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As the CMOS technology marches into the nanometer manufacturing regime, it

comes upon many hurdles that would stop its journey forward if not appropri-

ately handled. Process variation is among them. Process variation prevents the

printing of exact geometries onto silicon as designers intend for, so that even the

same copy of a transistor at different locations on the same die will be differ-

ent. Process variation also prevents an exact prediction of the characteristics of

transistors and interconnects, let alone a whole design consisting of billions of

them.

This dissertation addresses this increasingly important issue of handling pro-

cess variation to sustain design success into the future. It consists of four key

aspects, i.e., characterization, modeling, analysis, and optimization.

This dissertation first develops two robust techniques to characterize different

process variation components for a manufacturing process. Within-die spatial

variation is characterized either as a homogeneous and isotropic random field or

a positive semidefinite correlation matrix. From noisy measurement data, two

robust extraction techniques are developed to extract either a valid spatial corre-

xxv



lation function that describes the spatial variation behavior of a homogeneous and

isotropic random field, or a guaranteed positive semidefinite correlation matrix

that captures the spatial correlation effects of any manufacturing process.

This dissertation then proposes an efficient method to model spatial correla-

tions in the context of parameterized statistical static timing analysis (SSTA). It

proves that this method is a generalization of an existing method based on princi-

ple component analysis (PCA) for spatial correlation modeling. This method can

simultaneously and efficiently capture multiple spatially correlated process pa-

rameters with different spatial properties. Compared to the existing PCA-based

approach, this method is significantly more efficient but does not compromise

accuracy. Using this method, the overhead of modeling spatial correlation in the

parameterized SSTA is almost negligible.

This dissertation also presents a comprehensive empirical study on the im-

pact of systematic variation caused by chemical mechanical polishing (CMP) on

interconnect parasitics and design optimization. Two typical variation effects —

dummy fill insertion for planarization, and dishing and erosion caused by CMP

— are studied with the development of a CMP-aware RC parasitic extraction

model for global interconnects.

This dissertation proposes a novel methodology for delay minimization through

buffer insertion that takes different process variation effects into account. Two

different techniques to handle the correlated process variations under nonlinear

operations are developed. A provable transitive closure pruning rule is proposed

such that pruning can be done in linear time in the presence of process variation.

The proposed techniques enable an efficient implementation of variation-aware

buffer insertion, and it shows that buffer insertion considering correlated process

variations can significantly improve the parametric timing yield compared to the

xxvi



conventional variation-oblivious buffering solutions.

This dissertation also proposes one variation-aware metric, called conditional

criticality probability, to guide the optimization engine to explore different design

alternatives in a multi-dimensional process space while considering the effects of

process variation. This metric is variation-aware in the sense that it captures

the criticality of each portion of the circuits for the whole process space, thus

pinpointing the exact weak parts that need to be worked on in order to improve

the design. A novel algorithm is developed to compute the conditional criticality

probability accurately for all timing edges of a design. The algorithm is efficient

and proven to have linear complexity in time and space.

This dissertation also contributes to the ideal goal of any design, i.e., design for

yield or design for profit directly. It first shows that the parametric timing yield

of a design can be analytically written as a function of any portion of the design

even in the presence of process variations. It then develops a novel and efficient

method to compute the gradient of parametric yield with respect to the delay

of each gate or wire in the design. The resulting gradients can be rank-ordered

for discrete optimization in a physical synthesis setting, or fed to a nonlinear

optimizer for continuous optimization of design parameters such as transistor

sizes, thus enabling formal design for yield (or design for profit) optimization.

To the best of our knowledge, this dissertation is the first of the kind that pro-

vides novel solutions to all aspects of design automation, ranging from variation

characterization, variation modeling, and variation-aware analysis, to variation-

aware optimization, in order to consider the nanometer process variation effects.
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CHAPTER 1

Introduction

CMOS manufacturing in the nanometer region has resulted in miraculous achieve-

ments in the world of electronics, where high performance, low power, multi-

functionality, reliability, and small sizes are often targeted at the same time.

Because of the aggressive scaling down of transistors and interconnects, ultra-

large-scale integration (ULSI), system-on-a-chip (SOC), and system-in-package

(SIP) are common-places for today’s chip designers, package designers, and sys-

tem integration designers.

This achievement is made available through advanced manufacturing tech-

nologies, innovative design techniques, and sophisticated CAD (computer-aided

design) support, and the three aspects are connected to each other with many

interactions and mutual influences. These connections become even a necessity as

the CMOS technology scales down to the nanometer region, in which inevitable

manufacturing fluctuations and imperfections make it a Herculean task to predict

the characteristics of transistors and interconnects printed on silicon. We are not

able to make the same transistors on different copies of the same chip, or even

at different locations on the same chip. The impact of this variation on design is

tremendous, and it has generated a lot of research interest in finding ways to han-

dle the variation in a positive manner, broadly called “design for manufacturing”

(DFM).

Although innovation in all three fields is required to address the variability
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problem, this dissertation mainly focuses on the CAD aspect innovation to con-

tinue the journey toward successful electronic designs. Section 1.1 gives a brief

introduction on process variation, its causes, and its impact on CAD techniques.

Section 1.2 then reviews some recent work on process variation. Section 1.3 dis-

cusses the major contributions of this dissertation. Section 1.4 concludes this

chapter with outlines of this dissertation.

1.1 Introduction to Process Variation

Three closely related but distinct concepts describe variability phenomena for a

design [30, 70, 72], i.e., design uncertainty, operating uncertainty, and process

variation. Because these terms are sometimes (confusingly) used interchange-

ably in the literature, we would like to distinguish them explicitly so that this

dissertation can be set in a clear context.

• Design uncertainty: describes the hardware-model discrepancy. For exam-

ple, circuit models used in any simulation environment (such as SPICE)

are an approximated description of physical-world phenomena, and they

almost always cause some error in predicating the real circuit response.

Another example is engineering approximation, which happens almost all

the time during design, either to reduce simulation runtime, or to simplify

a complicated problem and make it tractable.

• Operating uncertainty describes the inability to predict the operating en-

vironments under which a circuit functions. The operating condition may

include supply voltage, ambient temperature, and on-chip temperature gra-

dient. For example, the demand for low power causes aggressive scaling of

supply voltages, which in turn make voltage variations a significant part
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of the overall variation. Similarly, the quest for higher operating frequency

causes large within-die temperature variations. Because the performance of

both devices and interconnects is temperature-dependent, the temperature

variation causes performance variation.

• Process variation: describes those random phenomena that happen in the

course of manufacturing chips. These random phenomena make the physical

characteristics of chips differ from what designers intend, and the charac-

teristics also tend to vary among all manufactured chips of the same design.

Process variation is inherent to any manufacturing process.

This dissertation considers the impact of process variation on de-

sign.

Process variation is mainly meant for physical process parameters, such as

channel length, doping density, oxide thickness, and metal thickness and width.

Process variation has also, however, meant for design parameters, including front-

end-of-line (FEOL) device characteristics (such as drive current, sub-threshold

leakage current, threshold voltage and gate delays), and back-end-of-line (BEOL)

interconnect characteristics (such as interconnect resistance and capacitance). All

these design parameters are functions of those varying physical process parame-

ters.

Process variation can be classified as either static or dynamic [71]. Static

process variation does not change over time, or changes slowly in a small scale.

Static process variation is usually caused by manufacturing imperfections. In

contrast, dynamic process variation changes over time. For example, negative

bias temperature instability (NBTI) increases PMOS device threshold voltage

and reduces its current drive differently at different product ages. And it has

also been observed that the critical path in a design changes over its life span.
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According to the sources of variation, process variation can also be classified

into two types [93]:

• Catastrophic defects are caused by isolated random events (such as particles

or other contaminations) during manufacturing, which render chips non-

functional.

• Parametric variations are caused by random fluctuations in process condi-

tions so that the physical properties of some parameters on a chip differ

from the original design. The fluctuations may include aberrations in step-

per lens, the dopant density, and the manufacturing temperature.

This dissertation focuses on parametric process variations that are

static.

One of the most important impacts of process variations on design is man-

ufacturing yield loss. Manufacturing yield is defined as the ratio between the

number of chips that meet design specifications and the total number of manu-

factured chips [63]. Chips can fail to meet design specifications because of either

functional failures caused by catastrophic defects, or parametric variations. As

shown in Figure 1.1, parametric variations cause functioning chips exhibiting a

wide range of performance variation, and a fraction of them are outside the de-

sired performance specification window. It is those “functioning” chips failing to

meet design specification that cause parametric yield loss.

Yield is closely related to profit and it is a direct measure of the success of

a product. Therefore, it is desirable to bring yield into design consideration so

that designers can optimize a design for yield or profit directly. This dissertation

contributes toward this end.

4



Yield

Yield Loss

Delay
Specification

Measured Chip Delays

Figure 1.1: Yield and yield loss caused by parametric variations.

According to the scope of their occurrence, parametric process variations can

be classified into the following two categories [30, 70, 10].

• Die-to-die variation, which is also called inter-die variation or between-die

variation, describes the variation that affect parameters in different dies

differently, but affect parameters within a die equally.

• Within-die variation, which is also called intra-die variation, across-chip

variation, on-chip variation, spatial variation, or spatial correlation1, de-

scribes the variation that affects process parameters at different locations

of the same die differently.

Or, according to the scale of their causes, parametric process variations can also

be classified into the following two categories [72].

1Spatial variation or spatial correlation is used more frequently in recent literatures than
others.
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• Systematic variation describes the deterministic portion of the variation.

The physical cause of this variation is usually those identifiable determinis-

tic features or patterns. For example, process conditions may vary randomly

from wafer to wafer, but they may have a portion that is deterministically

shared for all dies within the wafter. Similarly, process conditions may vary

randomly from die to die, but a portion of them may be deterministically

shared within a die. For example, inter-layer dielectric thickness variation

is systematic and depends on layout density.

• Random variation describes the variation that is independent of any other

conditions. The physical cause of this variation is usually not well under-

stood, and thus it behaves more like a stochastic process. For example,

discrete doping placement randomly changes MOSFET threshold voltage.

In the past, die-to-die systematic variation has been the major source of pro-

cess variations [31, 30, 70]. Thus case analysis (e.g., worst and best cases) under

different process corners is usually enough to cover the whole process space. For

example, for timing analysis, chips are timed by sorting them into two cases, fast

chips and slow chips, in order to handle the impact of die-to-die systematic vari-

ation. If timing signoff can be achieved in both cases, all chips are guaranteed to

meet the timing specification in the whole process space with some safe margin

to “guardband” designs.

This is no longer true, however, when other types of variation become compa-

rable to the die-to-die systematic variation for nanometer CMOS manufacturing

technologies. For example, one of the most prominent impacts of nanometer

CMOS technology is that transistor channel lengths are on the order of sub-

wavelengths of light. Sub-wavelength lithography makes it almost impossible to

transfer the exact channel lengths from drawings to silicon. So both systematic
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Figure 1.2: Example showing the problem of conventional case-based timing anal-

ysis. Courtesy of IBM.

and random within-die variations of channel length exceed the die-to-die system-

atic variation. Therefore, within-die variation is becoming a growing threat to

the performance and functionality of future gigascale integration (GSI) [10].

One lesson learned from real hardware, courtesy of IBM [71, 95], is shown in

Figure 1.2. According to the conventional case-based timing analysis, the circuit

in Figure 1.2 should function well. Hardware tests, however, showed that the chip

failed because of a hold-time violation between latch A and B, even though all

other parameters of the hardware were within the manufacturing specifications.

A close examination showed that the two clock routes in the final stage were

dominated by two different types of metal layers (M5 and M6). Because of the

large within-die random variation, the two metal layers exhibited different timing

characteristics. They were not fast or slow at the same time! It is the mistrack

between M5 and M6 that caused a clock skew between latch A and B, thus failed

the chip with hold-time violation.

The lessons learned from the above example are multi-fold. First, it shows

that the conventional case-based analysis is no longer adequate to cover the whole

process space. Second, BEOL interconnect variations are no longer negligible

compared to FEOL devices variation, and they contribute to a significant por-

tion of the overall delay variation (more than 50% according to [73]). Third,
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BEOL variations are likely uncorrelated (mistrack), implying that the number of

independent sources of variation grows quickly as more metal layers are added.

Therefore, it is infeasible for the conventional case analysis to cover all possible

corners, as the number of corners is exponentially proportion to the number of

independent sources of variation.

To make things worse, the quest for high performance, large density, and low

power in VLSI chips further decreases the already narrowing “design window”,

thus reducing chips’ tolerance for variations. It becomes more and more difficult

for chip designers to find a viable solution in the presence of increasingly large

process variation. Designers are forced to look for an alternative approach capable

of modeling process variation accurately and handling process variations correctly

and efficiently. Solutions from this dissertation provide such alternatives for

design exploration.

1.2 Literature Review

Statistical design optimization that considers process variation effects involves

four key aspects: characterization, modeling, analysis, and optimization (see Fig-

ure 1.3). These four aspects are the basic building blocks of an integrated design

framework that can combat variability. For example, in 1969, the author of [7]

has already studied the effects of nonuniform diffusion process on the electrical

characteristics of bipolar transistors. A model was developed to predict the sen-

sitivity of current gain to different diffusion parameters. Guided by this model,

the author was able to reduce the sensitivity of current gain to the junction depth

by modifying the structure of transistor. This work embodied the importance of

the above four key aspects, which are usually integrated together to improve a

design. In view of the way that present-day methodologies handle variability, the
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Figure 1.3: Four key aspects for design for variability: characterization, modeling,

analysis, and optimization.

author of [93] cautioned that design sign-off based on corner analysis are “oner-

ous, pessimistic, and risky, all at the same time.” The author asserted that to

truly deal with variability for design requires a change of our design methodology,

ranging from modeling, analysis, and synthesis.

A wealth of publications can be found in the literature. Hence it would

be impossible to attempt to provide a comprehensive literature review in this

section. Instead, this section tries to present some representative work within

each category, with emphasis on statistical timing analysis and optimization.

Other work closely related to this dissertation will be reviewed at the beginning

of each chapter whenever it becomes relevant.

The characterization of process variation is inherently more difficult than

understanding the nominal or extreme behavior of the process [72]. Accurate

characterization requires large amounts of data from foundry to estimate dis-

tributions and correlations among process parameters. Some phenomena are

also tightly coupled with different design styles (such as layout patterns), which

makes characterization even harder, as design and fabrication groups are usually

belonging to different organizations in reality. A lot of work, however, have at-
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tempted to address this issue. For example, by analyzing a 0.18µm technology,

[76] showed that a significant systematic within-die variation of channel lengths

(called CD for “critical dimension”) has strong dependence on the local layout

patterns. A method was developed that can predict circuit performance based

on the information of this systematic CD variation. [65] studied the impact of

spatial pattern dependent variation on circuit performance caused by chemical-

mechanical polishing (CMP). They showed that interconnect delay and clock

skew were strongly affected by CMP and CD variations for both aluminum and

copper interconnect technologies. More information on this regard can be found

in [31, 76, 91, 8, 65, 33, 51, 49, 67, 77, 53, 73, 46].

Work on variation modeling tries to understand the impact of process varia-

tion on design, and hence provide vehicles to help designers achieve better designs.

For example, [10] derived a model that describes the maximum clock frequency

(FMAX) distribution of a microprocessor for a 0.25µm technology. It showed that

within-die variations mainly impact the mean of FMAX, while die-to-die varia-

tion account for the majority of the variance of FMAX. Based on their model,

the authors predicated that systematic within-die variation would impose the

largest performance degradation for future technologies. [70] proposed a mod-

eling and simulation methodologies to analyze the impact of various sources of

variation on performance. The framework is based on a first-order sensitivity

analysis. An excellent tutorial paper on statistical circuit modeling and opti-

mization is given by [30]. More work on process variation modeling can be found

in [30, 10, 14, 86, 70, 75, 32, 54, 50, 87].

Techniques for statistical static timing analysis (SSTA) can be mainly clas-

sified into two camps: path-based approaches such as [59, 60, 3, 44, 68] and

block-based approaches such as [27, 1, 16, 94, 74, 114]. From the first camp, [44]
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proposed three numerical methods, i.e., parallelepiped method, ellipsoid method,

and binding probability method, for timing analysis and yield predication. Be-

cause the number of paths can be exponential in terms of the size of a timing

graph, paths-based SSTA techniques usually have high computation cost. From

the second camp, [27] proposed a block-based SSTA based on a piece-wise uni-

form distribution (PDF) or a piece-wise linear distribution (CDF) modeling of

gate delays. To handle the path re-convergence problem, a dependent list is main-

tained at each node that lists all previous stage nodes on which current node’s

arrival time depends. [1] considered both inter-die variation and intra-die varia-

tion (spatial variation) for SSTA. To handle the nonlinear variational maximum

operation, the authors of [1] proposed to compute an upper bound CDF for the

maximum operation [3], i.e., taking the component wise maximum operations

instead of the maximum of the whole sum. Because this approximation may

result in a very loose upper bound, the authors further refined the solution by a

heuristic. [74] also proposed to find the upper and lower bounds for an arbitrary

distribution. Under the normal distribution assumption of delays, [52] proposed

a table-look-up based approach to convert the maximum between two random

variables into a one-dimensional table look-up problem in order to compute the

mean, variance, and covariance. Two seminal work on block-based SSTA are [16]

and [94]. Both proposed to model the statistical timing quantities in the timing

graph as a linear combination of a set of independent normal random variables,

called the first-order canonical form in [94]. Efficient operations were defined

for this linear representation, thus achieving linear complexity for SSTA com-

putation. The efficiency of block-based SSTA techniques hence attracted more

research attention on the block-based SSTA than the path-based SSTA recently.

The SSTA techniques have also been extended to consider other effects, such as

nonlinear timing models [15, 113], systematic process variation [36], statistical
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leakage power analysis [88, 79], and statistical yield analysis [68].

Work on statistical optimization is relatively new, but it has already generated

a variety of publications in literature, in particular, gate sizing [19, 78, 2, 64, 84, 4].

For example, [19] employed the Lagrangian relaxation algorithm to find optimal

transistor sizes. A SSTA engine was embedded inside the optimization loop to

guide optimization. [78] proposed to identify a set of critical paths based on a

“disutility” function that evaluates the mean and variance of gate and path de-

lays. A statistical sizing algorithm based on a constrained nonlinear optimization

formulation was developed to improve the delays of these selected critical paths,

each node of which was heuristically weighted by its “criticality index”, a con-

cept originally defined in operations research community [28] and similar to the

concept of “criticality” proposed by [94] to the CAD community. [37] performed

a TILOS-like gate sizing algorithm to achieve a targeted yield. An incremental,

parameterized SSTA tool is used to evaluate the qualify of solutions at each op-

timization step. A first-order linear delay model with fitted process sensitivities

was used to capture both correlated and uncorrelated process parameters. Crit-

icality probabilities [94] were used to actively guide optimization. The authors

showed that this approach can improve performance and reduce run-time and

area, when compared with the deterministic optimization.

