
Weekly Report for Yu Hu’s work in week8

March 6, 2005

In this week, I focused on the following four works:

1. Add min-delay pruning in buffer insertion package in BIC (We’ve discuss it in e-mail). Details are in section
1.

2. Make a brief analysis about the things behind the experimental results (We’ve discuss it in e-mail). Details
are in section 4.

3. Expand King Ho’s sampling to 3-dimension sampling (sampling with power, RAT and capacitance).
Experimental results show that 3-D sampling can achieve up to 5 times speedup upon 2-D sampling. Up to
now, we can obtain up to 20 times speedup upon King Ho’s code for single-Vdd buffer insertion. Details of
3-D sampling are shown in section 2.

4. Integrate buffer insertion technologies into tree construction package (route determ) in BIC. Experimental
results show we achieve up to 50 times speedup upon King Ho’s code for single-Vdd buffer tree construction.
Details are in section 3.

1 Min-delay pruning

I’ve added the predictive min-delay pruning rule (α(p, c, rat) is pruned, if rat − minDelay < RAT∗) into BIC
package and obtained about 2 times speedup over my non-min-delay version for single-Vdd buffer insertion.

In my calculation, I set the unitLenMinDelay = 0.02ps/um for 65nm node in BIC package, and the solutions
produced by min-delay pruning version have the same quality with King Ho’s. So this can verify the effectiveness
of min-delay pruning.

After that, I tried to modify the predictive power pruning in my last version as following rule:

”α1 can be pruned, if p1 + pre − p1 > p2 and RAT1 + pre − d1 < RAT2 where pre − p1 is the predictive
upstream min-power and pre− d1 is the min-delay between source and the current node.”

After testing by s1-s6, I found the above power-pruning could prune little more redundant options, and the
overhead of table lookup even takes much more cpu time. So the total running time is even longer than the version
without power pruning. In fact, the reason is, the rule RAT1 + pre− d1 < RAT2 always can’t be satisfied, since
pre− d1 is often much larger than RAT1 and RAT2.

In my calculation, I doubt the correctness of the setting for ”unitLenMinDelay”. I calculate this value as
0.09ps/um in matlab using King Ho’s ISLPED paper formula, but I found 0.09ps/um always gives a much larger
prediction for upstream delay, and led to a wrong result. I set unitLenMinDelay from 0.09ps/um to 0.02ps/m
and ran my code. Until I adjust this value to 0.02ps/um, I can get the correct results. So I set unitLenMinDelay
0.02ps/um in my implementation. Anyway, there maybe something wrong in my settings in matlab code.

2 3-dimension sampling

The main idea of 3-D sampling is sampling with power, RAT and capacitance. Given a power-RAT-capacitance
3-D space, we divide each side of the bounding cube of all options into equal segments such that the entire power-
RAT-capacitance domain are superposed by a grid. For each grid cube in the bounding cube, we retain only one
option if there is any.

1



In experiments, I set the sampling number as 20 for both 3-D sampling and King Ho’s 2-D sampling. Which
means 3-D sampling will pick up much lesser samples than King Ho’s 2-D sampling. The following table shows
the comparison among three strategies with single-Vdd buffer insertion (four kinds of buffers under 65nm are in
buffer library and the minimal unit length is set to be 0.02um/ps). We can find that we obtain up to 20 times
speedup upon King Ho’s code within 1% worse of solution quality.

In the following table, columns pre-”3D” use (3-D sampling (20) + aggressive pre-buffer pruning + min-delay
pruning), columns pre-”2D” use (2-D sampling (20) + aggressive pre-buffer pruning + min-delay pruning), and
columns pre-”KH” are the original code used in King Ho’s DAC’05 paper. The first column of each kind of
strategies is CPU time.

