Criticality Computation in Parameterized Statistical Timing

Jinjun Xiong Vladimir Zolotov
Univ. of California IBM Research
Los Angeles, CA Yorktown Heights, NY

Jinjun@ucla. edu

ABSTRACT

Chips manufactured in 90 nm technology have shown large
parametric variations, and a worsening trend is predicted.
These parametric variations make circuit optimization diffi-
cult since different paths are frequency-limiting in different
parts of the multi-dimensional process space. Therefore, it
is desirable to have a new diagnostic metric for robust cir-
cuit optimization. This paper presents a novel algorithm to
compute the criticality probability of every edge in the tim-
ing graph of a design with linear complexity in the circuit
size. Using industrial benchmarks, we verify the correctness
of our criticality computation via Monte Carlo simulation.
We also show that for large industrial designs with 442,000
gates, our algorithm computes all edge criticalities in less
than 160 seconds. The high accuracy and fast speed of the
algorithm warrant future application of criticality probabil-
ity for robust circuit optimization.

1. INTRODUCTION

As technology nodes shrink to 90 nm and below, it becomes
more difficult to manufacture chips with guaranteed para-
metric timing yield due to substantial increase of process
variations [1]. If these effects are not considered properly,
the potential for silicon failure is high, and the associated
cost for a design re-spin is prohibitive. Therefore, statistical
methods have recently attracted attention as a promising
approach to improve parametric timing yield.

In the deterministic approach, a circuit is optimized for
a single combination of process parameters. However, as
a result of manufacturing we receive chips corresponding
to various combinations of process parameters. Determin-
istic optimization cannot guarantee that the chip satisfies
design requirements for all or most of these combinations.
Statistical optimization [2, 3, 4] is targeted to solve this
problem. The goal of statistical optimization is to maximize
yield while satisfying timing, area, power and other design
constraints. This goal can be achieved only by considering
the whole space of process variations. Parameterized statis-
tical static timing analysis (SSTA) [5, 6] provides that kind
of exploration, computing the circuit delay as a function of
process parameters. Unfortunately, knowing circuit delay
is not enough. The optimization needs more detailed guid-
ance to select circuit fragments requiring improvement. The
timing analyzer drives deterministic optimization by identi-
fying a critical path. In the presence of process variations,
the critical path is not unique because different paths can
be critical in different regions of the process space.

There is a useful logical extension of the concept of a crit-
ical path called criticality probability [6]. Similar concepts

Natesan Venkateswaran Chandu Visweswariah
IBM Sys. & Tech. Group

IBM Research

East Fishkill, NY Yorktown Heights, NY

{zolotov,natesan, chandu} Qus.ibm.com

were used in the context of PERT networks where it was
called criticality index [7]. The criticality of a path is the
probability of manufacturing a chip in which the path is
critical. The higher the criticality, the more important it is
to improve the timing characteristics of the path. In [8] it is
shown that the criticality of a path is equal to the sensitivity
of the mean of the circuit delay with respect to the mean
of the path delay. Often the concept of criticality is more
convenient than sensitivity. First, the definition of critical-
ity is simpler, clearer and more intuitive. Second, criticality
computation does not require complicated chain ruling used
for computing sensitivities, as in [8]. Third, we define a new
concept called conditional criticality that gives us informa-
tion on how critical a gate is considering only manufactured
chips that fail timing. Conditional criticality is more useful
for optimization since the optimization should focus only on
chips violating timing constraints. Fourth, conditional criti-
cality can be used for other applications like circuit synthesis
and test generation.

There was an attempt to compute criticalities by mul-
tiplying tightness probabilities [6]. This approach assumes
that the tightness probabilities represent independent events
and can be multiplied, which is not correct due to globally
correlated parameters and path reconvergence. However, as
was shown in [2], even such inaccurate criticalities can be
useful for guiding optimization.