Recently, statistical optimization has also been applied for power minimization

[9, 64], and yield maximization [69, 20, 55]. Optimization techniques considering

the CMP-induced systematic variation have also been studied [89, 35, 18].
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1.3 Dissertation Contributions

The main theme of this dissertation echos the four key aspects as shown in Figure

1.3: characterization, modeling, analysis, and optimization. Chapter 3 deals with

process variation characterization. Chapter 4 studies how to model spatial corre-

lation for statistical timing analysis; while chapter 5 tries to understand how to

model CMP-induced systematic variations and its impact on design optimization.

The rest of the dissertation considers how to optimize designs for performance

and for yield while taking into account process variations.

The major contributions of this dissertation are as follows:

• Two robust techniques to characterize manufacturing spatial variation. When

the spatially correlated process variation is modeled as a homogeneous and

isotropic random field, a valid spatial correlation function is extracted by

solving a constrained nonlinear optimization problem; otherwise, a valid

spatial correlation matrix is extracted through a modified alternative pro-

jection algorithm based on the theory of convex analysis. Both techniques

guarantee that the extraction results are closest to the real measurement

data even in the presence of significant random noises.

• An efficient method to model spatial correlations in the context of pa-

rameterized statistical static timing analysis (SSTA). Multiple spatially-

correlated process parameters with different spatial properties are incorpo-

rated simultaneously and efficiently. The method guarantees to capture the

underlying spatial correlation with minimal error.

• A comprehensive empirical study on the impact of systematic chemical

mechanical polishing (CMP) variation on interconnect parasitics and de-

sign optimization. It shows that (1) fill insertion for CMP planarization
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significantly increases interconnect capacitance, and different fill patterns

introduces additional variations; and (2) CMP-induced dishing and erosion

effects can significantly increase interconnect resistance, but have limited

impact on capacitance. Based on this study, a table-based best fill pattern

insertion algorithm is developed that minimizes the impact of CMP-induced

systematic variations on interconnect design optimization.

• A novel methodology to solve the buffer insertion problem considering pro-

cess variations. Two different techniques to handle correlated process vari-

ations under nonlinear operations are developed. A provable transitive clo-

sure pruning rule is proposed that makes linear complexity variation-aware

pruning possible. The proposed techniques enable an efficient implementa-

tion of variation-aware buffer insertion, and it shows that buffer insertion

considering correlated process variations can significantly improve the para-

metric timing yield compared to the conventional deterministic buffering

algorithms.

• A new variation-aware diagnostic metric, conditional criticality probability,

for guiding robust circuit optimization. A novel algorithm is developed to

compute the conditional criticality probability accurately for all edges in

the timing graph of a design. The algorithm is efficient and proved to have

linear complexity in time and space.

• A novel and efficient method to compute the gradient of parametric yield

with respect to the delay of each gate or wire. The resulting gradients can

be rank-ordered for discrete optimization in a physical synthesis setting,

or fed to a nonlinear optimizer for continuous optimization of design pa-

rameters such as transistor sizes, thus enabling formal mathematical yield

optimization directly.
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1.4 Dissertation Outline

The rest of the dissertation is organized as follows.

Chapter 2 first gives a unified process variation model based on first-order

approximation. It then reviews some important concepts that will be used exten-

sively throughout the rest of the dissertation, including the first-order canonical

form to represent the timing quantities in a timing graph, normal assumptions

on random process variation, atomic operations on first-order canonical forms,

and finally parameterized statistical static timing analysis (SSTA).

Chapter 3 presents two robust techniques to characterize spatial correlation

based on noisy measurement data. Motivated by the necessity for a valid spatial

correlation modeling, it presents two problem formulations that are suited for

different manufacturing processes. If a manufacturing process results in a spatial

correlation that can be modeled by a homogeneous and isotropic random field,

based on the theory of random fields, it is sufficient to extract a valid spatial

correlation function to characterize spatial correlation. This is achieved by solving

a constrained nonlinear optimization problem in section 3.4. If a manufacturing

process’s spatial correlation can only be described through a correlation matrix,

a guaranteed positive semidefinite correlation matrix must be extracted from

the noisy measurement data. This is achieved in section 3.5 by employing a

modified alternative projection algorithm based on the theory of convex analysis.

Experiment results based on a Monte-Carlo model is reported in section 3.6, and

it shows that the proposed techniques can recover the correlation function and

matrix with very high accuracy even in the presence of significant random noises.

Chapter 4 presents an efficient method to model spatial correlations in the

context of parameterized SSTA. It starts with the introduction of existing ap-
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proaches to model the spatial correlation for parameterized SSTA. In particular,

the existing approach based on principle component analysis (PCA) is discussed,

and its major disadvantages are revealed. It then presents an efficient method

to model spatial correlations with cases studies. Experiment results from real

industrial designs show that the proposed approach is significantly more efficient

than the existing PCA-based technique. Results also show that by using the

proposed method, the overhead of modeling spatial correlation in parameterized

SSTA is small.

Chapter 5 studies the impact of systematic variation caused by Chemical-

Mechanical Polishing (CMP) on interconnect parasitics and design optimization.

CMP-related variation caused by dummy fill insertion, and dishing and erosion

is considered. Section 5.2.1 presents an algorithm that allows systematic ex-

ploration of different fill patterns that are “equivalent” with respect to foundry

rules. Section 5.2.2 examines the impact of fills and fill patterns on intercon-

nect capacitance. Section 5.2.3 studies interconnect parasitic variations caused

by dishing and erosion based on a multi-step CMP process model. From these

studies, section 5.2.4 develops a CMP-aware table-based model for interconnect

parasitic extraction. The rest of the chapter solves a simultaneous buffer inser-

tion, wire sizing, and fill insertion problem by using the developed CMP-aware

model. It shows that the proposed algorithm can reduce delay, power, and area

simultaneously compared to an existing algorithm.

Chapter 6 presents a novel method of solving the buffer insertion problem

considering process variations (BIPV). Section 6.2 gives the problem formula-

tion, and reviews the general dynamic-programming-based algorithm for solving

the deterministic version of buffer insertion. Section 6.3 and 6.4 present two

different techniques to solve the BIPV problems. Both techniques overload the
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key operations used in solving the deterministic buffer insertion. The first tech-

nique employs a numerical integration method to compute the joint probability

density function (JPDF). The second employs the first-order canonical form to

implicitly represent the JPDF. To speed-up dynamic-programming-based buffer-

ing algorithms, two variation-aware pruning rules, the two-sided threshold-based

pruning rule and the transitive closure-based pruning rule, are discussed. It is

proved that the transitive closure-based pruning rule makes linear complexity

pruning possible even when process variation is taken into account. Thus the

proposed techniques allow an efficient implementation of variation-aware buffer

insertion. Experiment results confirm the efficiency of the proposed techniques.

Chapter 7 presents a new variation-aware diagnostic metric, conditional crit-

icality probability, to guide robust circuit optimization in the presence of cor-

related process variation. Section 7.2 motivates the need for a variation-aware

metric by showing that the conventional slack is no longer a good metric for de-

sign optimization. Section 7.3 and 7.4.3 develop a novel algorithm to compute

the criticality probability accurately for all edges in the timing graph of a design.

It also proves that the algorithm has linear complexity in time and space. Sec-

tion 7.5 then introduces the concept of conditional criticality probability and the

need for such concept for circuit optimization. It shows that the computation

of conditional criticality probability is as easy as computing the unconditional

counterpart. Experiment results presented in section 7.6 prove the correctness

of the proposed algorithm in computing criticality compared to the Monte Carlo

simulation. It also shows that for large industrial designs, the proposed algorithm

computes all edge criticalities in short time. The high accuracy and fast speed

of the algorithm warrant future applications of criticality probability to robust

circuit optimization.
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Chapter 8 proposes a novel and efficient method to compute yield gradients.

Section 8.2 derives analytical formulas for the differentiation of the statistical

maximum of two canonical forms with respect to all parameters of one canonical

form. Section 8.3 first shows that how a circuit’s performance can be represented

as a function of one timing edge’s canonical form. It then uses the formulas

developed in section 8.2 to compute the gradient of a circuit’s performance with

respect to the timing edge of interest. Two possible ways of relating parametric

yield gradients with respect to a circuit’s performance gradient are discussed.

By simple chain-ruling, it shows that the parametric yield gradient with respect

to any timing edge of interest can be computed analytically, thus opening the

possibility of direct design for yield. Some possible applications of this finding

are elaborated in section 8.4.

Finally, the appendix in chapter 9 summarizes some other research projects

that have been done over the course of this dissertation.
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CHAPTER 2

Preliminary

2.1 First-order Process Variation Decomposition

We denote F as a measurable physical process parameter, such as channel length,

channel width, silicon oxide thickness, and wire thickness. Because of manufac-

turing process variations, these physical parameters are no longer fixed values.

We model the parameter as a random variable, and write it as

F = f0 + Fr = f0 + Xg + Xs + Xr. (2.1)

To capture the spatial correlation between quantities at different locations,

we further represent the spatial variation part at location j as follows:

Xs,j =
∑

k

dj,kXj,k, (2.2)

where Xj,k are independent random variables, and dj,k are coefficients of Xj,k. In

Chapter 4, we will present techniques on how to represent the intra-chip spatial

variation in the form as shown in (2.2).

Therefore, for the process parameter F at location j, we have

Fj = f0 + Xg +
∑

k

dj,kXj,k + Xr, (2.3)

where Xg, Xj,k, and Xr are all independent random variables. We call equation

(2.3) as the first-order process variation form.
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The rational behind this first-order process variation model is that if the

underlying parametric variations are small, any nonlinear relationship can be

reasonably captured by a first-order approximation. Such an approximation has

been well accepted for statistical timing analysis [16, 94].

2.2 First-order Canonical Form

To model the impact of process variations on both device and interconnect char-

acteristics (such as delay and power), we represent these characteristics of interest

as random variables, which are complicated functions of the underlying physical

process parameters, such as channel length, doping density, gate oxide thickness.

We employ a first order approximation technique to capture the impact of

process parameters on the characteristics. Mathematically, it can be described

as

D = d0 +
∑

i

di · F i, (2.4)

where D is the characteristic of interest, and F i are different underlying physical

process parameters, which are not independent to each other in general. The

nominal value of D is d0, while sensitivities of D with respect to F i are given by

di. If the function that describes the characteristics of interest with respect to the

process parameters is known, we can obtain (2.4) analytically via the first order

Taylor expansion of the function. Otherwise, SPICE simulation can be used to

extract the nominal value of d0 and the sensitivities of di.

To capture the impact of process variations on D at location j, we plug (2.3)

into (2.4) and obtain

Dj = d0 +
∑

i

dif
i
0 +

∑

i

diX
i
g +

∑

i

∑

k

didj,kX
i
j,k +

∑

i

diX
i
r. (2.5)
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The above equation can be also written compactly as

Dj = Dj,0 + αj
TX, (2.6)

where Dj,0 is the mean value of Dj; X is a random variable vector with its each

component independent to one another, including inter-chip global variation X i
g,

spatial correlation X i
j,k, and purely random variation X i

r; and αj is the coefficient

vector of X. We call (2.6) as the first-order canonical form.

For simplicity of presentation, in the following, we also write D in its expanded

form as follows

D = d0 +
n
∑

i=1

diXi + drXr = d0 + αTX (2.7)

where d0 is the mean or nominal delay of D; Xi are the correlated random vari-

ables that may be shared among different characteristics; Xr is the uncorrelated

random variable that is not shared by anyone else; and di and dr are the sensi-

tivities to the variations Xi and Xr, respectively.

2.3 Modeling Process Variation as Normal Distribution

Recall that a random variable X follows a normal distribution1 if and only if its

probability density function (PDF) can be represented as

f(x) =
1

σ
√

2π
e−(x−µ)2/(2σ2), (2.8)

where µ and σ2 are the mean and variance of X, respectively. The cumulative

density function (CDF) of X is given by

F (x) =

∫ x

−∞

f(t)dt. (2.9)

1Normal distribution is also called Gaussian distribution.
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It is obvious that the mean and variance are the only two parameters that deter-

mine a normal distribution. When µ = 0 and σ2 = 1, we also say that X follows

a standard normal distribution, and we denote its PDF and CDF as φ(x) and

Φ(x), respectively.

The definition of normal distribution can also be extended to the multivariable

case. If X is a n × 1 random vector that follows a joint normal distribution, its

PDF is defined as follows

f(x) =
1

√

(2π)n|Σ|
exp(−1

2
(x − µ)′Σ−1(x − µ)), (2.10)

where µ is the mean vector of X, Σ is the covariance matrix of X, and |Σ| is the

determinant of Σ. The covariance matrix Σ is given by

Σ =























σ2
1 cov(x1, x2) cov(x1, x3) ... cov(x1, xn)

cov(x1, x2) σ2
2 cov(x2, x3) ... cov(x2, xn)

cov(x1, x3) cov(x2, x3) σ2
3 ... cov(x3, xn)

· ·
cov(x1, xn) cov(x2, xn) cov(x3, xn) ... σ2

n























, (2.11)

where cov(xi, xj) is the covariance between xi and xj. The correlation coefficient

ρi,j between xi and xj is defined as

ρi,j =
cov(xi, xj)

σiσj
, (2.12)

Knowing the mean vector µ and the covariance matrix Σ in (2.10) is enough

to determine the multivariate normal distribution of X. When each component of

X has zero mean and unit variance, i.e., each component xi is a standard normal
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distribution, then the covariance matrix Σ becomes the correlation matrix Ω, i.e.,

Ω =























1 ρ1,2 ρ1,3 ... ρ1,n

ρ1,2 1 ρ2,3 ... ρ2,n

ρ1,3 ρ2,3 1 ... ρ3,n

· ·
ρ1,n ρ2,n ρ3,n ... 1























. (2.13)

In the rest of the dissertation, we will assume that all Xi and Xr in (2.7) follows

a standard normal distributions unless otherwise specified differently. Because

all Xi and Xr follow a normal distribution, so is D in (2.7).

The mean value of D is given by d0, and the variance of D is given by

σ2
D =

n
∑

i=1

d2
i + d2

r = αTα. (2.14)

For two different canonical forms that are given by

Dp = dp,0 +
n
∑

i=1

dp,iXi + dp,rXp,r = dp,0 + αp
TX, (2.15)

Dq = dq,0 +
n
∑

i=1

dq,iXi + dq,rXp,r = dq,0 + αq
TX, (2.16)

they form a joint bivariate normal distributions. Their covariance is computed

as

cov(Dp, Dq) =

n
∑

i=1

dp,idq,i = αp
Tαq. (2.17)

2.4 Atomic Operations on First-order Canonical Forms

2.4.1 Summation and Subtraction

For two canonical forms Dp and Dq, the sum of them is also a normal distri-

bution, and it can be represented as another canonical form by summing their

23



corresponding coefficients, i.e.,

D = Dp + Dq (2.18)

= (dp,0 + dq,0) +
n
∑

i=1

(dp,i + dq,i)Xi + dp,rXp,r + dq,rXq,r (2.19)

= d0 +

n
∑

i=1

diXi + drXr, (2.20)

where d0 = dp,0 + dq,0, di = dp,i + dq,i, and dr =
√

d2
p,r + d2

q,r.

Similarly, the difference between Dp and Dq is also a normal distribution, and

it can be represented as another canonical form as follows

D = Dp − Dq (2.21)

= (dp,0 − dq,0) +

n
∑

i=1

(dp,i − dq,i)Xi + dp,rXp,r − dq,rXq,r (2.22)

= d0 +

n
∑

i=1

diXi + drXr, (2.23)

where d0 = dp,0 − dq,0, di = dp,i − dq,i, and dr =
√

d2
p,r + d2

q,r.

Because the results obtained after summation and subtraction are still a

canonical form, we can repeatedly apply the above operations for more than

two canonical forms.

2.4.2 Tightness Probability

The tightness probability of Dp over Dq is defined as the probability of Dp being

greater than Dq, i.e.,

Tp = P (Dp > Dq). (2.24)

As both Dp and Dq are normal distributions, the tightness probability Tp can be

computed as [21, 13]

Tp = Φ

(

dp,0 − dq,0

θ

)

(2.25)
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where Φ is the CDF of a standard normal distribution; and θ is given by

θ =
√

σ2
p + σ2

q − 2cov(Dp, Dq), (2.26)

where σ2
p and σ2

q are variance of Dp and Dq, respectively.

Similarly, we can define the tightness probability of Dq over Dp, which can be

numerically computed as Tq = 1 − Tp.

2.4.3 Maximum and Minimum Operations

The maximum (or minimum) of two normal distributions results in a distribution

that is no longer normal in general. Thus it can not be represented as a canonical

form exactly. For efficient computation, however, it is often desirable to keep all

computation results in a uniform representation (such as the canonical forms), so

that we can apply the same operations repeatedly for more than two variables.

This is achieved by approximating the maximum (or minimum) operation as

a linear operation. The result of this approximation is a weighted sum of its

two input canonical forms. The weight is closely related to individual canonical

form’s tightness probability. To see how this works, we first note that the exact

mean and variance of max(Dp, Dq) can be computed as follows [21, 13]

µ = Tp · dp,0 + Tq · dq,0 + θ · φ
(

dp,0 − dq,0

θ

)

, (2.27)

σ2 = Tp(σ
2
p + d2

p,0) + Tq(σ
2
q + d2

q,0)

+(dp,0 + dq,0) · θ · φ
(

dp,0 − dq,0

θ

)

− µ2, (2.28)

where φ is the PDF of a standard normal distribution, and Tp and Tq are the

tightness probability of Dp and Dq, respectively. Then the statistical maximum

of Dp and Dq is approximated as follows

max(Dp,Dq) = µ +

n
∑

i=1

(Tp · dp,i + Tq · dq,i)Xi + drXr, (2.29)
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where µ is the exact mean of max(Dp, Dq) as given in (2.27).

To match the variance of (2.29) to exact variance of max(Dp, Dq) as given

in (2.28), [94] introduces an uncorrelated random variable Xr with coefficient

dr. That is, the value of dr is determined by matching the variance of (2.29) to

(2.28). It has been proved in [85] that the above matching process is guaranteed

to find a positive number for dr. Another way to match the exact variance of

max(Dp, Dq) is to scale the coefficients of Xi in (2.29), thus without introducing

the uncorrelated random variable in (2.29) [16].

