewness of distribution is not negligible and should
be captured correctly in order for accurate timing diagnos-
tics and yield prediction.

To illustrate this point, we employ the maximum-likelihood
curve fitting technique to determine the PDF of delay varia-
tion. Normal distribution and skewed-normal distribution
are assumed respectively. After obtaining the two fitted
PDFs, we overlay them in the same plot as shown in Fig-
ure 3. According to Figure 3, we can see that the skewed-
normal PDF can capture both the overall distribution and
the long tailed distribution of simulated data very well. On
the contrary, the normal PDF can barely capture the overall
distribution, not to say the long tail skewness.
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Figure 3: PDF for the simulated data, with a nor-

mal distribution fitting and a skewed-normal distri-

bution fitting.