In this paper, we develop an accurate and efficient tech-
nique for computing criticalities of timing edges in the con-
text of parameterized block-based SSTA. We use the same
concept of graph cutset [9] as [4] for computing timing yield
gradient by perturbing PDFs of timing edges. Our compu-
tation uses only efficient operations of statistical minimum
and maximum, and tightness probability computation. We
do not make any assumptions about independence approxi-
mations on tightness probabilities. The proposed algorithm
has linear complexity in the number of timing edges. We
propose a new concept of conditional criticality and develop
an efficient technique for its computation. We implement
our algorithms in an industrial statistical timing analyzer
and verify the correctness of our implementation by Monte
Carlo simulation. We show that for an industrial ASIC with
442,000 gates, our algorithm computes all edge criticalities
in less than 160 seconds.

The rest of the paper is organized as follows. Section 2
gives an overview of parameterized SSTA. Section 3 gives
a formal definition of criticality probability and describes
their properties. Section 4 presents algorithms for comput-
ing criticalities of timing edges. In section 5 we discusses
experimental results; and section 6 draws conclusions.

2. PARAMET ERIZED SSTA

A parameterized block-based SSTA models a digital circuit
with a timing graph G(N, E,ns,nys), where N is a set of
nodes, F is a set of gates and wires, ns is a source node,
ny is a sink node. The nodes represent pins of circuit gates.
The edges (weighted by their delays) model signal propaga-
tion (either gate or wire delay) from one node to another.
Latches and flip-flops are modeled both by signal propaga-
tion and by checking timing constraints. These checks are
transformed into additional circuit outputs. By introducing
a virtual source and sink connected with the circuit inputs
and outputs, a circuit is modeled by a timing graph with
a single source and sink as is shown in Fig. 1. The delays
of the edges connecting the primary circuit outputs to the
sink are set to the negative of the required arrival times at
the corresponding primary outputs. Assuming that circuit
loops are broken for timing analysis, a timing graph is a di-
rected acyclic graph (DAG). The longest path delay in the
timing graph is the negative of the circuit slack in late mode,
and the shortest path delay is equal to the circuit slack in
early mode. For brevity, we consider only late mode analy-

1
2 6 X De
ATS 5 6

2 sd//'/' - “=RAT
3 5 a3 5
4 W oF

E 7 é/' 7.
Figure 1: Circuit and its timing graph

sis when we compute the latest possible arrival times (AT's)
and required arrival times (RATSs). For computing ATs the
signals are propagated forward from the source to the sink.
Signals are propagated through edges by adding edge de-
lays to signal ATs. At nodes the worst AT is calculated as
the maximum of all ATs of the incoming edges. For com-
puting RATSs the signals are propagated backward from the
sink to the source. Signals are propagated through edges
by subtracting edge delays from signal RATs. At nodes the
worst RAT is calculated as the minimum of all RATs of the
incoming edges. Thus, node AT represents the maximum
delay from the circuit source to the node while node RAT
is the maximum delay from the node to the sink but with a
minus sign.

In parameterized SSTA, edge delays, ATs and RATSs are
canonical first-order forms of process parameters (sources of
variation):

D=do+) diXi+d-X,, 1

i=1

where dp is the mean or nominal delay, X; and X, are ran-
dom variables representing globally correlated and uncorre-
lated sources of variation, and d; and d, are the sensitivities
to the variations X; and X, respectively. All the sources of
variation have independent Gaussian distributions with zero
mean and unit variance. However, the proposed technique
can be generalized to more complex models [10].

Signal propagation in parameterized SSTA is performed
similarly to deterministic timing. The addition of first-order
forms is performed by summing their corresponding sensi-
tivities to process parameters and statistical summation of

uncorrelated terms. The maximum and minimum opera-
tions are approximated linearly using Clark’s formulas and
the concept of tightness probability [11, 5, 6].