The minimum operation is approximated in a similar way. We first compute

the exact mean and variance of min(Dp,Dq) as follows

µ = Tq · dp,0 + Tp · dq,0 − θ · φ
(

dq,0 − dp,0

θ

)

(2.30)

σ2 = (σ2
p + T 2

p,0)Tq + (σ2
q + T 2

q,0)(Tp)

+(dp,0 + Tq,0) · θ · φ
(

dq,0 − dp,0

θ

)

− µ2. (2.31)

Then the statistical minimum of Dp and Dq is approximated as follows:

min(Dp, Dq) = µ +

n
∑

i=1

(Tq · dp,i + Tp · dq,i)Xi + drXr, (2.32)

where µ is the mean of min(Dp, Dq) given in (2.30), and dr is determined by

matching the variance of (2.32) to the exact variance of min(Dp, Dq) as given in

(2.31).

2.5 Parameterized Statistical Static Timing Analysis

Consider a design represented as a netlist, we abstract the design into an acyclic

directed timing graph G(V, E), where each node v ∈ V represents either the

input or output of a gate, each edge e ∈ E represents either the interconnection
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between gates or the internal signal propagation paths within the gates. The

direction of the edge represents the signal propagation direction along the edge.

Latches and flip-flops are modeled as signal propagation with timing constraints.

These timing constraints are transformed into timing checks as additional circuit

outputs. We associate each edge in G with a timing quantity De that models

the signal propagation delay from the source of the edge to the sink of the edge.

In general, the edge delay De is a function of gate types, input signal slew, and

output loads, and may also change the output signal slew. One such an example

is shown in Figure 2.1.

K
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-RAT

Figure 2.1: A circuit and its timing graph.

In the following, for simplicity, only the late mode statistical timing analysis

is considered. We associate each node v in G with two quantities: (1) the arrival

time AT , which is defined as the latest time that signals propagated from all

primary inputs can switch at v; and (2) the required arrival time RAT , which

is defined as the latest time that signals are allowed to switch at v without

causing timing violations for all downstream end points, where timing tests will

be conducted. The difference between RAT and AT gives the slack of of that

node. Usually the AT at the primary inputs and the RAT at the end points are

known a priori from design specification. Without loss of generality, we add a

virtual source S and a virtual sink K into the timing graph G as shown in Figure
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2.1, where the virtual source connects to all primary input with the delay on the

edge equal to the AT at the primary input, and all end points connect to the

virtual sink with the delay on the edge equal to the negative RAT at the end

point. Therefore, we have zero for AT at the virtual source, and zero RAT at

the virtual sink. In this way, we can abstract all circuits, both sequential and

combinational, with all timing tests into a uniform timing graph representation.

Moreover, the AT at the virtual sink gives the slack of the entire chip with its

sign flipped. At any internal node v, the AT gives the longest path delay from

the virtual source to the node v, the RAT gives the longest path delay from the

virtual sink to the node with its sign flipped.

In block based timing analysis, we compute the AT at all timing points (except

the virtual source) in G by forward propagating the AT in G in a breast first

manner, and at each timing edge the AT is increased by De, and at each timing

point the one with the maximum AT determines the AT at that timing point.

Similarly, we compute the RAT at all timing points (except the virtual sink)

by backward propagating the RAT in G in a breast first manner, and at each

timing edge the RAT is decreased by De, and at each timing point the one with

the minimum RAT determines the RAT at that timing point. Therefore, it is

obvious that during the block based timing analysis, four atomic operations are

required: summation, subtraction maximum, and minimum.

This applies to both deterministic timing analysis and parameterized statis-

tical static timing analysis (SSTA). In deterministic timing analysis, all edge

delays De are deterministic values. In contrast, in parameterized SSTA, all tim-

ing quantities are random variables represented by first-order canonical forms. In

deterministic timing analysis, the four atomic operations are straightforward; in

parameterized SSTA, the four atomic operations have to be defined statistically
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as shown in section 2.4.
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CHAPTER 3

Modeling and Extraction of Spatial Correlation

The increased variability of process parameters makes it important yet challeng-

ing to extract the statistical characteristics and spatial correlation of process

variation. Recent progress in statistical static timing analysis also makes the ex-

traction important for modern chip designs. Existing approaches extract either

only a deterministic component of spatial variation. Or these approaches do not

consider the actual difficulties in computing a valid spatial correlation function,

ignoring the fact that not every function and matrix can be used to describe

the spatial correlation. Applying mathematical theories from random fields and

convex analysis, we develop (1) a robust technique to extract a valid spatial cor-

relation function by solving a constrained nonlinear optimization problem; and

(2) a robust technique to extract a valid spatial correlation matrix by employing

a modified alternative projection algorithm. Our novel techniques guarantee to

extract a valid spatial correlation function and matrix from measurement data,

even if those measurements are affected by unavoidable random noises. Experi-

ment results, obtained from data generated by a Monte-Carlo model, confirm the

accuracy and robustness of our techniques; and show that we are able to recover

the correlation function and matrix with very high accuracy even in the presence

of significant random noises.
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3.1 Introduction

It is of importance to characterize process variation, because that information

is essential for any attempts to analyze or optimize designs statistically. For

example, it is necessary to know the variations of device parameters in order

to build the statistical delay models for both devices and interconnects, which

are the inputs for both SSTA and robust circuit tuning. Recent SSTA techniques

considering spatially correlated parameters [16, 1, 114], however, assume that the

required spatial correlation information given as a correlation matrix is known a

priori and is always valid, i.e., the spatial correlation matrix is always positive

semidefinite. In fact, the only way to obtain these variation characteristics is to

extract them from silicon measurements. Because of unavoidable measurement

errors, there is no guarantee that the so-obtained correlation coefficients can form

a valid correlation matrix.

To the best of our knowledge, no existing work has provided a detailed tech-

nique to extract that information properly from measurements except some pre-

liminary exploration in [49, 67, 86]. The extraction of the deterministic com-

ponent of Leff variation was considered in detail in [75] for the 0.18µm CMOS

technology. But that publication ignored the random component of spatial vari-

ations, justifying its approach by the fact that for the 0.18µm CMOS technology

random variations were not significant. Another two recent publications [29, 32]

limited their consideration by simple computation of the spatial correlation co-

efficient that is a function of distance, which is either a linear [29] or piece-wise

linear function [32]. There is no verification, however, that the extracted cor-

relation function was a valid correlation function, i.e., any correlation matrix

generated from this function must be positive semidefinite. In fact, theoretically,

as we will shown in this chapter, neither linear nor piece-wise linear functions are
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valid spatial correlation functions.

The major contribution of this work is as follows. We provide the theoretical

foundations for extracting the valid spatial correlation information from silicon

measurements. We develop a robust technique to extract a valid spatial correla-

tion function by solving a constrained nonlinear optimization problem. We also

develop a robust technique to extract a valid spatial correlation matrix by em-

ploying a modified alternative projection algorithm. Our techniques are based

upon the mathematical theories of random fields and convex analysis, and it is

guaranteed that the resulting correlation function and correlation matrix are not

only valid, but also the closest ones to the underlying model even if the data are

distorted by significant measurement noises. Experiment results based upon a

Monte-Carlo model confirm the accuracy and robustness of our techniques. We

achieve less than 10% errors for the extracted process variations even if the mea-

surement noise is more than 100% of the total process variations. Because of the

promising results, we plan to apply our techniques to real wafer data to extract

the spatial correlation information in the future. A preliminary version of this

chapter was presented at ISPD 2006 [107].

3.2 Preliminary

3.2.1 Process Variation Classification

There are two orthogonal ways to classify process variations. The first one is to

classify the variations according to the scope of their occurrence [30, 70, 10] as

follows

• Die-to-die variation, which is also called inter-die variation or between-die

variation, describes the variation that affect parameters in different dies
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differently, but affect parameters within a die equally.

• Within-die variation, which is also called intra-die variation, across-chip

variation, on-chip variation, spatial variation, or spatial correlation1, de-

scribes the variation that affects process parameters at different locations

of the same die differently.

Or, according to the scale of their causes, process variations can also be classified

into the following two categories [70, 72].

• Systematic variation describes the deterministic portion of the variation.

The physical cause of this variation is usually those identifiable determin-

istic features or patterns.

• Random variation describes the variation that is independent of any other

conditions. The physical cause of this variation is usually not well under-

stood, and thus it behaves more like a stochastic process.

Both systematic and random variations need to be considered to accurately

model the impact of process variations on designs. For example, the systematic

transistor channel length variation can be more than 50% of its overall variations,

and its root of causes includes through-pitch variation due to proximity (pitch)

effects, through-process variation due to defocus condition, topography variation,

mask variation, and etching [36]. Because systematic variations usually can be

modeled accurately once a circuit’s physical layout is known [17, 75]; it can be

corrected via techniques such as optical proximity correction (OPC), which post-

processes mask data so that the distortion of printed image caused by proximity

environment of the designed shapes can be reduced [46]. In contrast, random

1Spatial variation or spatial correlation is used more frequently in recent literatures than
others.
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variations are more like a stochastic process, and there is no clear trend or pattern

to be predicted. It is the random process variation that permits us to treat designs

statistically, including statistical timing analysis and optimization [16, 94].

We denote F as the measurable process parameter of interest, which can be

either a physical parameter, like channel length, channel width, silicon oxide

thickness, and wire thickness, or a parametric quantity, such as gate delay and

threshold voltage2. Because of manufacturing process variations, these process

parameters are no longer fixed values. We model the parameter as a random vari-

able, which is a complicated function of die-to-die (D2D) systematic and random

variations, and within-die (WID) systematic and random variations. Conceptu-

ally, we can represent it as

F = h(ZD2D,sys, ZD2D,rnd, ZWID,sys, ZWID,rnd), (3.1)

where ZD2D,sys models the die-to-die systematic variation; ZD2D,rnd models the

die-to-die random variation; ZWID,sys models the within-die systematic variation;

and ZWID,rnd models the within-die random variation. All variation components

are further complicated functions of the manufacturing process, feature’s relative

location in the wafer, feature’s relative location in the die, and feature’s local

geometry patterns, to name just a few.

2 Without loss of generality, we use one generic process parameter F in the following dis-
cussion. But it is understood that the same techniques to be presented can be easily extended
to multiple process parameters.
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3.2.2 Process Variation Decomposition

Assuming the impact of each variation component is linear, we write (3.1) as

follows

F = h0 + h1(ZD2D,sys) + h2(ZD2D,rnd)

+h3(ZWID,sys) + h4(ZWID,rnd) + Xr, (3.2)

where h0 is a function that models the nominal value of F under nominal manu-

facturing conditions without any variation; h1, h2, h3, and h4 are functions that

model the impact of respective variation component (i.e., ZD2D,sys, ZD2D,rnd,

ZWID,sys, and ZWID,rnd on F ; and Xr is a residual part that models the purely

independent random variation that is not explainable by other variation compo-

nents. The sum of h1 and h2 reflects the fluctuation of F caused by die-to-die

variation; and the sum of h3 and h4 reflects the fluctuation of F caused by

within-die variation. The sum of h1 and h3 reflects the fluctuation of F caused

by systematic variation; and the sum of h2 and h4 reflects the fluctuation of F

caused by random variation.

Fs = h1(ZD2D,sys) + h3(ZWID,sys),

Fr = h2(ZD2D,rnd) + h4(ZWID,rnd) + Xr,

where Fs models the systematic variation of F ; while Fr is a zero-mean random

variable that models the random variation of F . Hence, we have

F = h0 + Fs + Fr. (3.3)

The variance of F , σ2
F , is also called the overall chip variance.
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3.3 Spatial Correlation Modeling and Problem Formula-

tions

It has been observed that devices that are physically close to each other are

more likely to have similar characteristics than devices that are far apart. This

phenomenon is captured by the modeling of spatial correlation. In the following,

we introduce two ways to model the spatial correlation, each of which has its own

value and applies to different process variation scenarios.

3.3.1 Grid-based Model of Spatial Correlation

3.3.1.1 Modeling

In this model, a set of grid cells is super-imposed on top of the chip area as shown

in Fig. 3.1. It is assumed that the difference between process parameters only

occurs for process parameters at different grid cells; and all process parameters

within the same grid cell will have the same characteristics. In another word, the

spatial correlation for process parameters within one grid cell is always one, and

it is only interesting to know the spatial correlation between process parameters

at different grid cells.

The grid-based spatial correlation model can be adapted to handle more com-

plicated variation scenarios by varying the number, size, and shape of grid cells.

For example, it is believed that process control at chip center area is better than at

chip boundaries, hence spatial correlation at the chip center area is more uniform

than at the boundaries. In this case, we can apply the griding scheme as shown

in Fig. 3.1(b), where the center grid cells are coarser and less, while the boundary

grid cells are finer and more. Hence the grid-based model can easily capture the

non-uniform spatial correlation phenomena across the whole chip. Moreover, the
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(a) (b)

Figure 3.1: Grid-based spatial correlation models. (a) Uniform grids. (b)

Non-uniform grids.

shape of grids can be also non-rectangular, and for different process parameters,

the griding schemes may also be different3.

If we associate every grid cell i in the chip area with a random variable Fi

and denote its variance as σ2
Fi

, then for the parameter of interests at two different

grid cells i and j, the overall covariance between them is given by

cov(Fi, Fj) ≡ ρi,j · σFi
· σFj

, (3.4)

where ρi,j is the overall process correlation between process parameters at grid

cell i and j.

For M number of chosen grid cells on the chip, we assume the joint spatial

variation F =(F1, F2, ..., FM)T follows a multivariate Gaussian process with re-

spect to their respective physical locations on the chip. To fully characterize the

M-dimensional Gaussian distribution, we need to know the variance σ2
Fi

for all

3 The optimal way of griding, including grid numbers, grid shapes, and grid sizes, can be
decided under the guidance of good knowledge of manufacturing process, which is not addressed
in this chapter.
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grid cells and their corresponding correlation matrix Ω as shown in (3.5)

Ω =























1 ρ1,2 ρ1,3 ... ρ1,M

ρ1,2 1 ρ2,3 ... ρ2,M

ρ1,3 ρ2,3 1 ... ρ3,M

· ·
ρ1,M ρ2,M ρ3,M ... 1























. (3.5)

A valid correlation matrix must be positive semidefinite by its definition [43].

3.3.1.2 Problem Formulation

Based on the grid-spatial correlation model, we propose the following problem

formulation:

Formulation 1 Extraction of Spatial Correlation Matrix: Given M num-

ber of grid cells on a chip to model the spatial correlation, and noisy measurement

data for the parameter of interest at these grid cells, extract the overall process

variation at very grid cell σ2
Fi

, and their corresponding spatial correlation ma-

trix Ω as shown in (3.5), so that it not only accurately captures the underlying

process variation model, but the extracted correlation matrix Ω is always positive

semidefinite.

Extracting a valid correlation matrix is of practical significance. For example,

SSTA tools such as [16], which are based upon principle component analysis,

require that the spatial correlation matrix must be valid and known a priori.

Even though the grid-based spatial correlation model is intuitively simple and

easy to use, it has its own limitations. The foremost one is the inherent accuracy-

versus-efficiency issue because of its fundamental assumption, which states that

all parameters of interests within one grid cell have the same characteristics. To
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justify such an assumption, the size of each grid cell can not be too large, which

in turn increases the total number of grid cells required for modeling. From

extraction point of view, on the one hand, the more number of grid cells, the

more number of measurement sites within each chip, hence the more expensive

to extract such a model. On the other hand, the physical limitation of mea-

surement devices also prevents the grid cell size being too small, otherwise, the

measurement probe would not fit into one grid cell. Because of these inherent

limitations of the grid-based modeling approach, in the next section, we propose

a more flexible approach to model spatial correlation.

3.3.2 Gridless-based Model of Spatial Correlation

3.3.2.1 Modeling

Because the systematic variation is more like a deterministic variation [70], we

lump it with the nominal value h0, i.e.,

f0 = h0 + Fs, (3.6)

where f0 is the mean value of F with the systematic variation considered. The

extraction of mean value f0 is relatively easy, and is essentially done through

averaging. For example, [75] has presented a methodology to extract the intra-

die systematic variation of critical dimension (CD or effective channel length) by

averaging out measurement of CD at different locations of the same die.

In the following, we mainly concern ourselves in extracting the random vari-

ation parts Fr. This is a more challenging task, because simply taking averaging

of measurements would not give us any useful information on the zero-mean ran-

dom process variations’ characteristics. Towards this end, we rewrite the random
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variation Fr as follows:

Fr = Xg + Xs + Xr

where Xg models the inter-chip global variation that affects all features within the

same chip equally, but is different among different chips obtained from different

lots, wafers, or even the same wafer. In another word, Xg = h2(ZD2D,rnd). Intra-

chip spatial correlation is modeled by Xs, which is different for features at different

locations within the same chip. In another word, Xs = h4(ZWID,rnd). Therefore,

we have

F = f0 + Fr = f0 + Xg + Xs + Xr. (3.7)

The three types of random variations, Xg, Xs and Xr, are independent by

definition. Hence the variance of Fr is given by

σ2
Fr

= σ2
G + σ2

S + σ2
R, (3.8)

where σ2
G, σ2

S, and σ2
R are the variances of Xg, Xs, and Xr, respectively. When

the systematic variation is excluded, the overall chip variance is equivalent to the

random variance, i.e., σ2
F = σ2

Fr
.

We model the random part of process variation Fr as a homogeneous and

isotropic rand filed, whose formal definition is introduced as follows:

Definition 1 Random Field is a real random function F (x, y) of position (x, y)

in the 2-dimensional space R2.

Definition 2 Homogeneous and Isotropic Random Field is a random field

F (x, y) whose mean and variance are constants, and whose correlation function

ρ(xi, xj, yi, yj) between any two points depends only on the distance v between

them, i.e.,

ρ(xi, xj, yi, yj) = ρ(vi,j), (3.9)
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where vi,j =
√

(xi − xj)2 + (yi − yj)2.

If the spatial variation follows a homogeneous and isotropic random field, then

the same distance vi,j always corresponds to the same ρ(vi,j), regardless of their

locations. Therefore, for simplicity, we denote ρ(vi,j) as ρ(v) in the following

whenever there is no ambiguity.

Note that the overall process variation, F as shown in (3.3) that includes

both systematic variation and random variation, does not necessarily follow a

homogeneous and isotropic random field. But if we only look at the random

variation part, then the physical properties of the random variation part Fr would

be very likely to follow a homogeneous and isotropic random field, particularly

when the manufacturing process becomes mature and stable.

3.3.2.2 Valid Spatial Correlation Function

Formally, a valid spatial correlation function ρ(v) is a function such that the

correlation matrix generated from ρ(v) for arbitrary number of points on the

two-dimensional space is always positive semidefinite.

