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1. BUFFER VARIATION CHARACTERIS-
TICS

1.1 First-Order Linear Approximation
We characterize a buffer in terms of its gate capacitance

(Cb), intrinsic delay (Tb) and output resistance (Rb). Due
to process variations, these values will no longer be a fixed
value. To simplify the model of process variation effects on
buffer characteristics, we lump all variations effects into gate
capacitance variation and gate intrinsic delay variation with
the output resistance as a constant that is a function of gate
sizing only.

In general, devices characteristics are complicated (non-
linear) functions of the underlying physical parameters and
sometimes are even hard to described in a closed form. There-
fore, to model the devices characteristics variations in the
of presence of process variations, we resort to first-order ap-
proximation. The rational is that if the underlying para-
metric variations is small, the nonlinear relationship can be
reasonably captured by a first-order approximation. Math-
ematically it can be described as:

Cb = Cb0 +
�

i∈I

αi · Xi, (1)

Tb = Tb0 +
�

i∈I

βi · Xi, (2)

where Cb0 and Tb0 are nominal values of Cb and Tb, respec-
tively; and Xi are the underlying parametric variations such
as channel length, doping density, and gate oxide thickness.
The coefficients αi and βi are sensitivity of Cb and Tb to the
variation of Xi, respectively.

To verify the accuracy of the above first-order modeling,
we run SPICE simulations. For illustration purpose and also
because of the lack of access to the real sources of foundry
process variations, we only model the random Leff varia-
tion using 65nm BSIM model in this section. Moreover,
we assume the variation of Leff to be a symmetric normal
distribution to represent the common wisdom regarding to
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Figure 1: SPICE extracted buffer intrinsic delay

versus linear model predication.

process variations.
In Figure 1 and 2, we show the experiment results for a

two-stage buffer with size equal to 128× of the minimum
size buffer. The standard deviation of Leff variation is set
as 10% of the mean value in our experiment. We run SPICE
simulation and extract the characteristics of the buffer when
different Leff values are assumed. We then use a least
square error curve-fitting technique to obtain (1) and (2).
Figure 1 shows the SPICE extracted Tb versus the linear
model predicted Tb, while Figure 2 shows the SPICE ex-
tracted Cb versus the linear model predicated Cb. According
to the figures, it clearly shows that the first-order models for
Tb and Cb are very accurate and the largest relative error is
less than 5%.

1.2 Normal Distribution Approximation
Because of the nonlinear relationship between parametric

variations (like channel length, doping density, gate oxide
thickness, etc.) and the device characteristics, the latter’s
distributions are unlikely to be normal even if the underlying
parametric variations are assumed to be normal. However,
just as we have discussed above, if the underlying parametric
variations is assumed to be small, the nonlinear relationship
can be approximated by a first-order linear equation. There-
fore, the device characteristics can also be approximated by
a normal distribution.
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Figure 2: SPICE extracted buffer input capacitance

versus linear model predication.
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Figure 3: Normal distribution approximation of Tb.

We validate this argument via Monte Carlo simulation.
During each run, we use SPICE to extract the device char-
acteristics as discussed above. Figure 3 shows the PDFs
of Tb from both Monte Carlo simulation and the normal
distribution approximation. It clearly shows that normal
distribution is a reasonably good approximation of the real
distribution as the two PDFs are very close to each other.

To see how good the normal distribution approximation
is, we further compute the accumulated probability errors
sampled at some interesting quantiles (like 1%-tile, 5%-tile,
10%-tile, 50%-tile, 90%-tile, 95%-tile, and 99%-tile) from
the two CDFs, and show the results in Figure 4. According
to Figure 4, we find that the normal approximation incurs
no more than 3% error when compared to the Monte Carlo
simulation. This further validated our assumption on the
first-order approximation of device characteristics. Other-
wise, the distribution would very unlikely exhibit a normal
distribution if the relation is nonlinear.

2. PROCESS VARIATION MODELING
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Figure 4: Normal distribution approximation errors

measured at some interested quantile points.

2.1 Intra-die Variation
To capture the effect of intra-die spatial variations on de-

vice, the characteristics of a device located at a particular
region will be affected by its nearby regions variations. In
another words, two devices that are physically close should
have a higher correlation than two devices that are physi-
cally far apart.