Given two random variables Di and Da, the tightness
probability of D; is the probability of D; being greater than
Do, i.e., Tp,=P(D1 > D5). If both D; and D2 have normal
distribution with means d; o and da o, variances 0? and o2,
and covariance d=cov(D1, D2), then the tightness probabil-
ity I'p, is given by
()

Tp, = P(Dy > Dy) = ® (M)

0

where @ is the cumulative probability distribution func-
tion (CDF) of a standard normal distribution, and 6 =

0?2 4+ 02 —25. The mean and variance of the statistical
maximum of Dy and Dy are computed as

dio—d
H Tp,d1,0 +Tp,d2,0 + 09 (M> (3)

0
TDI(U% + dio) + TDz (US + d;,O)

dio—d .
+(d1,0 + d2,0)0¢ (%) - (4)

2
g

where ¢ is the probability density function (PDF) of a stan-
dard normal distribution. The statistical maximum of D;
and D3 is approximated linearly as follows:

maz(D1,D2) = u+ Z(TD1d1 +Tp,d2)Xs +dr Xy, (5)

i=1

where d, is determined by matching the variance of (5) to
the value given by (4). The minimum operation is approxi-
mated in a similar way. The sequel assumes a parameterized
statistical timing framework of the type described in [6].

3. STATISTICAL CRITICALITY

3.1 Definitions and Properties

DEeFINITION 1. Criticality of a path is the probability
of manufacturing a chip in which this path is critical.

DEFINITION 2. Criticality of a set of paths is the
probability of manufacturing a chip in which at least one
path from this set is critical.

DEFINITION 3. Criticality of an edge (node) is the
probability of manufacturing a chip in which this edge (node)
is on the critical path.

The criticality of a timing edge (node) is the criticality of
the set of all paths going through that edge (node). The
concept of criticality can be extended to a circuit gate, and
even to any fragment of a timing graph or circuit. This
flexibility is useful for circuit optimization. The concept of
criticality is illustrated in Fig. 2 on the example of a simple
circuit and its two-dimensional process space. A path P1 is
critical if the process parameters fall in the area P1 in the
process space during manufacturing. The criticality of the
path P1 is therefore the probability of manufacturing a chip
with the combination of parameters falling in this area P1.

B

X1

Figure 2: Critical paths and process subspaces.

The criticality of a set of paths S can be expressed by the
following integral:

p(Xl,Xg,---)Xmng--- (6)

gz’%(D(Pi))>1§?z)§(D(Pj))

where p(Xi, Xa,---) is the joint PDF of process parame-
ters X1, Xo,---; P;, P; are circuit paths belonging and not
belonging to the set S, respectively, and D(FP;), D(P;) are
path delays as functions of process parameters. Obviously,
this formula is not practical for computing criticalities as it
requires multidimensional integration across complex poly-
hedra. So, we need a better way of computing criticalities.
It is useful to prove the following simple lemma.

LEMMA 1. If two canomnical forms A and B differ in at
least one coefficient, then the probability that they are equal
s 0.

Proof: The equality of two canonical forms is expressed as

a0+ Y aiXi+arXea=bo+ Y biXi+b-Xpm. (7)

i=1 i=1
This equality can be rewritten as

(ao - bO) + Z(az - bz)Xz + arXprq — bTX'rb =0. (8)

i=1

This equation defines a hyperplane in the process space be-
cause at least one of its coefficients is not zero. The proba-
bility that the canonical forms are equal is a volume integral
of the joint PDF of the process parameters over this hyper-
plane. Obviously this probability is zero for any practical
probability distribution because the thickness of any hyper-
plane is zero.l
Using this lemma we prove the following theorem:

THEOREM 1. The criticality of a set S of paths is the sum
of the criticalities of these paths.

Proof: If no paths have the same canonical form of their
delays, the theorem is obvious because the probability that
several paths are critical simultaneously is 0. Assume that
n paths have the same canonical form D of delay and that
the probability that this delay is larger than any other path
delay in the circuit is p. Then, according to convention, each
of these paths is assigned criticality probability p/n. Thus,
the theorem holds in this case, too.ll
From this theorem we derive the following corollaries.