In its simplest way, a valid spatial correlation function should satisfy the

following necessary but not sufficient conditions4:

ρ(0) = 1, (3.10)

0 ≤ ρ(v) ≤ 1, (3.11)

ρ′(v) ≤ 0. (3.12)

Equations (3.10) and (3.11) are required by the definition of correlation coefficient

[43]. The interpretation of (3.12) is that the spatial correlation is a monotonically

4 In the context of process variation, we are only interested in the spatial correlation that
is non-negative.
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decreasing function of distance, i.e., as devices become further apart, the corre-

lation between them becomes smaller. The correlation distance v is the distance

beyond which the spatial correlation ρ(v) becomes sufficient small and can be

approximated as zero, i.e., ρ(v) ≈ 0 for all v ≥ v. For simplicity, in the following

when we describe the correlation function, we only give the function form for

any v ∈ [0, v] whenever there is no ambiguity. For example, Fig. 3.2 shows a

piece-wise monotonically decreasing function, and the function form is ρ(v) =

−v2 + 1 for any v ∈ [0, v] with v = 1.
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Figure 3.2: A monotonically decreasing function that is not a valid spatial cor-

relation function.

Contrary to the common wisdom, we show that not all monotonically de-

creasing functions qualify for the spatial correlation function. For example, for

the function as shown in Fig. 3.2, if we assume ρ(v) is a valid spatial correlation

function, then the correlation matrix Ω between any three points on the die as

42



shown in Fig. 3.3 can be built as follows

Ω =











1 ρ(d1) ρ(d3)

ρ(d1) 1 ρ(d2)

ρ(d3) ρ(d2) 1











, (3.13)

A1
A2d1

d2

A3

d3

θ

Figure 3.3: Any three points on the die.

If d1 = 31/32, d2 = 1/2, and d3 = 1/2, under ρ(v) = −v2 + 1, we obtain a

correlation matrix5

Ω =











1 0.0615 0.75

0.0615 1 0.75

0.75 0.75 1











. (3.14)

However, it is easy to show that the resulting matrix is not a valid correlation

matrix, as the smallest eigenvalue of this matrix is -0.0303, implying that this

matrix is not positive semidefinite!

Recall that a matrix is a positive semidefinite matrix if and only if its every

principal sub-matrix has a non-negative determinant, whereas the principal sub-

matrices are formed by removing row-column pairs from the original symmetric

matrix [66]. Therefore, in order for Ω in (3.13) to be a positive semidefinite

5The three points form a triangle, which imposes constraints on the possible choices of d1,
d2 and d3, i.e., d1 + d2 > d3, d2 + d3 > d1, and d1 + d3 > d2.
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matrix, we require the following two equations to hold

1 − ρ(d1)
2 ≥ 0, (3.15)

1 + 2ρ(d1)ρ(d2)ρ(d3) ≥ ρ(d1)
2 + ρ(d2)

2 + ρ(d3)
2. (3.16)

Equation (3.15) is automatically satisfied following (3.11). Therefore, we only

need to check (3.16). Plugging the values of d1 = 31/32, d2 = 1/2, and d3 = 1/2

with ρ(v) = −v2 + 1 into (3.16), we can see that it violates the constraints

of (3.16). This explains why function ρ(v) = −v2 + 1 is not a valid spatial

correlation function.

This leads us to the question of “what type of monotonic decreasing functions

qualify to be a valid spatial correlation function?” To answer this question, we

introduce the following theorem:

Theorem 1 A necessary and sufficient condition for the function ρ(v) to be a

valid spatial correlation function of a homogeneous and isotropic random field is

that it can be represented in the form of

ρ(v) =

∫ ∞

0

J0(ωv)d(Φ(ω)), (3.17)

where J0(t) is the Bessel function of order zero and Φ(ω) is a real nondecreasing

function on [0,∞) such that for some non-negative p,
∫ ∞

0

dΦ(ω)

(1 + ω2)p
< ∞. (3.18)

Proof: See [110] for the proof. 2

Based on the above theorem, we derive the following two corollaries:

Corollary 1 The monotonically decreasing exponential function (3.19) and dou-

ble exponential function (3.20), i.e.,

ρ(v) = exp(−bv), (3.19)

ρ(v) = exp(−b2v2), (3.20)
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are valid spatial correlation functions. The constant b is a parameter that regu-

lates the decaying rate of the correlation function with respect to distance v. The

correlation distance for the two functions are infinity, i.e., v = ∞.

Proof: By way of construction, we find that Φ(ω) =1- 1√
1+ω2/b2

and Φ(ω)=1-

exp(− ω2

4b2
) satisfy the conditions as specified in Theorem 1. Plugging them into

(3.17), we obtain the corresponding correlation functions as (3.19) and (3.20),

respectively. In another word, the exponential function (3.19) and double expo-

nential function (3.20) are valid spatial correlation functions [12]. 2

Corollary 2 The monotonically decreasing linear function in the form of

ρ(v) = −av + b,∀v ∈ [0, v], (3.21)

with v ≤ b/a is not a valid spatial correlation function, where a and b are two

positive numbers.

Proof: To prove that (3.21) is not a valid spatial correlation function, all we

need to do is to find a counter example by which a correlation matrix generated

from it is not positive semidefinite. One such counter example was given in [5],

which convincingly shows that the monotonically decreasing linear function as

shown in (3.21) is not a valid spatial correlation function. 2

The implication of corollary 2 is interesting to note, because intuitively people

may think that the monotonically decreasing linear function is valid for spatial

correlation modeling, and the work as shown in [29] did apply it to real wafer

data. But the corollary 2 tells us that such a practice is not correct.

In general, it is difficult to check whether an arbitrary function form is a

valid correlation function [5]. For example, for an arbitrary piece-wise linear

function, i.e, with arbitrary number of linear segments and each with arbitrary
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slopes, we cannot provide (and fail to find) any theoretical proof whether or

not it is valid. But we at least can say for sure that not all piece-wise linear

function is valid, because as shown in [5] for some particular piece-wise linear

function, the spatial correlation matrix generated from it is not valid. In the

work of [32], the authors proposed to use a piece-wise linear function to model

the spatial correlation function. However, there is no guarantee that the so-

obtained piece-wise linear function is valid. The authors of [32] also did not

provide any theoretical justification for their approach.

3.3.2.3 Problem Formulation

When the spatial variation follows a homogeneous and isotropic random field, we

propose the following first problem formulation:

Formulation 2 Extraction of Spatial Correlation Function: Given noisy

measurement data for the parameter of interest with possible inconsistency, ex-

tract the inter-chip global variation component σ2
G, the intra-chip spatial variation

component σ2
S, the random variation component σ2

R, and the spatial correlation

function ρ(v), so that the extracted variation components accurately capture the

underlying variation model, and the spatial correlation function is always a valid

correlation function satisfying condition (3.17).

If the spatial variation is modeled as a homogeneous and isotropic random field

in a two dimensional space R2, then for the parameter of interest at arbitrary

two different points, their covariance is

cov(Fi, Fj) = cov(Xg,Xg) + cov(Xs,i,Xs,j) (3.22)

= σ2
G + ρ(v)σ2

S, (3.23)
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where ρ(v) is the spatial correlation coefficient between two locations that are

v distance apart. In another word, we can characterize the process variation by

extracting the inter-chip global variation σ2
G, intra-chip spatial variation σ2

S, and

the correlation function ρ(v).

For the parameter of interest at two different locations with distance of v, the

overall process correlation between them is thus given by

ρv ≡ cov(Fi, Fj)

σFi
σFj

(3.24)

=
σ2

G + ρ(v)σ2
S

σ2
G + σ2

S + σ2
R

. (3.25)

Because the spatial correlation ρ(v) is a function of the distance v, so is the

overall process correlation ρv. As ρ(v) is homogeneous and isotropic, so is ρv.

Because of the one-to-one correspondence between spatial correlation ρ(v) and

the overall process correlation ρv, extracting the spatial correlation function ρ(v)

is equivalent to extracting the overall process correlation function ρv.
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Figure 3.4: A possible curve for the overall process correlation according to (3.25)

in the absence of measurement noise.
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In Fig. 3.4, we show a possible curve for the overall correlation ρv as a function

of the distance v as given by (3.25). According to Fig. 3.4, the total correlation

can be divided into three parts: part G is the correlation caused by the inter-chip

global variation; part S is the correlation caused by the intra-chip spatial corre-

lation; and part R is caused by the purely uncorrelated random variation. We

can see that the overall process correlation ρv starts to settle at a constant value

when the distance becomes large enough (greater than the correlation distance

v), which means that even for devices from the same chip that are far apart,

there is still some correlation between them due to their shared global variations.

We can also see that there is a sudden drop from one for ρv at distance zero.

The cause for that drop is the purely uncorrelated random variation, such that

even for devices that are very close to each other, they are still not perfectly

correlated. Perfect correlation (ρv = 1) only occurs when the two devices are in

fact the same device6.

3.3.3 Extraction Setup

To experimentally characterize the process variation, we obtain N samples of a

chip, and choose M number of sites on each chip where measurement is conducted.

The sites are denoted as (xi, yi), and the distance between any two sites is denoted

as vi,j. We denote each measurement of the parameter of interest F as fk,i for

the kth chip on the ith site.

Note that in order to obtain these measurement data, it usually requires

careful design of test structures, placement of test structures spanning a range of

6 Note that a similar plot showing the trend of the overall process correlation with respect
to distances has also been empirically observed in [32] based on wafer-scale measurements. But
the authors of [32] did not provide a theoretical explanation of this phenomena as we do in this
chapter.
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areas on the die, and measurement procedures to collect data. Those details are

beyond the scope of this chapter, and interested readers are referred to [72] for

more information.

In the following, we present techniques to solve the above two problem for-

mulations as discussed in section 3.3.1 and 3.3.2, respectively. We first solve the

extraction of spatial correlation function in section 3.4, then solve the extraction

of spatial correlation matrix in section 3.5.

3.4 Extraction of Valid Spatial Correlation Function

3.4.1 Global Variation Extraction

We treat each measurement of the parameter of interest F as a sampling of the

quantity in (3.7). Given N samples of a chip and M number of measurement

sites on each chip, we group the measured data fk,i by their chip locations as

follows: fk,.=[fk,1, ..., fk,M ] for k=1 to N , or by their site locations as follows:

f.,i=[f1,i, ..., fN,i] for i=1 to M . For better presentation, we denote the actual

variance as σ2 with an upper case letter in subscript, like σ2
G for the global

variation component; and denote the extracted variance as σ2 with a lower case

letter in subscript, like σ2
g for the extracted global variation component.

We approximate the overall chip variance σ2
F by computing the unbiased sam-
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ple variance [43] of fk,i as follows7

σ2
F ≈ σ2

f =
1

MN − 1

(

∑

i

∑

k

f 2
k,i −

(
∑

i

∑

k fk,i)
2

MN

)

. (3.26)

For all samples of the parameter of interest F within a particular chip c,

because the inter-chip global variation Xg changes the value of parameter for all

samples with the same chip by the same amount, the overall within-chip variance

is thus given by

σ2
Fc

= σ2
S + σ2

R. (3.27)

We estimate the overall within-chip variation by computing the unbiased sample

variance [43] of fk,. as follows

σ2
Fc

≈ σ2
fk

=
1

M − 1

(

∑

i

f 2
k,i −

(
∑

i fk,i)
2

M

)

. (3.28)

For different fk,., we may get different estimation of σ2
Fc

caused by inconsistent

measurement. To improve the accuracy, we estimate the overall within chip

variance by taking the average value of σ2
fk

. We denote the resulting average

value as σ2
fc
≈ σ2

Fc
.

Knowing the estimation of the overall chip variance σ2
f and the overall within-

chip variance σ2
fc

, we extract the inter-chip global variation by

σ2
G = σ2

F − σ2
Fc

≈ σ2
g = σ2

f − σ2
fc

. (3.29)

7 The advantage of using the unbiased sample variance over sample variance is that it will not
over- or under-estimate the true quantity. In practice, the true or exact variance of a population
is not known a priori and has to be computed based on samples. Unbiased sample variance
is good at estimating the true variance in this case. In contrast, the sample variance merely
measures the variance for the given finite number of samples, hence it is a biased estimator of
the true variance. For more information about unbiased sample variance and variance, please
refer to [43].
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3.4.2 Spatial Correlation Extraction

For any two different sets of f.,i and f.,j at two different sites that are v distance

apart, we estimate the covariance of Fi and Fj by computing the unbiased sample

covariance [43] of f.,i and f.,j as follows

cov(Fi, Fj) ≈ cov(f.,i, f.,j) (3.30)

=

∑

k fk,ifk,j

N − 1
−
∑

k fk,i

∑

k fk,j

N(N − 1)
. (3.31)

For simplicity, we also denote cov(f.,i, f.,j) as cov(v) to show that it is a function

of two points that are v distance apart.

According to (3.23) and (3.29), we estimate the product of spatial variation

σ2
S and spatial correlation ρ(v) as follows:

σ2
S · ρ(v) = cov(Fi, Fj) − σ2

G ≈ cov(v) − σ2
g . (3.32)

Because ρ(v) is a function of v, we need to compute ρ(v) for different pairs of

sites with different distances in order to obtain the full description of ρ(v). But

there are two challenges in doing that: (1) we do not know the exact value of

spatial variation σ2
S; (2) because of unavoidable measurement errors, the data

set computed as above may not be consistent. Therefore, in the following, we

propose a robust technique to find the spatial correlation function ρ(v) and σ2
S

accurately. Moreover, the resulting ρ(v) is guaranteed to be a valid spatial cor-

relation function.

Given the data set (v, cov(v)) as computed from (3.31), we formulate the

robust spatial variation extraction problem as the following optimization problem:

min
Φ,σ2

s

: ‖ σ2
s

∫∞

0
J0(ωv)d(Φ(ω)) − cov(v) + σ2

g ‖, (3.33)

s.t. σ2
s ≤ σ2

fc
,

∫∞

0
dΦ(ω)

(1+ω2)p < ∞.
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In other words, we find a valid spatial correlation function by solving a constrained

nonlinear optimization problem, so that the resulting spatial correlation function

minimizes the total error with respect to measurement data. After obtaining

Φ(ω), we plug it into (3.17) to obtain the valid spatial correlation function ρ(v).

The above problem formulation is very general and applies to any real non-

decreasing function Φ(ω). For practical use, however, there is no need to enu-

merate all possible choices of Φ(ω) in order to find the optimal ρ(v). Moreover,

as we have discussed in section 3.3.2.2, it is also difficult to check the validity of

an arbitrary spatial correlation function.

Therefore, to make the above problem tractable, we can approximate the

experimentally measured correlation function with a function selected from a

family of functions that are proved to be valid spatial correlation functions. To

serve such a purpose, it is sufficient to chose a family of functions Φ(ω) so that

the ρ(v) obtained from (3.17) contains a rich set of functions for the purpose of

modeling spatial correlation.

It has been shown in [12] that by choosing a proper family function of Φ(ω),

we obtain a very general family of spatial correlation functions

ρ(v) = 2

(

bv

2

)s−1

Ks−1(bv)Γ(s − 1)−1, (3.34)

where K is the modified Bessel function of the second kind, Γ is the gamma

function, and b and s are two real parameter numbers that regulate the shape of

the function. By varying b and s, we obtain different spatial correlation functions.

For example, the exponential function as shown in (3.17) can be generated from

(3.34) by choosing s = 3/2.

To show that the function of (3.34) indeed provides us a rich set of correlation

functions that suffice for our spatial correlation modeling, we plot the function
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of (3.34) under different parameters of b and s. Fig. 3.5 shows a few samples

of correlation functions generated from (3.34) by setting b to be 0.1, 1 and 10,

and varying s from 2 to 10 with a step size of 2. From the figure, we see that

the correlation function (3.34) indeed can generate a rich gamut of correlation

functions for the purpose of spatial correlation modeling.

Without loss of generality, in the following, equation (3.34) will be used as

the candidate8 correlation function in (3.33). Moreover, 2-norm is used as a mea-

sure of the objective function in (3.33). Therefore, we rewrite the optimization

problem as given in (3.33) as follows

min
b,s,σ2

s

:
∑

[2σ2
s(

bv
2
)s−1Ks−1(bv)Γ(s − 1)−1 − cov(v) + σ2

g ]
2, (3.35)

s.t. σ2
s ≤ σ2

fc
.

This is a constrained nonlinear least square problem, and we can solve it efficiently

via any nonlinear least square technique [22]. Note that problem (3.35) is not a

convex problem in general, hence we cannot guarantee to find a global optimal

solution. But as this kind of least-square minimization problem is well-studied

in the literature, good solvers are available to find a solution with high quality.

Our experimental results to be presented also confirms this argument. Moreover,

as all nonlinear minimization engines are sensitive to the initial guess, obtaining

a high quality solution sometimes may require to try different initial guesses.

After solving the above problem, we obtain the estimated spatial variation

component σ2
S ≈ σ2

s , and the parameter b and s. By plugging b and s into (3.34),

8 Function (3.34) is chosen over the exponential (3.19) or double exponential (3.20) func-
tion as a candidate spatial correlation function in this work. The reason is that it has more
parameters (b and s) and contains the exponential function as a special case (with s = 3/2).
This gives us considerably more flexibility to fit the data but still with reasonable complexity.
Apparently, other choices of candidate functions are possible. But we have to be careful in
assuring that the candidate functions are valid spatial correlation function. As pointed out by
[5], it is always simpler and safer to use those “approved” valid spatial correlation functions, as
testing the validity of a arbitrary function form (such as linear and piece-wise linear) is almost
always timing consuming and difficult.
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Figure 3.5: Correlation functions generated from (3.34).

we obtain the estimated spatial correlation function ρ(v) ≈ ρ(v). Therefore, we

have obtained all information about the spatial variation component: both the

variance of spatial variation and the spatial correlation function.

3.4.3 Overall Algorithm

The overall algorithm for characterizing the process variation is summarized as

shown in Fig. 3.6:

1 Extract global variation σ2
g by (3.29);

2 Solve (3.35) to obtain σ2
s and b and s;

3 Extract ρ(v) by plugging b and s into (3.34);

4 Extract random variation σ2
r by (3.36);

5 Extract overall process correlation by (3.25);

Figure 3.6: Algorithm for characterization of process variation.

We first extract the global variation component σ2
g by using formula (3.29).

We then solve the nonlinear least square optimization problem as defined in (3.35)
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to obtain the spatial variation component σ2
s , and the parameter of b and s that

define the spatial correlation function for a homogeneous and isotropic random

field as shown in (3.34). According to (3.8), we extract the random variation

component by using the following formula:

σ2
R = σ2

F − σ2
G − σ2

S ≈ σ2
r = σ2

f − σ2
g − σ2

s . (3.36)

By plugging all variation components into (3.25), we obtain the overall process

correlation at any distance.

3.5 Extraction of Spatial Correlation Matrix

3.5.1 Overall Algorithm

We are given measurement data for M points of interest on a chip and we have

N samples of the same chip. We extract the overall process spatial correlation

as follows.

We first estimate the covariance between any two points of interest by (3.31).