Table 1: Buffer insertion: 3-D sampling vs. 2-D sampling vs. King Ho
net 3D(s) 3D RAT(ps) 3D Pwr(fJ) 2D(s) 2D RAT(ps) 2D Pwr(fJ) KH(s) KH RAT(ps) KH Pwr(fJ)
s1 0 -656.543 4689.09 0 -656.543 4689.09 3 -656.543 4689.09
s2 0 760.504 5631.62 1 760.504 5631.62 5 760.504 5631.62
s3 1 -1063.17 7891.46 2 -1063.17 7891.46 13 -1063.17 7891.46
s4 2 -948.835 12644.3 8 -946.501 12080.7 63 -946.501 12191.6
s5 6 -1811.46 19012.3 20 -1809.4 19011.3 166 -1809.15 19463
s6 10 -1722.43 25573.1 41 -1722.43 25461.2 270 -1722.43 25460.2
s7 24 -3050.83 35183.1 87 -3032.41 36308.4 575 -3028.05 36985.9

1 1± 1% 1± 1% 4× 1± 1% 1± 1% 20× 1 1

3 Speedup in buffer tree construction

I’ve implemented my speedup technologies in buffer insertion, such as pre-buffer pruning (Weiping’s), 2D sampling
(King Ho’s), min-delay pruning into buffer tree construction. I want to integrate my 3D sampling into tree
construction, but the experimental results show much error after 3D sampling, so I’ll consider why 3D sampling
can’t work for tree construction in the next week.

Besides, I integrated my grid reduction heuristic in tree construction package. About 2 times speedup is obtained
by this strategy. The basic idea of grid reduction comes from the min-delay pruning.

3.1 My grids reduction idea

Given a grid node p, the min-distance from p to some sink s1 is approximated as the Manhattan distance between
them, denoted as (p, s1). Similarly, the min-distance from p to source is approximated as (p, source). To meet the
delay budget, (p, s1) + (p, source) ∗ unitLenMinDelay shouldn’t exceed RATs1 − RATsource. So we can savely
delete those grid node p, which satisfying (p, s1) + (p, source) ∗ unit− len−min− delay > RATs1 −RATsource.

However, I implemented this idea in my code, but failed to get a correct result. Since I can’t get a correct
unitLenMinDelay value for test cases (grid.2 - grid.6), some non-redundant grid nodes are deleted, which leads
to the failure to construct a completed tree.

Based on above idea, I just remain those grid nodes, such as p, which satisfying (p, si)+(p, source) = (si, source),
for any sink si. This rule means, we delete all grid nodes which are not in any rectangles formed by any sink-source
pairs. This is reasonable in buffer tree construction, since a long-distance wire snaking won’t be good for delay.

The main problem of this idea is that we might not get a connection graph after grid reduction. We can see this
from Fig.1. Fig.1(a) shows the original grids of grid.4, and Fig.1(b) shows the grids after reduction. Obviously,
Fig.1(b) isn’t a connection graph, which means we can’t obtain a tree connecting all sinks by this grids.

To tackle this problem, I relax the size of rectangle to graph size/10 larger, which means the rule is modified
as (p, si) + (p, source) < (si, source) + graph size/10. Using this rule, we can make sure of the connection for all
test cases. The reduced grids for grid.4 is shown in Fig.1(c).

2



0

1

2

3

4

5

6

7

89

10

11
12
13
14
15

16

17

18

19
20

21

22

23

24

25

26

27

28

29
30
31

32

33

34

35

36
37

38
39
40

41

42

43

44

45

46

47

48

49
50

51

52

53
54

5556

57

58

5960 61

62

63

64

65

6667

68

69

70

71

72

73

74

75

76

77

7879

80

81

82

83

84

8586

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113
114

115

116

117

118119

120

121
122
123

124125

126

127128

129

130

131
132

133134

135

136

0

1

2

3

4

5

6

7

89

10

11
12
13
14
15

16

17

18

19
20

21

22

23

24

25

26

27

28

29
30
31

32

33

34

35

36
37

38
39
40

41

42

43

44

45

46

47

48

49
50

51

52

53
54

5556

57

58

5960 61

62

63

64

65

6667

68

69

70

71

72

73

74

75

76

77

7879

80

81

82

83

84

8586

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113
114

115

116

117

118119

120

121
122
123

124125

126

127128

129

130

131
132

133134

135

136

0

1

2

3

4

5

6

7

89

10

11
12
13
14
15

16

17

18

19
20

21

22

23

24

25

26

27

28

29
30
31

32

33

34

35

36
37

38
39
40

41

42

43

44

45

46

47

48

49
50

51

52

53
54

5556

57

58

5960 61

62

63

64

65

6667

68

69

70

71

72

73

74

75

76

77

7879

80

81

82

83

84

8586

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113
114

115

116

117

118119

120

121
122
123

124125

126

127128

129

130

131
132

133134

135

136

(a) (b) (c)