COROLLARY 1. Edge (node) criticality is equal to the sum
of criticalities of the paths going though this edge (node).

COROLLARY 2. If all the circuit’s paths are divided into
two non-intersecting subsets A and B, then the criticality of

subset A is the probability that the mazimum delay of the
paths belonging to the set A is larger than the maximum
delay of the paths belonging to the set B.

In order to compute edge criticality, we compute the canoni-
cal form A of the maximum delay of the paths going through
this edge and the canonical form B of the maximum delay
of the paths not going through this edge. Then the edge
criticality is simply the probability that A > B, or, in other
words, the tightness probability of A with respect to B.

3.2 Principles of Computation

In order to explain edge criticality computation, we give
several definitions and recall some facts from network theory.

DEeFINITION 4. Edge slack of an edge is the mazimum
delay of all paths going through the edge.

DEerINITION 5. Complement edge slack of an edge is
the mazimum delay of all paths not going through the edge.

The maximum of any edge’s slack and complement slack is
the longest path of the circuit, which is the negative of the
slack of the circuit in late mode (edge slacks are defined in
this manner to avoid minus signs in the following deriva-
tions).

From these definitions, it follows that the edge critical-
ity is the probability that the edge slack is greater than the
complement edge slack, or, in other words, the tightness
probability of the edge slack with respect to the comple-
ment edge slack. Tightness probability can be computed by
formula (2).

The set of paths going through edge e forms a so-called
edge flow graph Ge consisting of three parts: the edge input
cone, the edge e itself, and the edge output cone. The slack
se of edge e is simply delay D(G.) of its flow graph Ge. It
can be expressed as:

Se = d(Ge) = Dincone + d(e) + Doutcone, (9)

where Dincone is the delay of the edge input cone, d(e) is the
delay of the edge e, Doutcone is the delay of the edge output
cone. Recalling the definition of arrival and required arrival
times, we express the slack of edge e = (i,t) as follows:

se = AT(i) + d(¢) — RAT(t) (10)

where AT'(i) is the arrival time at the initial node ¢ of the
edge e and RAT(t) is the required arrival time at terminal
node t of the edge e. Fig. 3 illustrates edge slack computa-
tion.

Edges for complement slack computation

Input cone of edge'“:edge e of intereé)tutput cone of edge e

Figure 3: Edge slack computation.

Computation of complement edge slack is more compli-
cated and requires additional considerations. In network
theory [9], a cutset between source and sink nodes is defined
as a set of edges whose removal from the network discon-
nects the source and sink nodes. Here, we consider only

those cutsets satisfying the condition that each path from
the source to the sink has only one common edge with each
cutset. We call these cutsets minimal separating cutsets. Al-
gorithm 1 computes minimal separating cutsets §2; covering
a given timing graph. For any edge of the timing graph,
this algorithm computes at least one cutset containing that
edge.

ALGORITHM 1. Cutset computation

1. Levelize the timing graph by topological sort
2. Qo = {Edges outgoing from source node}
3. For each level ¢ do the following:
3.1 T' = {Edgesincomingtoleveli}
3.2 A = {Edges outgoing fromlevel i}
33Q;=Q;_1—T+A

Fig. 4 illustrates cutset computation. We move a scan line
along the levelized timing graph from the source to the sink.
Each time we step over a level of the graph, we transform
the current cutset into the next one by excluding the edges
coming into the nodes of the current level and including the
edges going out from the nodes of the current level. Any

Cutsets

Level 0 Levell Level 2 Level 3 Level 4 Level 5

Figure 4: Computation of cutsets.

cutset computed by the algorithm separates the nodes of
the timing graph into two sets: N; containing the source
node and Ny containing the sink node. Any node from the
set IV; belongs to the lower level of the timing graph than
any node from the set Ny. From that, we can conclude that
any path from the source to the sink intersects any cutset
computed by this algorithm exactly at one edge.