We then estimate the variance of each point of interest by computing its unbiased

sample variance [43] as follows:

σ2
Fi

≈ σ2
fi

=
1

N − 1

(

∑

k

f 2
k,i −

(
∑

k fk,i)
2

N

)

. (3.37)

By plugging the estimated σ2
fi

and σ2
fj

and cov(f.,i, f.,j) from (3.31) into (3.24),

we obtain the estimated overall process correlation coefficient

ρi,j =
cov(Fi, Fj)

σFi
σFj

≈ cov(f.,i, f.,j)

σfi
σfj

. (3.38)

For the given M points of interest, we have M(M−1)/2 number of pairs of points

Fi and Fj and the corresponding M(M − 1)/2 number of estimated correlation
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coefficients ρi,j. Putting all ρi,j into (3.5), we obtain the estimated overall process

spatial correlation matrix A ≈ Ω.

Note that in order for the above estimated A to qualify for a correlation ma-

trix, it has to be a positive semidefinite matrix. But we can not guarantee that

such a property would hold automatically for the resulting A due to the unreli-

able (sometimes even inconsistent) measurement data. We solve this problem by

employing the modified alternative projection algorithm to be presented in the

next section to robustly extract a valid correlation matrix Ω from the unreliable

measurement data.

The overall algorithm for extracting a valid spatial correlation matrix is sum-

marized as follows in Fig. 3.7:

1 Compute cov(fi, fj) by (3.31);

2 Compute σ2
fi

by (3.37);

3 Compute ρi,j by (3.38);

4 Compute A by assembling ρi,j into (3.5);

5 Compute Ω via the modified alternative projection algorithm;

Figure 3.7: Algorithm for extracting a valid spatial correlation matrix.

3.5.2 Modified Alternative Projection Algorithm

The robust extraction of a consistent correlation matrix problem can be formu-

lated as the following optimization problem. For a given symmetrical matrix A

with elements ai,j between 0 and 1, find a correlation matrix Ω that is mostly close

to A. Mathematically, the closeness can be measured via the distance between

two matrices, i.e.,

min
Ω

: ‖ A − Ω ‖, (3.39)

s.t. : Ω ∈ correlation matrix. (3.40)
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We use the weighted Frobenius norm to measure the distance between two

matrix. Recall that the Frobenius norm is defined as ‖ A ‖2
F =

∑

a2
i,j. One of the

weighted Frobenius norms is the W-norm as defined by

‖ A ‖W =‖ W 1/2AW 1/2 ‖F , (3.41)

where W is a symmetric positive definite matrix.

This problem is also called the nearest correlation matrix problem [41], or

the least-squares covariance adjustment problem [11]. As a proof of concept, we

solve this problem by employing the modified alternative projection algorithm

proposed in [41]. The idea is to iteratively project the symmetric matrix A onto

two convex sets alternatively, and at the end of iteration, the final projected

matrix is the solution to the optimization problem as defined in (3.39).

We first define the sets

U = {Y = Y T ∈ Rn×n : yii = 1}, (3.42)

S = {Y = Y T ∈ Rn×n : Y ≥ 0}, (3.43)

where the notation Y ≥ 0 means that Y is positive semidefinite. Our desired

correlation matrix Ω as shown in (3.39) is a matrix that is in the intersection

of U and S and has the shortest distance to A in a weighted Frobenius norm.

Since S and U are both closed convex sets, so is their intersection. It thus follows

from standard results in approximation theory that the minimum Ω in (3.39) is

obtainable and is unique.

Moreover, for a symmetric matrix A ∈ Rn×n with spectral decomposition (or

eigen-value decomposition) A = QDQT , where D = diag(λi) and Q is orthogonal,

we introduce the following notations

A+ = Qdiag(max(λi, 0))Q
T . (3.44)

57



We denote PU(A) and PS(A) as the projections of A onto U and S, respec-

tively. Then for a given W-norm, PU(A) can be computed analytically via the

following formula.

PU(A) = A − W−1diag(θi)W
−1, (3.45)

where θ = [θ1, ..., θn]T is the solution of the linear system

(W−1 ◦ W−1)θ = diag(A − I), (3.46)

where ◦ denotes the Hadamard product: A◦B=(ai,jbi,j), i.e., element-wise matrix

multiplication.

For a given W-norm, PS(A) can also be computed analytically via the follow-

ing formula.

PS(A) = W−1/2((W 1/2AW 1/2)+)W−1. (3.47)

When the W-norm is taken as the identity I, i.e., the unweighted Frobenius norm,

PU(A) is simply as

PU(A) = (pij) (3.48)

with pij = aij for all i 6= j and pij = 1 for all i = j. For PS(A), it is simply as

PS(A) = A+ = Qdiag(max(λi, 0))QT . (3.49)

The following modified alternative projection algorithm as shown in Fig. 3.8

can be used to solve the nearest correlation matrix problem as defined in (3.39).

It has been proved that when k → ∞, both Xk and Yk converge to the

desired correlation matrix Ω. Moreover, it has been theoretically shown that the

convergence of the alternative projection algorithm is linear [41]. This conclusion

has also been experimentally verified in section 3.6.2.
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∆S0 = 0, Y0=A

for k=1,2,...

Rk = Yk−1 - ∆Sk−1

Xk = PS(Rk)

∆Sk = Xk - Rk

Yk = PU(Xk)

end

Ω = Yk

Figure 3.8: The modified alternative projection algorithm.

Among many possible choices, the following convergence condition can be

used in Fig. 3.8 to stop the loop:

max

{‖ Xk − Xk−1 ‖
‖ Xk ‖ ,

‖ Yk − Yk−1 ‖
‖ Yk ‖ ,

‖ Yk − Xk ‖
‖ Yk ‖

}

≤ ε

where ε is a small tolerance number (say ε = 10−8).

3.6 Experiment Results

We employ a Monte Carlo model of measurement to verify the robustness and

accuracy of our extraction algorithms in this chapter. One of the advantages of

using Monte Carlo simulation is that it allows us to simulate different variation

scenarios and measurement settings that are difficult to control in reality. By

comparing the extracted variation components with the known variation com-

ponents used in the Monte Carlo model, we can quantitatively examine how

robust and how accurate our extraction algorithms are in the presence of differ-

ent amount of measurement errors. Such a study is useful because it provides us

the confidence in applying the algorithms to real wafter measurement.
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3.6.1 Extraction of Valid Spatial Correlation Function

In this experiment, the Monte Carlo model is based on a valid correlation function

ρ(v) that follows a homogeneous and isotropic random field, but with different

variation amounts for the three variation components (σ2
G, σ2

S, and σ2
R). We

simulate the measurement process by generating a set of measurement data from

N number of sample chips and M number of measurement sites on each chip.

To model the reality due to measurement error, we add a Gaussian noise with

different variation amounts during the Monte Carlo sampling. By applying the

algorithm as shown in Fig. 3.6, we extract the global variation component σ2
g ,

random variation component σ2
r , spatial variation component σ2

s , and parameter

of b and s that define the spatial correlation function ρ(v) for a homogeneous and

isotropic random field as shown in (3.34). By plugging all variation components

into (3.25), we obtain the overall process correlation at any distance. We measure

the accuracy of our extraction algorithm for the global variation and spatial

variation, but not the random variation as it is indistinguishable from the added

measurement noise. For the global variation component, the relative error is

given by

err(σ2
G) =

σ2
g − σ2

G

σ2
G

. (3.50)

For the spatial variation component, the relative error is given by

err(σ2
S) =

σ2
s − σ2

S

σ2
S

. (3.51)

And for the spatial correlation function, the relative error is given by

err(ρ(v)) =
‖ ρ(v) − ρ(v) ‖

‖ ρ(v) ‖ . (3.52)

From statistical theories, we know that if we have more measurement data, we

have more confidence in the accuracy of statistics obtained from measurements.
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In reality, however, measurement of chips is usually very time-consuming and

expensive. Therefore, it is desirable to attain similar accuracy yet with as few

number of measurement data as possible. A robust extraction algorithm helps to

achieve that goal.

We report experiment results in Table 3.1, where N is the number of sample

chips, M is the number of measurement sites, Noise is the amount of random

noise added into the Monte Carlo model in terms of the total variation (σ2
G + σ2

S

+ σ2
R). The product of N and M gives the total number of measurements.

According to Table 3.1, we see that our algorithm is very accurate in extract-

ing different variation components, yet very robust to different amount of random

noise. For example, with N=2000, M=60 and Noise=10%, our extracted results

have about 0.4% error for the global variation, 1.9% error for the spatial varia-

tion, and 2.0% error for the spatial correlation function. When the noise amount

changes from 10% to 100%, the accuracy of our results almost does not change

at all. This convincingly shows that our extraction algorithm is very resilient to

the measurement noise.

We further test the robustness of our algorithm by reducing the number of

chip samples N from 2000 to 1500, 1000, and 500. We see that when there are

reasonable number of chip samples (1500 and 1000), our algorithm still gives quite

accurate results, and the maximum error for the global variation is no more than

10%, and the maximum error in either the spatial variation or spatial correlation

function is less than 5%. When the chip samples drop to 500, we start to see

a larger error (but no more than 20%) in the extracted global variation. These

observations are expected, because according to the statistical sampling theories,

there is a lower bound on the number of samples in order to obtain reasonably

accurate statistics.
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Table 3.1: Process variation extraction.

N M Noise err(σ2
G) err(σ2

S) err(ρ(v))

2000 60 10% 0.4% -1.9% 2.0%

50% 0.3% -2.8% 2.7%

100% 0.3% -2.6% 3.7%

1500 60 10% 4.1% 2.5% 0.9%

50% 3.9% 2.1% 1.0%

100% 3.8% 2.0% 1.2%

1000 60 10% 7.5% 1.2% 1.0%

50% 7.2% 1.0% 1.0%

100% 6.9% 1.4% 1.0%

500 60 10% 17.8% 10.9% 6.6%

50% 18.3% 6.1% 4.8%

100% 18.6% 4.7% 3.1%

1000 50 10% 6.5% 0.8% 2.8%

50% 5.7% -0.4% 3.0%

100% 5.1% -3.0% 3.5%

40 10% 8.6% -4.1% 6.5%

50% 8.7% -3.9% 7.0%

100% 8.9% -2.3% 8.4%

Moreover, we observe that because of the optimization procedure used to

extract the spatial variation and spatial correlation function as shown in (3.35),

the extraction of those two parts is not as sensitive to the number of sample chips

as the global variation extraction does.

We further fix the number of sample chips N to be 1000 and vary the number

of measurement sites M on the chip from 60 to 50 and 40 to study how the

accuracy of our algorithm changes. From Table 3.1, we see that our algorithm

still gives quite accurate results. When M changes from 60 to 40, we only see

slight increase of errors for all extracted variation components, and none of them

has more than 10% error.

We further plot one of the extracted overall process correlation functions

in Fig. 3.9, where the (red) triangle points are the model data from the Monte
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Figure 3.9: Experiment on extracting the overall process correlation function.

Carlo model, the (blue) dotted points are data from our measurements with noise

added. Obviously, the measurement data are noisy, not consistent, and are quite

difficult to use directly. But after applying our algorithm, we obtain a very robust

yet consistent results as shown in the (black) continuous curve, which not only

captures the underlying process model, but also provide consistent extrapolation

results for those data points that are not even available from measurement.

3.6.2 Extraction of Valid Spatial Correlation Matrix

In the second experiment, we obtain the measurement data for M number of grids

of interest on the chip based on a Monte Carlo model with different Gaussian

noise added. We want to obtain the overall process correlation matrix for the M

number of grids. We apply the algorithm as shown in Fig. 3.7 to achieve this

goal.
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Table 3.2: Overall process correlation matrix extraction.

Points 50 100 150 200

λ(A)least -0.83 -1.43 -1.84 -2.38

λ(Ω)least 0 0 0 0

‖ A − Ω ‖2 2.09 4.35 6.85 9.39

‖A−Ω‖2

‖A‖2
5.2% 5.9% 6.6% 7.3%

Iterations 23 34 38 41

We show experimental results in Table 3.2. According to the algorithm as

shown in Fig. 3.7, we compute individual pair-wise correlations and then put

them together to obtain an estimated correlation matrix A. Because of measure-

ment noise, the resulting correlation matrix may not be positive semidefinite as

illustrated by the second row in Table 3.2, where the smallest eigenvalue λleast

of A is shown. For example, when we have 200 points, the measured correlation

matrix has the smallest eigenvalue -2.38. The negative eigenvalue indicates that

the measured correlation matrix is not positive semidefinite. On the contrary,

after applying the modified alternative project algorithm as shown in Fig. 3.8,

we can always find a “closest” yet valid correlation matrix Ω. And the resulting

matrix Ω has all non-negative eigenvalues as shown in the third row in Table 3.2.

Moreover, the difference between Ω and A is very small (no more than 10%).

We also report the number of iterations needed for the algorithm as shown in

Fig. 3.7 to converge. We find that the algorithm converges reasonable fast, and

it takes only 41 iterations for the largest test case with M=200. We further plot

the change of the least eigen-value of Yk (which is negative) in each iteration in

Fig. 3.10, where the y-axis is the log-plot of the negative of the least eigen-value

of Yk, and x-axis is the iteration numbers. According to Fig. 3.10, we see that
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Figure 3.10: The change of the least eigen-value of Yk in the alternative projection

algorithm as shown in Fig. 3.7.

the the least eigen-value of Yk gets improved quickly in the first two iterations,

and then its improvement becomes relative stable in the following iterations.

According to the definition of rate of convergence [81], we have

lim
k

|λ(Yk+1)least|
|λ(Yk)least|

= µ, (3.53)

where the number µ is called the rate of convergence, and it should be between 0

and 1. If µ=0, then the sequence of λ(Yk)least converges superlinearly. Otherwise,

the sequence converges linearly with the rate of convergence of µ. We plot the

estimated rate of convergence in each iteration in Fig. 3.11. We observe that

the alternative projection algorithm indeed has a linear convergence, which is in

agree with the theoretical results given by [43]. The the rate of convergence in

this particular example as shown in Fig. 3.11 is approximately 0.72.

In summary, our experiment results convincingly show that our proposed

extraction algorithms can accurately extract different variation components and

are robust to the unavoidable measurement noise. Moreover, it is guaranteed

65



0 5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iteration number k

λ(
Y

k+
1) le

as
t/λ

(Y
k) le

as
t

Figure 3.11: Estimated rate of convergence of the alternative projection algorithm

as shown in Fig. 3.7.

that our algorithms always produce a valid spatial correlation function or spatial

correlation matrix, which warrants the validity of further operations on these

extracted variation data.

3.7 Conclusion and Discussion

Robust extraction of statistical characteristics of process parameters is essential

to achieve the benefits provided by statistical timing analysis and robust circuit

optimization. In this chapter, we have developed a novel technique to robustly

extract the statistical characteristics of process variation from experimental mea-

surements. Our technique guarantees that the resulting spatial correlation func-

tion and spatial correlation matrix are always valid and are the closest to the

measurement data even if the data are distorted by some measurement noise.

In this chapter, we have assumed that the spatial correlation follows a Gaus-

sian random process, hence only second-order moments are enough to character-
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ize the variation. In the future, we will remove such an assumption and develop

techniques that apply to more general random processes. We also plan to apply

this technique to real wafer data and use the extracted process characteristics

for robust mixed signal circuits tuning with consideration of correlated process

variations in the future.
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CHAPTER 4

Efficient Modeling of Spatial Correlations for

Parameterized Statistical Static Timing

Analysis

This chapter presents an efficient method to model spatial correlations in the con-

text of parameterized statistical static timing analysis (SSTA). Multiple spatially-

correlated process parameters with different spatial properties can be handled

by this method simultaneously and efficiently. The method constructs a first-

order canonical form to model the spatial correlation, so that the resulting forms

capture the underlying spatial correlation with minimal error. The proposed

technique is implemented in an industrial SSTA tool. Experiment results with

industrial circuits show that the proposed approach is significantly more efficient

than the existing approach without loosing accuracy. Results also show that by

using the proposed approach, the overhead of modeling spatial correlation in pa-

rameterized SSTA is small in terms of both memory and runtime even for large

industrial designs.

4.1 Introduction

In parametrized statistical static timing analysis (SSTA), we need to represent

delay quantities in the timing graph as a first-order canonical form as discussed
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in section 2.2, in which delays are a linear function of a set of mutually indepen-

dent random variables. This representation greatly simplifies the computation of

SSTA, as operations (such as summation, subtraction, maximization and mini-

mization) of timing quantities can be carried out easily as shown in section 2.4.

Several authors have addressed the problem of modeling spatial correlation in

parameterized SSTA [16, 1, 48, 114]. The problem, however, is far from being

solved for mainstream practical use.

The quad-tree approach proposed in [1] represented gate delays as a linear

combination of a set of independent variables that correspond to a set of hierar-

chical rectangular grids. The sharing of hierarchical grids is used to model the

spatial correlation between gate delays. The authors assumed that those coeffi-

cients used in the linear combination are given by users. It is not clear, however,

how users can compute these coefficients to model a given spatial correlation be-

havior. Another drawback is that devices near the center of the chip will belong

to different hierarchical grids, thus under-estimating their spatial correlations.

The approach of [16] also used a set of rectangular grids to model spatial cor-

relations. It is assumed that a correlation matrix for those grid random variables

was known. Principal component analysis (PCA) was used to represent gate

delays as linear functions of a set of uncorrelated random variables. As we will

show in section 4.3, the PCA-based approach, however, has several drawbacks,

making it inefficient for large designs.

In another work [48], the authors proposed to model spatial correlations by

expressing a gate delay as a linear function of four independent random variables

that corresponds to four corners of the chip. The coefficients of this function

depended on the distance between the gate and the chip corners. This approach,

however, is very crude in capturing various spatial correlation behaviors because
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of the limited freedom in choosing both correlation coefficients and the number

of random variables.

To avoid the difficulty of modeling spatial correlation, [114] proposed to pro-

cess those spatially correlated process parameters directly in parameterized SSTA

via an extended pseudo-canonical form. But the covariance between different tim-

ing quantities has to be computed by multiplying the correlation matrix with the

coefficients of the extended pseudo-canonical forms; thus loosing the efficiency of a

parameterized SSTA. Direct handling extended pseudo-canonical forms with spa-

tially correlated terms also complicates other necessary operations, such as com-

putation of standard deviation and result reporting, for a parameterized SSTA.

This chapter develops a novel method to model correlations in the context of

parameterized SSTA. The method is accurate and efficient, and it can be used

for large industrial designs with different spatial correlation behaviors. The tech-

nique is fully compatible with the existing parameterized SSTA framework and

requires no modification of its core engine in order to consider spatial correlations.

Experiment results with industrial circuits show that the proposed approach is

significantly more efficient than the existing PCA-based technique without loos-

ing accuracy. Results also show that by using the proposed method, the overhead

of modeling spatial correlation in parameterized SSTA can be as small as 6% in

memory and 25% in runtime even for large industrial designs.