Table 2: Different grids for grid.4

3.2 Experimental results for buffer tree construction

The experimental results are shown in Tab.3, where columns pre-”GR” use (grid reduction + 2-D sampling (20)
+ aggressive pre-buffer pruning + min-delay pruning), columns pre-”O” use (2-D sampling (20) + aggressive
pre-buffer pruning + min-delay pruning), columns pre-”KH” use King Ho’s DAC’05 code. The first column of
each kind of strategies is CPU time. We can see that we obtained 50× speedup upon King Ho’s code by using
”GR” strategy.

Table 3: Buffer tree construction: grid-reduce vs. non-grid-reduce vs. King Ho
net GR(s)GR-RAT(ps)GR-Pwr(fJ) O(s)O-RAT(ps)O-Pwr(fJ) KH(s)KH-RAT(ps)KH-Pwr(fJ)

grid.2 0 -218.434 1107.07 0 -218.434 1107.07 0 -218.434 1107.07
grid.3 2 -557.398 3116.3 2 -557.398 3116.3 22 -557.398 3116.3
grid.4 1 -531.141 2636.54 4 -531.141 2636.54 42 -531.141 2636.54
grid.5 16 -523.429 3359.74 29 -523.429 3359.74 535 -522.448 3359.74
grid.6 24 -356.726 2819.41 38 -356.726 2819.41 1576 -356.726 2819.41

1 2× 50×

4 Discussions about experimental results for buffer insertion

In this section, I try to give a brief analysis about things behind my experimental results as follows.

Basically, several speedup technologies proposed in Weiping’s DAC’03 paper are focused on timing optimization.
These technologies are all performed on the searching tree.

As we know, in timing optimization, each option is a (rat, cap) pair, so all non-redundant options (their rat
and cap can be sorted in the same order) in a node can be organized in one searching tree data structure. This
makes the number of options in this tree data structure very large (usually over 100). So Weiping’s sophisticated
data structure added to the searching tree can show much effectiveness.

However, in power optimization, each option is a (power, rat, cap) triple, and obviously we can’t sort power,
rat, and cap with the same order as we do in timing optimization. So options can’t be stored in a single searching
tree in each node, instead, we store options with several subsets (each subset can be a tree or a vector) indexed
by power or cap. This change makes the options in each subset much lesser than those in searching tree in timing
optimization. This observation leads to ineffectiveness of Weiping’s DAC’03 speedup technologies (the overhead
of maintaining a complex searching tree overwhelms the tree’s efficiency for small options number in the tree).

In fact, due to this situation, Weiping used only predictive pruning in cost-minimization buffer insertion in his
ASPDAC’04 paper, in which the experimental results show that his method obtained less than 20 times speedup
upon John Lillis’ approach (for over 1k sinks net). Note that, King Ho’s sampling can achieve 85X speedup for
800 sinks net, so Weiping’s approach isn’t so substantial.

3



Essentially, the most important thing to get speedup in power optimization is to reduce the options number as
many as we can. So sampling can really do a good job, besides that, aggressive predictive pruning and min-delay
pruning can also take much effect. These three methods make our code run much faster than Weiping’s.

Based on the experimental results, we also get the following observation and conclusion.

In the cases smaller than 50 sinks, my method speedups about 2 times upon weiping’s method. In larger scale
cases, such as s5, s6, ..., my method speedups over 7 times upon weiping’s. The main speedup comes from sampling
(I set the sampling parameter as 20.) and our data organization method.

When the scale is small, many subsets contain less than 20 options, so sampling almost has no effect, while
when the scale become larger, sampling can do a effective job for pruning.

Furthermore, our organization of options isn’t quite the same with weiping’s. The main different is, we index
options with capacitance, and weiping indexes options with power. In my experiments, I found that there’re much
more different power values than different capacitance values, which makes the weiping’s method spend more
running time in exploring more subsets indexed by power.

4