In order to compute the complement slack for edge e,
we consider a minimal separating cutset Ce containing this
edge. Let Cz = C. — {e} be a set of all the cutset edges
except e. Then the set of paths going through the edges of
the set C% includes all the paths of the timing graph except
the paths going through the edge e. The maximum delay
of the paths going through the set of edges Cz is exactly
the complement slack of the edge e. The complement slack
can be computed as the statistical maximum of all the edge
slacks of members of the set Cz. The complement slack of
edge e, shown in Fig. 3, is computed as

Sz = maz(Sa, Sb, Sc) = Max(Sa, max(se, Sc)). (11)

Unfortunately, a naive implementation of this approach has
at least quadratic complexity since each edge criticality re-
quires calculation of the maximum of all other edge slacks.

4. EDGE CRITICALITY COMPUTATION

The efficiency of complement slack computation can be im-
proved if we use a tree data structure to re-use intermediate
complement slack values. We construct a hierarchical par-
tition of the cutset and compute all the complement slacks

simultaneously, remembering and reusing slacks and com-
plement slacks of the partition subsets. For simplicity, we
assume that the cutset has n = 2 edges and construct a
balanced binary partition tree shown in Fig. 5. However,
our approach can be applied to cutsets with an arbitrary
number of edges. The construction of the partition tree can
be done either top down by sequentially splitting the sets
of edges into equal parts or bottom up by merging pairs of
edges and then pairs of the subsets of edges. Each leaf node

(minus infinity)

max(ABCD) 4
max(EFGH) =~~~

max(AB) - max(CD)
max(CDEFGH) =/ X~ max(ABEFGH) A
Al B c D E F G H

m;x(BthFGH)

Complement slack computation Slack computation

Figure 5: Binary partition tree.

in the partition tree represents one edge of the cutset. Each
non-leaf node defines two sets of edges: the set of the node’s
children and the set of the edges that are not the node’s
children. With each node of the tree we associate a node
slack and a node complement slack. The node slack is the
maximum of slacks of its child edges. The node complement
slack is the maximum of the slacks of non-child edges. For
a leaf node, these two slacks are exactly the edge slack and
the complement edge slack. The computation of node slacks
and complement node slacks is illustrated in Fig. 5. The fol-
lowing algorithm computes the slacks associated with tree
nodes and edge complement slacks.

ArLGoriTHM 2. Complement slack computation

1. Construct a partition tree of the cutset edges
2. Assign edge slacks to the leaf nodes
2. Traverse the tree bottom-up
2.1. For each non-leaf node compute slack
as the maximum of its children’s slacks
3. Assign minus infinity slack to the root node
4. Traverse the tree top-down
4.1 For each node compute its complement slack
as the maximum of its parent’s complement
slack and its sibling node’s slack
5. For each leaf node compute edge criticality
as the tightness probability of the edge slack
and the complement edge slack

This algorithm computes criticalities of all edges in the
cutset simultaneously and has linear complexity as the num-
ber of max operations is proportional to the number of the
tree nodes. A detailed analysis shows that it requires 4n — 6
max operations where tightness probability computation is
considered as a max operation, too.

4.1 Speeaup Techique

In practical circuits, an edge may intersect many cutsets as
is shown in Fig. 6. This often happens in sequential circuits
with many flip-flops. In real circuits more than 50% of edges
go through multiple cutsets. Occurrence of edges in multi-
ple cutsets significantly slows down criticality computation
because the same edge is processed multiple times in dif-
ferent cutsets. In order to improve efficiency, we developed

P \‘—\,,_,,—/
Figure 6: Edges going through many cutsets.

a technique to eliminate repeated processing of the same
edge. This technique is based on the observation that after
the criticality of an edge is computed once, the slack of this
edge is used only for computing the complement slacks of
the other edges by means of a max operation. The compu-
tation of the complement slacks does not require knowledge
of the individual edge slacks and any group of edges can be
represented by the maximum of their edge slacks.