4.2 Parametrized Spatial Correlation Modeling

We divide the chip area into a set of grids, such as rectangular grids as shown

in Figure 4.1. The distance between two grids is defined as the center to center

distance. We model that the process parameter of interest at each grid as a
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random variable Fj. Using the first-order approximation, we represent device or

interconnect characteristics (such as delay) of interest, Dk, as follows

Dk = Dk,0 +
∑

j

βjFj, (4.1)

where Dk,0 is the mean value of Dk; Fj models the physical process parame-

ters (such as channel length, and oxide thickness) that affect Dk; and βj is the

sensitivity of Dk to Fj.
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Figure 4.1: Modeling of the spatial correlations.

To compactly represent all delay quantities in the timing graph in a matrix

form, we have

D = D0 + Bt,n · F, (4.2)

where D is a t× 1 random vector that represents all delay quantities of interests;

D0 is a t × 1 mean vector for D; F is a n × 1 random vector that includes all

physical process parameters at all grids; and Bt,n is a t×n coefficient matrix. The

value of n equals to the product of the number of random process parameters
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and the number of grids in the chip. For example, if we have three random

process parameters, and we divide the chip by a 4 × 4 rectangular grids, then

n = 3 × 4 × 4 = 48.

In the presence of spatial correlation, process parameters at different locations

are not independent. This spatial correlation can be captured by the spatial

covariance matrix of F. Without loss of generality, we assume that the random

physical process parameters F follow a multivariate normal distribution with

zero mean and unit variance. Therefore, the covariance matrix of F becomes the

correlation matrix, which we denote as Ωn,n. The spatial correlation distance

is defined as the minimum distance at which the spatially correlation between

two grids is sufficiently small (or smaller than a given threshold value). For a fix

chip area, if the spatial correlation distance is large, meaning parameters at grids

far apart are still spatially correlated, the correlation matrix Ωn,n will be very

dense; on the contrary, if the spatial correlation distance is relatively small, then

the correlation matrix Ωn,n will be sparse because a lot of entries in Ωn,n will be

zero.

To represent (4.2) as a first-order canonical form, we need to transform the

correlated random vector F into a linear combination of a set of uncorrelated

random variables.

4.3 Review of PCA-based Spatial Correlation Modeling

The authors of [16] employed the principle component analysis (PCA) to rep-

resent (4.2) as a first-order canonical form. The PCA-based approach has been

used extensively for parametrized SSTA in the literature. Hence we review this

approach with discussion of its drawbacks in the following.
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[16] first performs the eigen-value decomposition (EVD) on the correlation

matrix Ωn,n to obtain

Ωn,n = Vn,n · Λn,n · VT
n,n, (4.3)

where Λn,n is a diagonal matrix with each entry being an eigen-value of Ωn,n;

Vn,n is an orthonormal matrix with each column being an eigen-vector of Ωn,n.

Because the correlation matrix Ωn,n is positive semidefinite by definition, eigen-

value decomposition on Ωn,n is always feasible. By changing of variables, it

obtains

F = Vn,n · Λ1/2
n,n · X, (4.4)

where X is an n×1 random vector with its each component being an independent

random variable with a standard normal distribution. By plugging (4.4) into

(4.2), we obtain

D = D0 + Bt,n · Vn,n · Λ1/2
n,n · X (4.5)

= D0 + At,n · X, (4.6)

where At,n = Bt,n · Vn,n · Λ1/2
n,n , and it is the new coefficient matrix of X. As X

contains mutually independent random variables, (4.6) is in a first-order canonical

form. The approach, however, has several drawbacks.

Firstly, in order to perform eigen-value decomposition, the PCA-based ap-

proach requires the matrix Ωn,n to be a valid correlation matrix, i.e., it must be

positive semidefinite. In reality, however, the matrix Ωn,n is obtained through

measurement. Because of unavoidable measurement errors, the correlation ma-

trix obtained from measurement may not always be positive semidefinite. This

problem has been ignored in the literature. In chapter 3, we have developed a

novel technique to address this problem.
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Figure 4.2: Structure of the spatial correlation matrix for 4×4 grids.

Secondly, the computation cost of eigen-value decomposition for Ωn,n is high.

As we have discussed above, the value of n depends on both the number of random

process parameters and the number of grids in the chip. To reasonably capture

the spatial correlation and timing characteristics, the number of grids required

to cover the whole chip area can not be too small. For example, for a chip that

is 10 × 10mm2 with a correlation distance as 100µm, dividing the chip area into

100 × 100 grids is barely enough to model the spatial correlation, as each grid

itself is already 100µm in length. In this case, even we only consider one source of

random process parameter, the matrix size Ωn,n would be 10000× 10000. Eigen-

value decomposition on such a large matrix is quite expensive. To make it even

worse, for modern CMOS manufacturing technologies, we can easily have more

than tens of sources of random process parameters. This apparently renders the

PCA-based approach not practical.

Lastly, the PCA-based approach also complicates the SSTA computation. In

the original representation as shown in (4.1), we note that delay Dk is usually

affected by a small number of local grid random variables, thus the matrix struc-

ture of Bt,n is sparse. In addition, because the spatial correlation distance is
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Figure 4.3: Structure of matrix V16,16 for 4×4 grids.

usually relatively small compared to the chip size, process parameters at each

grid are only spatially correlated to process parameters not far away. This prop-

erty makes the structure of Ωn,n also sparse. After eigen-value decomposition

on Ωn,n, however, the obtained Vn,n may be dense. Because of the dense struc-

ture of Vn,n. the new matrix At,n obtained from (4.6) does not have the sparse

structure any more.

As an example, we generate a sparse correlation matrix Ωn,n with n = 16,

whose structure is shown in Figure 4.2. After EVD, we obtain Vn,n, whose

structure is also shown in Figure 4.3. We can clearly see that the matrix Vn,n

does not preserve the sparse structure of the original correlation matrix Ω16,16.

The impact of this observation is that under the new set of random variables,

each delay quantity is a function of almost all modeled random variables in X!

In other words, instead of having a short representation as shown in (4.1), we

now have a very long representation for each delay quantity. If we were to use

these new first-order canonical forms for SSTA computation, it would obviously
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require more computations for each atomic operation, such as addition, subtrac-

tion, maximization and minimization.

In the following, we present a novel technique that overcomes the above prob-

lems in modeling spatial correlation.

4.4 Efficient Fitting-based Spatial Correlation Modeling

4.4.1 Principles

We notice that our ultimate goal is to represent delay quantities as a first-order

canonical form in the presence of spatial correlation. We also notice that for those

random process parameters exhibiting spatial correlation, they are more likely to

be correlated with parameters close by than parameters far away.

Hence, for the purpose of modeling spatial correlation, we associate each grid

with one (or a number of) dedicated spatial random variable Xs,i that is inde-

pendent to one another. We introduce the concept of correlation index I, which

defines a set of spatial random variables to model the spatial correlation behavior

of F i
j , the ith process parameter at grid j, i.e.,

F i
j =

∑

k∈I

γk · Xs,k, (4.7)

where γk is coefficient to be determined. The concept of correlation index helps to

model the spatial correlation. For example, for two parameters that are physically

closer to each other, we can define their respective correlation indices in a way

so that they share more common spatial random variables. On the other hand,

for two that are physically apart from each other, their correlation indices can be

defined so that they do not share any common correlated random variables.

To capture this behavior, the correlation index for each F i
j can be defined
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according to its physical location in the grids. For example, by letting each

grid’s correlation index contain spatial random variables associated with the grid’s

closest nine neighboring grids as shown in Figure 4.1 for parameters at grid 5,

then F i
j can be represented as a linear combination of spatial random variables

associated with those nine grids.

To compactly represent the random process parameters for all grids in a ma-

trix form, we obtain

F = Gn,q · Xs, (4.8)

where Xs is a q × 1 spatial random vector, Gn,q is a coefficient matrix, whose

structure is determined by the correlation index I following (4.7). Because the

correlation index I contains only neighboring grids’ spatial random variables,

which are a small fraction of the total grids, the structure of Gn,q is sparse.

We can obtain the first-order canonical forms by plugging (4.8) into (4.2) as

follows

D = D0 + Bt,n · Gn,q · Xs. (4.9)

Because both Bt,n and Gn,q are sparse, the first-order canonical form as defined

in (4.9) will be much shorter than that from (4.6). Thus SSTA based on our

method using (4.9) is expected to run faster than that based on PCA approach

using (4.6).

To determine Gn,q, we compute the correlation matrix as defined by (4.8) as

follows

Ωn,n = E(F · FT) = Gn,q ·E(Xs · XT
s ) · GT

n,q = Gn,q · GT
n,q. (4.10)

As we know all n × n entries in Ωn,n, by equating each entry of Ωn,n with each

entry of Gn,q · GT
n,q, we obtain n2 equations. The number of unknowns in Gn,q
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depends on the correlation index. In general, we will define the correlation index

in a way to make Gn,q sparse, so the exact number of unknowns in Gn,q will

be far less than nq. Hence, we are likely to end up with an over-determined

system of equations, i.e., the number of equations is greater than the number of

unknowns.

The problem of solving Gn,q according to (4.10) can be formalized as an uncon-

strained optimization problem that minimizes the difference between Gn,q ·GT
n,q

and Ωn,n, i.e.,

min : ‖ Gn,q ·GT
n,q − Ωn,n ‖ . (4.11)

Once the minimization problem is formulated, it can be easily solved via any non-

linear unconstrained minimization technique. Because the above problem mimics

the least-square fitting problem, we call our method as fitting-based method for

spatial correlation modeling.

It should be noted that the above minimization problem (4.11) is in fact a

more general formulation of the eigen-value decomposition problem for PCA. For

example, if we let the number of spatial random variables q equal to the number

of grids n, which is the setting for a PCA-based approach, then Gn,q becomes

a square matrix Gn,n. Without further assuming any special structure on Gn,n,

we obtain the optimal solution to (4.11) as Gn,n = Vn,n · Λ1/2, with a global

minimum value of zero for (4.11). By plugging the solution into (4.9), we obtain

exactly the same results as obtained from the PCA approach as shown in (4.4)!

In another word, the PCA-based approach achieves the global minimum to

problem (4.11) but at the expense of longer canonical forms. In contrast, by

choosing a sparse structure for Gn,q, we can not only avoid the expensive EVD

operation, but also obtain shorter canonical forms. The only price is that our

solution to (4.11) may not be optimal. We believe the formulation of (4.11)
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is better than the PCA-based approach in that it provides a smooth trade-off

between model accuracy and runtime efficiency. Experiment results confirm that,

in practice, our approach is indeed much more efficient than the PCA-based

approach without loosing much accuracy.

The exact formulation of (4.11) depends on the specific structure of Gn,q, or

equivalently, the choice of correlation index for each grid. It is this flexibility

that allows us to trade model accuracy with runtime efficiency smoothly. In the

following, we would like to illustrate the method through some concrete example

of Gn,q and Ωn,n.

4.4.2 Case Studies

In this section, we discuss how to determine the value of γk in (4.7), or equivalently

Gn,q through cases studies.

Without loss of generality, in the following, we only consider one process

parameter F . Among F ’s three random variation components, i.e., inter-chip

global variation, spatial correlation, and uncorrelated random variation, we only

consider its spatial correlation part. Following the definition from chapter 3, we

model the spatial correlation as a homogeneous and isotropic random field with

the spatial correlation function given as f(d). All distances are normalized with

respect to one grid length. We generate the correlation matrix Ωn,n by using the

spatial correlation function f(d). Because spatial correlation is homogeneous and

isotropic, the number of unique correlation coefficients in Ωn,n equals to the num-

ber of unique distances between two correlated grids. For example, assuming the

spatial correlation distance as 2
√

2 for grids as shown in Figure 4.4, we obtain five

unique correlation distances that correspond that five unique correlation coeffi-

cients, which do not include coefficient zero for distance greater than the spatial
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correlation distance, nor coefficient one for distance within one grid. Therefore,

there are total five unique entries in the correlation matrix Ωn,n generated by the

spatial correlation function f(d).

2 3

6

98

5

1

4

7

d5

d4

d3

d2
d1

Figure 4.4: Five different distances that define five non-trivial spatial correla-

tion coefficients between two correlated grids, assuming the spatial correlation

distance is 2
√

2.

For the same example as shown in Figure 4.4, we let the correlation index

for each grid include those spatial random variables that are associated with the

grid’s closest nine neighboring grids (including the grid itself). If we associate

each grid with one spatial random variable, then parameters at each grid can

be represented as a linear combination of nine spatial random variables. For

example, for the parameter at grid 5 in Figure 4.4, we have

F5 =
∑

k=1..9

γk · Xs,k. (4.12)

Under this model, parameters at different grids will share different spatial random

variables, and this sharing is closely related to their respective physical locations.

80



For example, as shown in Figure 4.1, the parameter located at grid 12 (F12) shares

Xs,1, Xs,2 and Xs,3 with F5; the parameter at grid 10 (F10) shares only Xs,1 with

F5; while parameter at grid 15 (F15) shares nothing with F5. In another word,

F12 will more spatially correlated with F5 than F10 does, while there is no spatial

correlation between F15 and F5 at all.

Because the spatial correlation is only a function of distance, it makes sense

to set the same value for all γk if their corresponding grids are the same distance

away from grid 5. Then among the nine coefficients in (4.12), γ1 to γ9, we only

have three unique values, i.e., γ5, γ1=γ3=γ7=γ9, and γ2=γ4=γ6=γ8, because grid

1, 3, 7 and 9 have the same distance from grid 5, so do grid 2, 4, 6 and 8 from

grid 5. In another word, for the parameter of interests at grid 5, we have F5 =

γ5Xs,5 + γ1 (Xs,1 + Xs,3 + Xs,7 + Xs,9) +γ2 (Xs,2 + Xs,4 + Xs,6 + Xs,8).

By equating the spatial correlations from our model with those in Ωn,n ac-

cording to (4.10), we obtain the following system of equations

4γ2
2 + 4γ2

1 + γ2
5 = 1 (4.13)

2γ5γ2 + 4γ2γ1 = f(d1) (4.14)

2γ2
2 + 2γ5γ1 = f(d2) (4.15)

2γ2
1 + γ2

2 = f(d3) (4.16)

2γ2
2γ1 = f(d4) (4.17)

γ2
1 = f(d5) (4.18)

According to the above system of equations (4.13) to (4.18), we have total of six

equations with only three unknown coefficients to be determined. Thus it is an

over-determined system. We can solve it by formulating it as a non-linear least

square problem.

If we want obtain a determined system of equations, we can associate three
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independent spatial random variables into each grid, and each of them has its

own coefficient when presented in (4.7). Then following the same calculation as

shown above, we would have six equations similar to (4.13) to (4.18) with some

modification. Because we now have six unknown coefficients to be determined.

the so-obtained system of equations become a determined system. This problem

can be solved by a Newton-Raphelson procedure.

Under the same spirit, we can extend this technique to other grids. For

example, if we divide the chip area into a set of hexagon grids as shown in Figure

4.5, we would have two unknown coefficients to be determined, assuming that

the correlation index only contains the first level neighborhood grids. A close

examination would reveal that under this case, we have three different distances

between two grids that share at least one common neighboring grid. Therefore,

such a model is also an over-determined system. To obtain a determined system,

we can again introduce one additional independent spatial random variable into

each grid.

4.5 Experiment Results

The proposed technique for handling spatial correlations has been implemented

in the industrial statistical timing analysis tool, EinsStat [94]. For each spa-

tially correlated process parameter, EinsStat allows to specify different spatial

correlation functions with different correlation distances. In chapter 3, we have

presented a technique to extract a valid spatial correlation function based on

measurement data. Table 4.1 shows the characteristics of three real industry

ASIC designs that are used to test our implementation.

Among the modeled six sources of random process parameters in our exper-
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Figure 4.5: Three different distances that define three unique spatial correlation

coefficients for hexagon grids.

Table 4.1: Characteristics of test cases.

Chip Gates Width (µm) Length (µm)

D1 87249 1200 1080

D2 57390 1342 1344

D3 8969 9996 9996

iments, only one of them has spatial correlation. The 3-sigma variation of this

spatially correlated process parameter is set as 10% to 20% of its nominal value.

The 3-sigma variation for the rest of process variations is set as 5% in total. We

distribute the total variation into three parts: inter-chip variation (20%), intra-

chip spatial correlation (60%), and uncorrelated random variation (20%). The

purpose for this setting is to accentuate the effect of spatial correlation.

For comparison purpose, we have also implemented the PCA-based approach.

Theoretically, the PCA-based approach is exact in capturing the given spatial
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Table 4.2: Experiment results on accuracy comparison.

Chip Corr. Grid PCA-based Fitting-based

Dist. (µm) Size (µm) Mean (ns) Std. Dev. (ns) Mean (ns) Std. Dev. (ns)

D1 400 80 3.715 0.178 3.715 0.176

D2 400 80 4.210 0.624 4.210 0.652

D3 4000 800 11.45 0.918 11.45 0.987

correlation. Therefore, we use it as the baseline case for accuracy comparison.

Note that, for the sparse correlation matrix, we used the sparse version eigen-

value decomposition for the PCA-based approach.

Table 4.2 compares the accuracy between our fitting-based approach and the

existing PCA-based approach. The correlation distance is shown in column 2 for

all test cases, with the grid size of each design in column 3. Compared to the

grid size, the correlation distance in this set of experiments is relative large. The

reason is that we want to guarantee that the PCA-based approach can achieve

high accuracy. We report the mean and standard deviation of the circuit delay

in column 4 and 5, obtained from the PCA-based approach; and in column 6

and 7, obtained from our fitting-based approach. We observe that our proposed

approach can achieve the same mean delay value as the PCA-based approach,

and the standard deviation from our approach is almost the same as the one from

the PCA-based approach. This convincingly shows that our approach is accurate

in capturing the spatial correlation for parameterized SSTA.

We further compare runtime performance between our approach and the PCA-

based approach in Table 4.3. The runtime include both the spatial correlation

modeling time and the parameterized SSTA runtime. Results are report for the

first design D1. Different correlation distance with different grid size are tested.

According to Table 4.2, we can see that when the grid size becomes increas-

ingly smaller, the PCA-based approach becomes very slow. This observation is
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Table 4.3: Experiment results on run time comparison for D1.

Correlation Grid Grid PCA-based Fitting-based

Distance (µm) Size Number (second) (second)

400 160 63 127 80

200 80 143 124 80

100 40 378 128 83

50 20 1167 390 87

25 10 4599 17703 98

expected, as the smaller the grid size, the larger grid number, hence the larger

the correlation matrix fed into eigen-value decomposition. For large correlation

matrix, eigen-value decomposition becomes the bottle-neck of the whole compu-

tation. Moreover, in our experiments, we also observe that for large matrices,

eigen-value decomposition has convergence and accuracy issues. In contrast, our

proposed method is almost invariant to the number of grids used to model the

spatial correlation. Compared to the PCA-based approach, our method achieves

more than 150× speedup.