We partition the chip area into different regions, and asso-
ciate each region with two independent random variables Xc

and Xd, where Xc models process variation induced device
gate capacitance variation; and Xd models process variation
induced device intrinsic delay variation. In general, Xc and
Xd are correlated within the same region as the underly
physical parameters for both gate capacitance and device
intrinsic delay are the same. However, as we can always
employ the PCA technique to decouple the two correlated
terms into two independent terms, for brevity, we will as-
sume Xc and Xd are independent in the following.

For a device located at a particular region Rt with sizing
fixed, its output resistance Rb,t are constant, input capaci-
tance Cb,t and intrinsic delay Tb,t are two random variables
given by:

Cb,t = Cb0 +
�

i∈It

αt,i · Xc,i, (3)

Tb,t = Tb0 +
�

i∈It

βt,i · Xd,i. (4)

The coefficients αt,i and βt,i are two sets of constant num-
bers that are associated with region Rt. The index set It

defines the set of regions that spatial correlations should be
considered for devices located at Rt, while the values of co-
efficient αt,i and βt,i determine how strong the correlation
is. In general, the larger the coefficients, the larger the cor-
relation.

Because the index set It, and the coefficients αt,i and βt,i

are region-dependent and different regions will have different
It, αt,i, and βt,i. By properly setting up these values, we
can easily capture the spatial correlations between devices
at different regions. For example, for two devices located at
two nearby regions, they will share more common correlated



regions as decided by their common indexes in It1 and It2,
and have larger corresponding coefficients.

For example, given an example here.

2.2 Inter-die Variation
As the inter-die variation affects all devices within the

same die in a similar way, we can model this variation by
introducing another two independent random variables, Xgc

and Xgd and modify (3) and (4) as follows:

Cb,t = Cb0 +
�

i∈It

αt,i · Xc,i + αt,0 · Xgc, (5)

Tb,t = Tb0 +
�

i∈It

βt,i · Xd,i + βt,0 · Xgd. (6)

The coefficients of αt,0 and βt,0 can be different for different
regions so that the difference in effects of inter-die variations
on devices can be also captured in (5) and (6).

2.3 Layout Dependent Variation
In deep sub-micron design regime, crosstalk-induced tim-

ing variation is becoming more prominent. Because this
type of timing variation is not only functional dependent,
but also layout dependent, it is very hard to model it deter-
ministically.

Therefore, we model this timing variation via a layout de-
pendent random variable. We associate each routing region
Rt with a random variable Xw,t, which models interconnect
crosstalk (noise) induced wiring delay variation. In another
words, for wires that are routed through Rt, we would ex-
pect additional timing delay given by γt · Xw,t, where γt is
a routing region dependent coefficient to capture how good
the layout is immune to crosstalk effect. For a layout with
less crosstalk effects, γt should be smaller than a layout with
large crosstalk effects.

3. BUFFER INSERTION CONSIDERING PRO-
CESS VARIATIONS

3.1 Preliminary
For simplicity of presentation, we follow the same argu-

ment as [1] by assuming that the routing tree is given as a
binary routing tree and the legal buffer positions (nodes) are
directly after the branching points of the tree1. For a given
buffered routing tree, we associate every legal buffer position
t in the tree with two numbers: the input loading capacitance

(or downstream loading capacitance) Lt and the required ar-

rival time Tt. Denote c and r as interconnect’s unit length

capacitance and sheet resistance, respectively, we model each
interconnect segment in the routing tree with length lt as a
π model, where the resistance is given by r × lt, and the
capacitance is given by c × lt.

Under the Elmore delay model, the Lt and Tt can be
computed as follows.

If node t is obtained by adding a wire of length li at its
direct downstream node n, then

Lt = Ln + c · li (7)

Tt = Tn − r · li · Ln −
1

2
· r · c · l

2

i . (8)

1Note that the methodology to be presented in this work
does not depend on these assumptions.

If node t is obtained by adding a buffer at its direct down-
stream node n, then

Lt = Cb (9)

Tt = Tn − Tb − Rb · Ln. (10)

If node t is obtained by merging two nodes m and n, then

Lt = Ln + Lm (11)

Tt = min(Tn, Tm). (12)

It has been proved in [1] that the buffer insertion prob-
lem, without considering process variation, can be solved
optimally via dynamic programming. Moreover, by prop-
erly define the dominance relationship (or pruning rule) be-
tween two solutions, i.e., solution (L1, T1) dominates solu-
tion (L2, T2) if condition L1 < L2 and T1 > T2 are satisfied,
[1] proved that by keeping only dominating solutions at ev-
ery node, the dynamic programming approach can solve the
problem in polynomial time without loosing optimality.
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