We construct an array with elements corresponding to the
circuit levels. The i-th element of the array holds the max-
imum slack of the edges that go through multiple cutsets
and have a terminal node at the i-th level. At the beginning
the array is initialized with minus infinity values. The edge
criticalities are computed by processing cutsets in ascending
order. Each time we encounter an edge going through many
cutsets, we accumulate the slack of this edge in the proper
element of this array by means of a max operation. From
this array, we compute the maximum of the edge slacks of
all the edges intersecting both the current cutset and the
previously processed cutsets. The algorithm for computing
complement edge slacks processes only the edges that are
not present in any previous cutsets. The complement edge
slacks are incremented with the maximum of edge slacks of
the edges present in the previously processed cutsets. The
complexity of the modified algorithm for computing the crit-
icality of all edges is O(N)+O(I?), where [is the depth of the
timing graph and N is the number of graph edges. In prac-
tice, the depth of a timing graph is much smaller than the
number of its edges. Therefore, for all practical purposes,
the complexity of the algorithm is O(NN), which implies con-
stant time for computing the criticality of each edge.

4.2 Conditional Criticali ty

The criticality introduced above is the probability of a path,
edge or node being critical among all the manufactured
chips. However, optimization for yield is interested in im-
proving only those chips that violate timing constraints with-
out wasting resources speeding up chips that are already
sufficiently fast. In other words, if an edge or path is only
critical in a subset of the process space and there are no
failing chips in that region, then there is no point improv-
ing that edge or path. The concept of conditional criticality
helps to solve this problem by providing information on how
critical an edge is among failing chips only.

DEFINITION 6. Conditional criticality of a path (edge,

node) is the conditional probability of manufacturing a chip
in which this path (edge, node) is critical, conditional upon
the chip violating its timing constraints.

Conditional criticality of an edge e is expressed as follows:
ple ~ crit& T_fails) (12)
p(T_fails)
where p(e ~ crit|T_fails) is the conditional probability
that the edge e is critical conditional upon the timing con-

straints being violated; p(e ~ crit & T_fails) is the proba-
bility that the edge e is critical and the timing constraints

ple ~ crit | T_fails) =

are violated; p(T-fails) is the probability that the timing
constraints are violated. In other words, conditional criti-
cality is the probability of being critical computed for the
sample space consisting of only those chips violating timing
constraints.

In our case, the required time at the sink node is always
0. So the condition that the timing constraints are violated
is Dcrt > 0 where Der: is the circuit delay. The probability
p(T'_fails) that the timing constraints are violated is the
tightness probability of D.x: with respect to 0. The condi-
tion that the edge e is critical is se¢ > sz where se is the
slack of the edge e and sz is the complement slack of the
edge e. This condition can be rewritten as s — sz > O.
Then the condition that both the edge e is critical and the
timing constraints are violated is expressed as

min(se — sz, Dert) > 0. (13)

So, the probability p(e ~ crit & T_fails) that the edge e is
critical and the timing constraints are violated is just tight-
ness probability of min(se — sz, Dekt) with respect to 0. Us-
ing edge slacks and complement edge slacks, this probability
can be efficiently calculated by linear approximation of the
statistical min operation. If the distribution of statistical
min is highly skewed to the left, the accuracy of the Gaussian
approximation can be low. In this case, it is better to rep-
resent the result of the min operation with a skewed normal
distribution and compute the tightness probability numer-
ically. Substituting the computed probabilities into (12),
we compute the conditional criticality of the edge e con-
ditional upon the timing constraints being violated. Thus
conditional edge criticalities can be computed with the same
efficiency as unconditional ones. Similarly, it is possible to
compute conditional criticality only considering chips that
meet their timing constraints. This kind of conditional crit-
icality is useful for statistical optimization by down-sizing
gates to reduce power consumption.