We also compare the timing results (mean and standard deviation), runtime,

and memory usage of our approach with the basic SSTA without modeling spa-

tial correlation (denoted as SSTA-SP) as shown in Table 4.4. Compared to the

timing results obtained from SSTA without considering spatial correlation, con-

sidering spatial correlation seems to have no impact on the mean circuit delay,

but does change the standard deviation. When the correlation distance is increas-

ingly smaller, the standard deviation becomes smaller, implying that the spatial

correlation becomes more localized. Compared to SSTA-SP, our approach incurs

very small amount of runtime overhead. For example, the SSTA-SP consumes 63

seconds CPU time, while our approach considering spatial correlation consumes

no more than 98 seconds CPU time. The relative runtime overhead is about 50%

at most. In terms of memory usage, the SSTA-SP method need 930 megabytes,
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Table 4.4: Experiment results compared with basic SSTA for D1.

Corr. Grid Delay(ns) Runtime Memory(MB)

Dist.(µm) Number Mean Std.Dev. (second) Total Overhead

SSTA-SP 3.715 0.205 63 930 0

SSTA+SP 200 143 3.715 0.185 80 1110 180

50 1167 3.715 0.166 87 1270 340

25 4599 3.715 0.150 98 1550 580

while considering spatial correlation using our method need no more than 1550

megabytes. The relative memory overhead is no more than 50%.

These experiment results convincingly demonstrate that the proposed tech-

nique provides an efficient way to handle spatial correlation while retaining similar

accuracy compared to the PCA-based approach. Moreover, the proposed ap-

proach can handle large designs with small runtime and memory overhead, call

compared to the base statistical timing without considering spatial correlation.

4.6 Conclusion and Discussion

In this chapter, we have presented a novel technique to model spatial correlation

in parameterized statistical static timing analysis. The new technique has been

implemented in the industrial statistical static timing analysis tool, EinsStat. The

implemented software has been used for timing analysis of real industrial ASIC

designs. The results proved that our method can handle real designs accurately

with small memory overhead and run time overhead.
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CHAPTER 5

Simultaneous Buffer Insertion and Wire Sizing

Considering Systematic CMP Variation

This chapter studies the impact of Chemical Mechanical Polishing (CMP)-induced

systematic variation on interconnect parasitics and design optimization. It shows

that (1) fill insertion for CMP planarization significantly increases interconnect

capacitance, and different fill patterns introduces additional variations; and (2)

CMP-induced dishing and erosion effects can significantly increase interconnect

resistance, but have limited impact on capacitance. Considering a table-based

best fill insertion to minimize CMP effects and its associated RC parasitics with

dishing and erosion, we solve a simultaneous buffer insertion, wire sizing, and fill

insertion problem (SBWF). Experiment results show that by solving the SBWF

problem, we can, on average, improve timing by 1.6%, reduce power by 3% with

4.9% less buffer area, all compared to the conventional two-step approach, i.e.,

solving simultaneous buffer insertion and wire sizing problem followed by fill pat-

tern insertion.

5.1 Introduction

Design uncertainty in nanometer technology nodes threatens cost-effectiveness

of high-performance circuit manufacturing processes. The main cause for design
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uncertainty is two-fold: systematic manufacturing process variation and random

process variations due to small geometric dimensions [93]. For example, chemical-

mechanical planarization (CMP) is an enabling manufacturing process to achieve

uniformity of dielectric and conductor height in back-end-of-line (BEOL) process

step. However, CMP also introduces systematic design variations due to dummy

fill insertion [18] and dishing and erosion [91].

It can be intuitively understood that dummy fill insertion for CMP planariza-

tion would change interconnect parasitics. Such parasitic variation should be

accurately accounted in order to achieve interconnect optimization, especially

when technology continues to scale down to nano-meter region. However, exist-

ing research in this regard is very limited and there is no systematic study in

the literature that have quantitatively studied the interconnect parasitic varia-

tions due to CMP process. For example, as we will show later in this chapter,

interconnect capacitance is affected not only by dummy fill insertion, but also

by different dummy fill patterns. However, such combined impacts have been

largely ignored by existing researchers. For example, [87] assumed one regular

fill pattern array and showed that the increase of interconnect capacitance due to

such a fill pattern cannot be ignored for interconnect optimization. In [53], the

variation of total capacitance due to the Boolean-based placement of dummy fills

is considered and it has shown that up to 25% variation is possible. However,

it is explained that such a variation is mainly due to intra-die variation but not

fill pattern per se. [34] did propose to examine the impact due to different fill

patterns, however, no quantitative experiment results have been reported.

The first contribution of this chapter is a study of interconnect parasitic varia-

tions due to CMP effects. Specifically, different fill patterns that are “equivalent”

with respect to foundry rules, and dishing and erosion of conductors and dielectric
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similar to those predicted by ITRS [82]. The second contribution of this chapter

is to develop an efficient algorithm for simultaneous buffer insertion, wire sizing,

and fill insertion considering CMP effects. Results from this chapter have been

reported in [38, 39, 40].

5.2 Modeling of CMP Variation

The following two types of CMP effects are considered, i.e., dummy fill insertion,

and dishing and erosion. Dummy fill insertion improves the uniformity of metal

feature density and enhances the planarization that can be obtained by CMP, but

may also change the coupling and total capacitance of interconnects. Dishing and

erosion phenomena change interconnect cross-sections [91], and hence may affect

interconnect capacitance and resistance.

5.2.1 Fill Patterns

We assume rectangular, isothetic fill features aligned horizontally and vertically

between two adjacent interconnects as shown in Figure 5.1. In the figure, con-

ductors A and B are active interconnects and the metal shapes between them are

dummy fills. We assume all dummy fills are implemented as floating metals in

the final layout, as floating dummy-fills are preferred for most ASIC designs due

to the short design time and considerable area to be filled [77, 87]. Each distinct

fill pattern is specified by: (1) the number of fill rows (M) and columns (N); (2)

the series of widths {Wi}i=1,...,N and lengths {Lj}j=1,...,M of fills; (3) the series

of horizontal and vertical spacings, {Sx,i}i=1,...,N and {Sy,j}j=1,...,M , between fills.

We denote a fill pattern by P (M,N, Wi, Lj, Sx,i, Sy,j) for simplicity.

To specify the amount of fill metal needed in the space and the resulting metal
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Figure 5.1: Fill pattern definition.

density between two adjacent interconnects, we need the following two definitions.

Definition 3 Effective metal density ρCu – the proportion of the area in a pla-

narization window [91] that all metal features (interconnect + dummy fill metal)

occupies, which is usually a hard requirement from the foundry.

Definition 4 Local metal density ρf – the proportion of the oxide area between

two neighboring interconnects that dummy fill metal occupies, which is found by

either rule-based method in the industry or by the recently proposed model-based

method [89] to achieve ρCu.

To achieve CMP planarity and yield optimization, the foundry usually requires

an effective metal density ρCu to be satisfied in a “fixed-dissection” regime [18, 35].

Fixed-dissection fill synthesis typically results in a number of tiles (i.e., square
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regions of layout, usually several tens of microns on a side) wherein prescribed

amounts of fill features are to be inserted to meet individual tile’s metal density

requirement. This translates to assigning the amount dummy fill feature to the

space between interconnects, and such amount is expressed in terms of local metal

density ρf as defined in Definition 4. The inserted fill features subject to at least

two foundry-dependent constraints: (1) each fill feature dimension is within the

bounds [Wl,Wu], and (2) the spacing between any two neighboring fill shapes is

at least Sl. A valid fill pattern P (M,N, Wi, Lj, Sx,i, Sy,j) between two adjacent

interconnects achieves the required fill feature area and satisfies all design rules.

The required fill area A is computed by
∑

i Wi ·
∑

j Lj = Wb · Lb, with Wb

and Lb as the total fill width budget and length budget, respectively. Hence the

total horizontal (or vertical) spacing budget is computed by Sx,b =
∑

j Sx,i =

Wt − Wb (or Sy,b =
∑

j Sy,j = Lt − Lb), where Wt is the spacing between active

interconnects and Lt is the length of the active interconnects. Finding a valid fill

pattern is equivalent to distributing the budgets of Wb, Lb, Sx,b, and Sy,b among

their respective series {Wi}, {Lj}, {Sx,i}, and {Sy,j}, which also determines M

and N . To solve this problem, we define a positive distribution characteristic

function (DCF ) f(z), where z is an integer variable that takes the index of the

element in the series. The ith element of the series is obtained by f(i) plus the

lower bound value as specified by filling rules. For example, the value of the ith

width Wi = f(i)+Wl. If the so-obtained Wi exceeds the upper bound Wu, we take

the upper bound value. Therefore, we can obtain a DRC-clean series under the

given budget for a chosen DCF ; and different DCF s allow us to systematically

explore different fill patterns.

To illustrate this point, we take the width series {Wi} as an example. If we

define f(z) as a constant number, all Wi will have the same value, i.e., all fills
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Figure 5.2: Geometrical interpretation of DCF .

have uniform width. If we define f(z) as a linear increasing function, the fills

will have a progressively increasing width along the x-axis. If we define f(z) as

a triangular function with a convex shape, the center fills will have the largest

width, and fills further away from the center will have a progressively decreasing

width along the x-axis. Figure 5.2 shows three DCF s and their corresponding

geometrical interpretation. In addition to defining different DCF s, we can also

try different DCF combinations for {Wi}, {Lj}, {Sx,i}, and {Sy,j} to obtain more

fill patterns.

The overall algorithm for searching different valid fill patterns for a given

interconnect pair is shown in Figure 5.3.

5.2.2 Fill Pattern Induced Variation

In the following, we examine the impact of fills and fill patterns on interconnect

capacitance. We consider the coupling capacitance (Cc) between active intercon-

nects and total capacitance (Cs) of an individual interconnect that is the sum of

Cc, area capacitance and fringe capacitance. Intuitively, we can think of Cc as

the capacitance between two parallel plates (active interconnect) in the simplest

scenario. On the one hand, as the capacitance of a capacitor is inversely pro-

portional to the distance between the two plates, inserting floating fills reduces

the distance, which therefore results in larger capacitance. On the other hand,
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for (all (Wb,Lb), such that Wb · Lb = T.A)

Sx,b = T.Wt - Wb;

Sy,b = T.Lt - Lb;

for (all valid N ,M )

for (all valid length DCF)

{Lj} = lengthDCF(T ,Lb,N);

for (all valid width DCF)

{Wi} = widthDCF(T ,Wb,N);

for (all valid y spacing DCF)

{Sy,j} = spaceYDCF(T ,Sy,b,N);

for (all valid x spacing DCF)

{Sx,j} = spaceXDCF(T ,Sx,b,M );

Pv = genFillPattern(M,N, Wi, Lj, Sx,i, Sy,j);

T .fillList.push(Pv);

Figure 5.3: Algorithm for fill pattern exploration.

inserting floating dummy fill between the two parallel plates is equivalently to

have two “bigger” capacitors connected in serial, which may decrease the capaci-

tance. Therefore, the final Cc is a combined result of the above two effects. In the

general case, such a first-order relationship is not that straightforward to derive,

hence we resort to the more accurate 3D field solver to examine the impact em-

pirically. We use QuickCap [62], a commercial signoff-quality tool, to extract Cc

and Cs. The on-chip interconnect is modeled as a stripline where the interconnect

layer is sandwiched between two ground planes. We study global interconnects in

the 65nm technology node, with conductor dimensions and spacing derived from

the ITRS [82]. For each layout, the interconnect width is set to the minimum

width while the spacing between two active interconnects varies from 3× to 10×
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minimum spacing1. Interconnect length is 1000µm for all layouts. For a given

layout structure, we first extract the nominal Cc and Cs under the nominal ge-

ometries, without considering effects of either fill insertion or dishing and erosion.

We then extract Cc and Cs under the same nominal geometric values but with

fill insertion.

Figures 5.4 and 5.5 pot the variation of coupling capacitance Cc and total

capacitance Cs, respectively, when fills are inserted to satisfy the required local

metal density ρf . We examine the cases where ρf = 0.3, 0.5, 0.7. We vary the

spacing between interconnects from 3× to 10× minimum spacing. The curves

with diamond symbols are the nominal Cc or Cs without fill insertion. For each

interconnect configuration (given the interconnect spacing and local metal density

requirement), there are many valid fill patterns and each results in different Cc

and Cs. In both Figure 5.4 and Figure 5.5, the curves with square symbols

represent the mean values of Cc and Cs, respectively. The ranges of Cc and Cs

are represented by their respective maximum and minimum values among all the

fill patterns that we have explored; these are shown in Figure 5.4 and 5.5 as well.

From Figure 5.4, we observe that different fill patterns indeed result in dif-

ferent coupling capacitances, and that fill insertion always increases the coupling

capacitance when compared to the nominal case without considering fill inser-

tion. This observation shows that the reduced distance effect due to dummy fill

insertion dominates the capacitor serial connection effect, hence the combined

effect is increased Cc. Furthermore, the gap between the nominal Cc curve and

the mean value Cc curve shows the average increase of Cc due to fill insertion.

When the local metal density requirement increases, Cc increase since fill inser-

tion also grows. Moreover, for the same local metal density, the relative change

1To have fill insertion between active interconnect without violating design rules, the mini-
mum spacing between active interconnect is 3× minimum spacing rule.
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Figure 5.4: Distribution of coupling capacitance Cc.
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Figure 5.5: Distribution of total capacitance Cs.
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of Cc increases as metal spacing increases. For example, when local metal den-

sity ρf = 0.5, the relative Cc change is about 25% on average when the spacing

between interconnect is 3× minimum spacing, and is more than tripled when the

spacing becomes 6× minimum spacing. Similar observations hold for the total

capacitance Cs data in Figure 5.5, except that the relative change of Cs due to

fill insertion is less dramatic than that of Cc. Nevertheless, we observe more than

10% relative change of Cs. We conclude that (1) fill insertion significantly in-

creases both Cc and Cs when compared to the nominal case without considering

fill insertion; (2) the relative change is more prominent for Cc than for Cs; and

(3) different fill patterns yield different Cc and Cs values.

To study the relative importance of the coupling capacitance variation versus

the total capacitance variation due to fill insertion, in Figure 5.6 we plot the

percentage of Cc over Cs with respect to different local metal densities ρf (0.1 to

0.7) between active interconnects, whose spacing is chosen as 3×, 5× and 10×
minimum spacing, respectively. Because different fill patterns have different Cc

and Cs, we only report results for the fill pattern that results in either minimum

or maximum Cc over Cs among all fill patterns studied. The gap between the

maximum and minimum percentage curves shows the potential variation due to

fill insertion. According to Figure 5.6, we see that fill insertion increases the

relative percentage of Cc over Cs compared to the nominal percentage of Cc

over Cs without fill insertion as shown in the title of each plot, and that the

relative percentage increase becomes larger as the local metal density increases.

Moreover, when the metal spacing becomes larger, the relative percentage of Cc

over Cs is also increasingly larger compared to the nominal case. On the other

hand, because the coupling capacitance decreases as the metal spacing increases,

the combined Cc increase is not very significant. In our study, we find that the

coupling capacitance is no more than 20% of the total capacitance among all test
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cases we have studied.

In summary, fill insertion has significant impact on Cc and different fill pattern

densities can result in widely varying Cc. Even though variation of Cs is less

dramatic, we still see a spread of more than 10% in relation to the nominal Cs.

Therefore, to obtain robust designs that will meet requirements (e.g., delay and

parametric yield) after insertion of dummy fill, the variation (increase) of both

Cc and Cs must be considered by the design flow.

5.2.3 Dishing and Erosion Induced Variation

Dishing and erosion caused by CMP [33] is illustrated in Figure 5.7. Dishing

is the difference between the height of the copper in the trench of the metal

interconnect and that of the dielectric in the space surrounding the trenches.

Erosion is the difference between the dielectric thickness before CMP and that

after CMP. The sum of dishing and erosion is the total loss of metal thickness.

Dielectric

Copper

dielectric level after CMP

dielectric level before CMP

dishing

erosion

Figure 5.7: Dishing and Erosion in Copper CMP.

We employ the dishing and erosion model for a multi-step CMP process to

calculate post-CMP interconnect geometries [33], which is the only public avail-

able copper CMP model with detailed parameters published. Our methodology

to be presented, however, does not depend on the specific CMP model used.

Table 5.1 shows the resistance for a 1000µm long global interconnect bus
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Table 5.1: Resistance for 65nm global interconnects.

Width (µm) Space (µm) R0 (Ω) Rf (Ω)

0.24 0.95 186 239 (28.7%)

2.61 0.95 16.9 22.1 (30.6%)

4.75 0.95 9.29 12.3 (31.4%)

0.24 1.43 186 239 (28.8%)

2.61 1.43 16.9 22.1 (30.9%)

4.75 1.43 9.29 12.2 (31.7%)

structure under the 65nm technology node. R0 is the resistance computed from

the geometry values obtained from ITRS specifications, i.e., dishing and erosion

effects are not taken into account. Rf is the resistance after fill insertion which

fulfills 50% metal density requirement (i.e. ρCu = 0.5). Based on this, we include

the metal loss due to dishing and erosion when computing Rf . From Table 5.1,

we can see that resistance variation due to dishing and erosion is significant, and

that resistance is always increasing, potentially by more than 30%. As width

increases, the resistance variation becomes increasingly severe. For example,

when conductor width increases from 0.24µm to 4.75µm, the resistance variation

increases from 29% to 32%. Because we assume the same metal density for all

interconnects, the resistance is only a function of width; this is due to inherent

limitations of the dishing and erosion models [91] we employ.

Table 5.2: Capacitance for 65nm global interconnects.

Width Space Nominal CMP-Fill CMP+FILL

µm µm Cc,0 Cs,0 Cc,1 (∆%) Cs,1 (∆%) Cc,f (∆%) Cs,f (∆%)

0.24 0.95 25.2 286 24.5 (-2.63%) 285 (-0.33%) 33.5 (33.06%) 286 (-0.11%)

2.61 0.95 26.1 967 25.1 (-3.78%) 965 (-0.19%) 32.9 (26.33%) 954 (-1.35%)

4.75 0.95 25.2 1560 26.0 (2.97%) 1571 (0.68%) 31.9 (26.51%) 1556 (-0.23%)

0.24 1.43 8.4 284 8.6 (2.54%) 283 (-0.13%) 20.3 (142.71%) 289 (1.88%)

2.61 1.43 8.7 957 8.3 (-4.35%) 954 (-0.29%) 21.0 (141.81%) 960 (0.36%)

4.75 1.43 7.8 1574 8.4 (8.11%) 1553 (-1.36%) 19.4 (148.81%) 1564 (-0.69%)

100



All capacitance values in Table 5.2 are extracted using QuickCap [62]. Cc,0

and Cs,0 are the coupling capacitance and total capacitance without considering

fill insertion or dishing and erosion effects. Cc,1 and Cs,1 are the coupling capac-

itance and total capacitance for the same assumed structure as in Section 5.2.2,

taking geometry variations due to dishing and erosion effects (but no fill inser-

tion) into account. Finally, Cc,f and Cs,f are the coupling capacitance and total

capacitance when effects due to dummy fill, dishing and erosion are all taken

into consideration. The percentages in the brackets show the relative changes

from values which do not consider any CMP effect (columns 3, 5 and 6). From

Table 5.2, we observe that dishing and erosion alone have marginal impact on

capacitance for most design contexts. In light of these results, we do not consider

dishing and erosion effects on capacitance.