5. EXPERIMENT AL RESULTS

We have implemented the proposed technique for comput-
ing both unconditional and conditional criticalities in the
industrial statistical static timing analyzer EinsStat [6]. The
criticalities are calculated for all timing edges for all clock
phases, rising and falling transitions, early and late modes.
We implemented three algorithms for criticality computa-
tion: the basic algorithm with straightforward calculation
of the complement edge slacks, the partition tree based al-
gorithm, and the algorithm with the speed up technique
eliminating repeated processing of edges intersecting multi-
ple cutsets.

Table 1 shows the run times of the different algorithms and
compares them with the run time of basic SSTA. Columns
1 and 2 show chip name and the number of gates. Columns
3, 4, 5, 6 report CPU time for SSTA and three different ver-
sions of the criticality computation algorithm. Additionally,
columns 5 and 6 provide information on the absolute and rel-
ative overhead of criticality computation (of all edges in the
graph) over and above statistical timing. From Table 1 we
see that both the partition tree approach and the elimination
of repeated processing of edges intersecting multiple cutsets
are important enhancements of the criticality computation
technique. Only with these modifications is the criticality
computation always faster than the base statistical timing,
making it sufficiently fast for such applications as optimiza-
tion, synthesis and test generation. From Table 1 we see

Table 1: Run time comparison

Chip Size SSTA Basic Partition Speedup
techn. tree techn.
D1 0.15k | 1.97s 0.36s 0.20s/10.2% 0.19s/9.6%
D2 0.66k | 7.28s 0.23s 0.04s/0.5% 0.04s/0.5%
D3 3.04k | 3.37s 13.3m 4.44s/1.3x 0.39s/11.6%
D4 57.4k | 21.5s - 1.92m/5.4x 14.15/65.6%
D5 | 87.2k | 1.40m - 52.55/62.7% 27.55/32.9%
D6 442k | 24.9m - 14.6m/58.6% | 2.66m/10.7%

Table 2: Accuracy of criticality computation
7 (%) 0.3% | 0.6% 1.5% 3% 4.5% 5%
maxDiff | 0.0004 | 0.0003 | 0.0012 | 0.0006 | 0.0296 | 0.0754
sumDIff | 0.0012 | 0.0359 | 0.144 | 0.0585 | 0.711 | 1.104

that for the large design with 442,000 gates the proposed
technique can compute criticalities in only 2.66 minutes of
CPU time, while it takes 24.9 minutes to perform the basic
statistical timing analysis.

For verifying the accuracy of our algorithms, we imple-
mented a Monte Carlo technique for criticality computation.
We generate 10,000 random samples of process parameters,
compute gate delays corresponding to them and perform de-
terministic timing analysis to find a critical path correspond-
ing to each sample. Counting the number of times that each
edge is on the critical path for all Monte-Carlo samples, we
compute the criticality probability of that edge.

Table 2 shows the accuracy of the criticality computa-
tion for different amounts of process variation. The amount
of process variation is given as the average standard devi-
ation of gate delay expressed as a percentage of nominal
gate delay. The first line of the table reports the maximum
difference between criticalities computed by the proposed
algorithm and the Monte-Carlo technique. The second line
reports the sum of the absolute values of the differences be-
tween the criticalities computed by the proposed algorithm
and Monte-Carlo for all edges of the timing graph. We see
that the proposed technique has high accuracy.

Additional investigation of the sources of computational
error shows that the main part of the error is due to the lin-
ear approximation of the statistical min and max operations
used in the parameterized SSTA. This error grows when the
delay variation is larger, which we can see from this table.

We performed a number of experiments to compute con-
ditional criticalities. The experiments show that conditional
criticalities can be computed with approximately the same
accuracy and CPU time as the unconditional ones. This
conclusion fully agrees with our expectation since the com-
putation of conditional criticalities is only a little extra work
after the computation of unconditional criticalities. On the
other hand, our experiments show that the values of the
conditional criticality can be significantly different from the
values of the unconditional ones. In fact, conditional criti-
cality significantly depends on the length of the circuit clock
cycle while the value of unconditional criticality is always
the same. Fig. 7 demonstrates the dependence of the con-
ditional criticalities on clock cycle length for four different
timing edges. We see that when the clock cycle is longer, the
conditional criticality of different edges may either increase
or decrease depending on the circuit topology and process
variation.

6. CONCLUSIONSAND DISCUSSON

In this paper we described an accurate and efficient method
for computing criticalities of all timing edges in the con-
text of parameterized block-based statistical timing anal-

- Edge 1
0.8f ——Edge 2 1
= . Edge 3
8 - =--Edge 4
‘£ 0.6f 1
[S)
© -
<
o
= 041 1
=
15
o
© -
0.2f LA
0 cpemenmametn o .,._-—"
23.7 23.8 23.9 24 24.1

. o Clock Cycle (ns) .
Figure 7: Conditional criticality as a function of

clock cycle

ysis. Our algorithm computes criticalities of all edges of
the timing graph with linear complexity with respect to
the number of timing edges and can compute both uncon-
ditional and conditional criticalities. We implemented the
proposed algorithm in an industrial SSTA tool targeted for
both sign-off timing analysis and for guiding circuit synthesis
and optimization. Computational experiments with indus-
trial circuit designs having up to 442K gates demonstrated
high accuracy and low run time of the proposed technique.
The maximum error of criticality computation is about 7.5%
compared to Monte-Carlo simulations. The CPU time of
criticality computation varies from 10% to 65% of the CPU
time of statistical timing analysis even for large designs.

7. REFERENCES

[1] C. Visweswariah, “Death, taxes and failing chips,” Proc. 2003
Design Automatzon C’onfere'nce7 pp. 343-347, June 2003.
Anaheim, CA.

[2] M. R. Guthaus, N. Venkateswaran, C. Visweswariah, and
V. Zolotov, “Gate sizing using incremental parameterized
statistical timing analysis,” IEEE International Conference on
Computer-Aided Design, pp. 1029-1036, November 2005. San
Jose, CA.

[3] A. Agarwal, K. Chopra, D. Blaauw, and V. Zolotov, “Circuit
optimization using statistical timing analysis,” Proc. 2005
Design Automation Conference, pp. 321-324, June 2005.
Anaheim, CA.

[4] K. Chopra, S. Shah, A. Srivastava, D. Blaauw, and
D. Sylvester, “Parametric yield maximization using gate sizing
based on efficient statistical power and delay gradient
computation,” IEEE International Conference on
Computer-Aided Design, pp. 1023-1028, November 2005. San
Jose, CA.

[5] H. Chang and S. S. Sapatnekar, “Statistical timing analysis
considering spatial correlations using a single PERT-like
traversal,” IEEE International Conference on
Computer-Aided Design, pp. 621-625, November 2003. San
Jose, CA.

[6] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and
S. Narayan, “First-order incremental block-based statistical
timing analysis,” Proc. 2004 Design Automation Conference,
pp. 331-336, June 2004. San Diego, CA.

[7] B. Dodin and S. Elmaghraby, “Approximating the criticality
indices of the activities in pert networks,” Management
Science, vol. 31, pp. 207-223, February 1985.

[8] X. Li, J. Le, M. Celik, and L. T. Pileggi, “Defining statistical
sensitivity for timing optimization of logic circuits with
large-scale process and enviromental variations,” IEEE
International Conference on Computer-Aided Design,
pp. 844-851, November 2005. San Jose, CA.

[9] N. Deo, Graph theory with applications to engineering and
computer science. Prentice-Hall, 1974.

[10] H. Chang, V. Zolotov, C. Visweswariah, and S. Narayan,
“Parameterized block-based statistical timing analysis with
non-Gaussian and nonlinear parameters,” Proc. 2005 Design
Automation Conference, pp. 71-76, June 2005. Anaheim, CA.

[11] C. E. Clark, “The greatest of a finite set of random variables,”
Operations Research, pp. 145—162, March-April 1961.