5.2.4 Table-based fill pattern look-up and RC Model

Based upon our study of CMP-induced RC parasitic variations, we tabulate the

extracted capacitance in a table indexed by active interconnect width, spacing

and local metal density under an optimized fill pattern. Note that varying metal

spacing affects the local metal density requirement in the space. During inter-

connect optimization, each enumerated spacing option requires an appropriate

adjustment to the amount of required local metal density. Therefore the fill pat-

tern and RC of all combinations of spacing and local metal density have to be

recorded in the table to accommodate any arbitrary spacing and adjusted local

metal density. Moreover, as different fill patterns under the same local metal

density result in different capacitance values as shown in Section 5.2.2, each ta-

ble entry only saves the fill pattern and the resulting capacitance under the best

fill pattern, which gives the minimum Cc among all patterns. The resistance is
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computed considering dishing and erosion effects. In the following, we denote the

resulting RC models as CMP-aware RC parasitic models. In contrast, intercon-

nect parasitics without consideration of fill pattern insertion, dishing or erosion

effects is called CMP-oblivious RC model.

5.3 Simultaneous Buffer Insertion, Wire Sizing, and Fill

Insertion

In this section, we formulate the problem of simultaneous buffer insertion, wire

sizing, and fill insertion to examine the impact of CMP on interconnect design

as follows

Formulation 3 Simultaneous Buffer Insertion, Wire Sizing, and Fill In-

sertion (SBWF): Given the topology of a routing tree, its neighboring routing

structure, required arrival times and loading capacitances specified at all sinks,

determine the placement of buffers, the width of each wire segment, and the fill

patterns between the routing tree and its neighboring wires, such that the required

arrival time at the root is maximized subject to (1) the slew rate constraint at

all sinks and inputs to all buffers; and (2) the effective metal density for CMP

planarization.

We solve the SBWF problem by following the similar dynamic programming

framework used to solve either the pure buffer insertion [58], or the pure asym-

metric wire sizing problem [23]. Section 6.2.1 gives a quick review of the dynamic

programming-based buffering algorithm. Therefore, we only mention the changes

that we need to make to solve the SBWF problem in the following.

We consider asymmetric wire sizing for the given routing tree, and assume

the center line of the tree is fixed for wire sizing. Hence we can associate each
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routing segment with two wire width variables, w1 and w2, that measure the

distance from the center of the segment to its two edges, respectively. Similarly,

for each segment, we have two spacing, s1 and s2, that measure the distance from

the center of the segment to its two neighboring nets. To satisfy the minimum

spacing rule smin between any two wires, we enforce a maximum possible wire

widths for each wire segment’s wire width variables, i.e., w1 ≤ s1 − smin and

w2 ≤ s2 − smin. Without loosing generality, we assume discrete wire sizing for

w1 and w2 with the minimum wire sizing step is half of the minimum wire width

wmin decided by designing rules. We illustrate these definitions for an edge ei,j

in Figure 5.8.
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Figure 5.8: Illustration of asymmetric wire sizing.

For every edge ei,j, two local dummy fill densities, ρ1
f and ρ2

f , need to be

decided in order to achieve the required effective metal density for CMP pla-

narization. When either one of the two wire widths (w1 and w2) changes, the

two local dummy fill densities also need to be changed, and such an updating

procedure is required after each wire sizing step. Algorithm from [89] can be

used to serve this purpose.

We employ the Elmore delay model to compute the delay. Each buffer type

is modeled by its input capacitance, intrinsic delay, and output resistance. Each
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wire segment is modeled as a π model. The resistance and capacitance for each

wire segment should be determined as follows. (1) We first decide wire segment’s

wire widths (w1 and w2), which allow us to compute the wire’s nominal resistance

and capacitance without fills. (2) We then compute the two local metal densities

(ρ1
f and ρ2

f) to satisfy the effective metal density requirement. (3) Knowing the

two local metal densities, we can look-up the CMP-aware RC table to find the

“best” fill pattern to insert into the opening space between the wire segment

and its neighboring wires. The best fill pattern is determined so that the final

adjusted resistance and capacitance result a minimum delay.

We employ the slew model from [6] because of its high fidelity over real design

metrics. The slew is computed as ln 9·Di, with Di being the maximum delay from

the buffer output at node n to all its downstream buffer input nodes or sinks.

Any solution that results in a slew greater than the required slew constraint is

discarded.

Because we use the CMP-aware RC table to compute partial solutions during

the course of dynamic programming, we take into account the impact of CMP

on design while solving the SBWF problem.

In contrast, a best possible solution based on existing practices would solve

the same problem in two steps. The simultaneous buffer insertion and wire sizing

problem can be solved first to find a best possible RAT at the root, but without

considering CMP-effects. After fixing the buffer locations and wire sizes, it then

proceeds to insert the best possible fill patterns into the open space of each wire

segments. The final RAT at the root need to be adjusted to account for the

increase of resistance and capacitance caused by fill insertion. Because of this

adjustment to RC parasitics, delays and slews of the original solution will also

change. These changes may cause some input buffer nodes’ slew constraints to
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be violated. For fair comparison, we need to adjust the original solution to make

it valid, i.e., satisfying all slew constraints. To achieve this, we can over constrain

the slew requirement at the first step, in which we solve the simultaneous buffer

insertion and wire sizing problem without considering CMP effects. After that, we

then insert fill patterns to achieve CMP planarization. Because we already leave

some margins for slew adjustment, it is possible that the final solution would

result in slews that satisfy the required constraint. This two-step approach is

denoted as SBW/F in the following.

We further define the over-constrain ratio, κ, as the ratio between the over-

constrained slew to the required slew. For slew constraints, the smaller it is, the

harder it is to satisfy. Thus over-constraining slew means a reduced value for

slew constraints. Therefore, κ is a value smaller than one. To avoid over-design

for SBW/F, we need to find the largest possible κ that still guarantees a valid

solution after SBW/F is solved. To find this value, we can use a binary search on

κ. That is, at each iteration, we solve the SBW/F problem with a given κ value

until we find the the largest possible κ with a guaranteed valid solution.

The overall time complexity of our SBWF algorithm is similar to the conven-

tional buffer insertion algorithm, which is known to be polynomial.

5.4 Experiment Results

Both SBWF and SBW/F algorithms have been implemented and tested on a set

of benchmarks (r1 to r5) obtained from the public domain [90], as well as some

randomly generated benchmarks (s1 to s10). The experiments are performed on

an Intel Xeon 1.9Ghz Linux workstation with two giga-byte memory.

The characteristics for global interconnects and devices are based on the 65nm
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technology as defined in [82]. We use the typical buffer sizes (20× to 120×) and

wire sizes (0.5wmin to 4.5wmin) as are used in real designs. All buffers are two-

stage cascaded buffers. Because there is no physical layout information in the

original benchmarks, we randomly generate the neighboring wire spacing data

and the local metal density requirements for each wire segment for all test cases.

In our experiments, we find that κ = 0.84 gives the maximum possible value so

that the final results can satisfy the required slew constraints for all benchmarks.

We report experiment results in Table 5.3. All results are based on the ac-

curate CMP-aware RC models for interconnect. The objective for both SBW/F

and SBWF is to maximize the required arrival time at the root. A solution with

a larger RAT implies a smaller delay, and is more preferable. We find that among

all benchmarks, SBWF always results in a larger RAT , and the average timing

improvement from SBWF over SBW/F is 1.6%.

As a by-product for RAT optimization, we observe that SBWF also uses less

buffer area and power compared to SBW/F. The average saving on buffer area

is about 5%, while the average saving on power measured as energy per switch is

about 3%. As a tradeoff for these benefits, the SBWF generally uses more wiring

area than SBW/F. We have seen about 5% increase on average.

We also compare the runtime between SBWF and SBW/F. Note that the

real SBW/F runtime should also include the the binary search iterations in order

to find the correct over-constrain rate κ. We, however, only report runtime for

one such iteration for SBW/F, and compare that with our SBWF algorithm.

From Table 5.3, we see that SBWF has slightly larger runtime compared to one

iteration run of SBW/F. This small increase is mainly due to the extra time

needed to evaluate the CMP models for dishing and erosion geometries.

In summary, by solving buffer insertion, wire sizing, and fill insertion simul-
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taneously for CMP-planarization, we can achieve better design in terms of delay,

buffer area and power with less runtime (iteration-free).

5.5 Conclusion and Discussion

In this chapter, we have studied the impacts of Chemical Mechanical Polishing

(CMP)-induced systematic variation on interconnect design. We have shown

that fill insertion has a substantial impact on capacitance. Different fill pattern

density can result in widely varying capacitance distribution. Dishing and erosion

similar to those predicted by the ITRS roadmap can cause interconnect resistance

varying up to 30%, but has limited impact on interconnect capacitance. Our

study on RC parasitics provides us with an accurate, table look-up based RC

model considering systematic CMP variation effects with pre-calculated best fill

patterns. Equipped with such a model, we have studied a simultaneous buffer

insertion, wire sizing, and fill insertion problem (SBWF). Experiment results have

shown that the proposed SBWF approach can achieve 1.6% delay reduction, 3%

power reduction and 4.9% buffer area reduction on average when compared to a

conventional design flow which performs fill insertion after buffer insertion and

wire sizing (SBW/F).

In this work, we assume a fixed routing topology with buffer insertion and

wire sizing as a post layout synthesis process. In the future, it remains to study

simultaneous routing topology generation with buffer insertion and wire sizing

considering systematic and random variations due to both CMP and device ef-

fects.
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Table 5.3: Experiment results for SBW/F and SBWF.

SBW/F (κ = 0.84) SBWF

test- wire # wire buffer RAT power run- wire area buffer area RAT power run-

case length sink area area (ps) (pJ) time (mm2) (x min) (ps) (pJ) time

(m) (mm2) (x min) (s) (∆%) (∆%) (∆%) (∆%) (s)

s1 0.03 19 0.10 2920 -1007 22 0 0.10 (0.9%) 2680 (-8.2%) -1001 (0.6%) 21 (-6.0%) 0

s2 0.04 29 0.11 3420 -1175 26 0 0.12 (2.0%) 3140 (-8.2%) -1133 (3.6%) 25 (-5.7%) 1

s3 0.05 49 0.14 4380 -1589 33 1 0.15 (9.5%) 4360 (-0.5%) -1567 (1.3%) 34 (0.9%) 1

s4 0.07 99 0.18 6180 -1386 47 2 0.19 (8.0%) 6060 (-1.9%) -1380 (0.4%) 46 (-0.5%) 2

s5 0.10 199 0.26 8820 -2436 67 4 0.27 (5.3%) 8500 (-3.6%) -2409 (1.1%) 66 (-2.1%) 5

s6 0.13 299 0.31 11720 -2294 88 7 0.33 (5.9%) 11020 (-6.0%) -2235 (2.6%) 84 (-3.9%) 8

s7 0.16 499 0.38 15220 -3794 113 16 0.40 (5.1%) 14520 (-4.6%) -3787 (0.2%) 110 (-3.0%) 22

s8 0.19 699 0.43 18320 -3170 136 37 0.45 (4.7%) 17260 (-5.8%) -3141 (0.9%) 131 (-4.0%) 47

s9 0.21 799 0.47 19700 -2967 147 34 0.49 (3.0%) 18580 (-5.7%) -2867 (3.4%) 141 (-4.0%) 38

s10 0.22 899 0.51 21000 -2830 157 57 0.53 (3.7%) 20580 (-2.0%) -2782 (1.7%) 155 (-1.1%) 69

r1 1.32 267 3.79 110000 -4955 838 69 3.97 (4.8%) 104180 (-5.3%) -4844 (2.3%) 811 (-3.2%) 27

r2 2.60 598 7.32 212760 -6148 1625 0 7.74 (5.7%) 202840 (-4.7%) -6031 (1.9%) 1582 (-2.6%) 71

r3 3.37 862 9.33 275760 -7358 2103 102 9.89 (6.1%) 261180 (-5.3%) -7297 (0.8%) 2038 (-3.1%) 91

r4 6.81 1903 18.90 554260 -10748 4233 170 19.83 (4.9%) 522980 (-5.6%) -10592 (1.4%) 4086 (-3.5%) 175

r5 10.20 3101 28.16 823100 -11984 6297 256 29.48 (4.7%) 777920 (-5.5%) -11804 (1.5%) 6084 (-3.4%) 271

(5.0%) (-4.9%) (1.6%) (-3.0%)
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CHAPTER 6

BIPV: Buffer Insertion Considering Process

Variations

Advanced process technologies call for a proactive consideration of process vari-

ations in design to ensure high parametric timing yield. While essential in al-

most any of today’s high performance IC designs, buffer insertion has not gained

enough attention to address this issue. In this chapter, we propose a novel al-

gorithm for buffer insertion that considers process variations. Specifically, we

provide some theoretical foundations that help to solve the variation-aware buffer

insertion problem. The major contribution of this work is two-fold: (1) two dif-

ferent techniques to handle correlated process variations under nonlinear opera-

tions; (2) a provable transitive closure pruning rule that makes linear complexity

variation-aware pruning possible. The proposed techniques enable an efficient

implementation of variation-aware buffer insertion. We show that, compared to

the conventional deterministic approach, the proposed buffer insertion algorithm

considering correlated process variations improves the parametric timing yield by

more than 15%. We believe that the theoretical contribution of this work is not

limited to buffer insertion problem per se, and may be leveraged to solve other

CAD problems in the presence of process variation effects.
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6.1 Introduction

Many difficulties arise when solving the buffer insertion problem while taking into

consideration of process variations. The first challenge is to model buffer solutions

as random variables that are correlated. Such correlations are not only caused by

correlated process variation (such as global variation and spatial correlation), but

also caused by the way buffer solutions are computed. Because almost all exist-

ing buffering algorithms follow to some degree the same dynamic programming

paradigm [92], in which solutions are computed recursively from downstream

nodes, solutions from the same subtree are inherently correlated. The second

difficulty is that operations involved in computing different buffer solutions, such

as the minimum and multiplication operations, are nonlinear, which further com-

plicates the problem of handling the correlated variations. The third is how to

define the pruning rule in the presence of process variations, i.e., how to compare

different solutions to determine which one is better. Without an efficient prun-

ing rule, a straight-forward implementation of the dynamic programming based

buffering algorithm would increase the complexity exponentially.

To the best of our knowledge, there are two recent publications that have

attempted to solve the buffer insertion problem considering process variation

[47, 25]. However, none of them has addressed the above difficulties with definite

answers. For example, [47] considered only the effect of wire-length variation,

even though wire-length variation is not a typical process variation. The authors

assumed that there was no correlation between different solutions, which is clearly

not true. They also proposed three heuristic pruning rules, but none of them can

bound the complexity of the algorithm. Under the assumption of an ideal setting

(such as infinitely long two-pin nets) with simplification, [25] showed that buffer

insertion is not sensitive to process variation. It is not clear, however, that this
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insensitivity to process variation holds for designs in real setting (e.g., with finite

wire length and multiple pins).

This chapter proposes a novel algorithm for buffer insertion that considers

correlated process variations. It develops an efficient technique to handle the

correlated process variations under nonlinear operations. It also introduces a

provable transitive closure pruning rule, which makes linear complexity variation-

aware pruning possible. Equipped with the above techniques, we show an efficient

implementation of the variation-aware buffer insertion algorithm. We also show

that compared to the conventional deterministic approach, our buffer insertion

algorithm considering correlated process variations improves the parametric tim-

ing yield by more than 15%. Results from this chapter have been reported in

[105, 103].

6.2 BIPV Problem Formulation

We formulate the following buffer insertion considering process variation problem

formulation:

Formulation 4 Buffer Insertion considering Process Variation (BIPV)

Problem: Given the topology of a routing tree with parasitic capacitance and

resistance, required arrival times and loading capacitances specified at all sinks,

determine the placement of buffers in the routing tree such that the probability of

the required arrival time at the root meeting the design specification is maximized

with the consideration of process variations for both interconnect and devices, and

as a secondary objective, the number of buffers used are minimized.

For a given routing tree, two figures-of-merit are associated with every legal

buffer position t in the tree: i.e., the input loading capacitance (or downstream
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loading capacitance) Ct and the required arrival time Tt. We characterize a device

(or buffer) in terms of its gate capacitance (Cb), intrinsic delay (Tb) and output

resistance (Rb). For a given interconnect segment in the layout, we characterize

it by its lumped resistance Rw and capacitance Cw.

6.2.1 Buffer Insertion Algorithm Overview

For simplicity of presentation, we follow the same argument as [92] by assuming

that the routing tree is given as a binary routing tree and the legal buffer posi-

tions (nodes) are directly after the branching points of the tree. Note that the

methodology to be presented in this work does not depend on these assumptions.

We follow the same dynamic programming paradigm as [92] to solve the buffer

insertion problem, including both the deterministic version and the variation-

aware version. The overall algorithm (BIPV-ALG) is shown in the top block of

Fig. 6.1. We first traverse the routing tree bottom-up once and for all sub-trees

we build a set of dominant solutions, a concept which we will define in section

6.5. After we reach the root, we pick an optimal solution from the set of kept

dominant solutions, optimizing for the required arrival time and the number of

buffers inserted. We then back-track the chosen optimal solution to determine

the solution for each sub-tree recursively. The key part to this algorithm is the

bottom-up traversal of the routing tree. Therefore, we also present the detailed

bottom-up algorithm in the bottom block of Fig. 6.1.

According to the algorithm as shown in Figure 6.1, there are three key oper-

ations required to compute solutions at each node, i.e., solution after adding a

wire, solution after adding a buffer, and solution after merging two solutions. To

speedup the dynamic programming based algorithm, a pruning procedure is also

required.
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BIPV-ALG(t)

Input: root of the routing tree t.

Output: Solution to BIPV problem.

Z = BIPV-BOTTOM-UP-ALG(t);

Z∗ = PICK-BEST-SOL(Z);

BACK-TRACK-SOL(Z∗);

BIPV-BOTTOM-UP-ALG(t)

Output: a set of dominant buffered routing trees rooted at t.

/* bottom-up traversal of the routing tree */

If node t is sink

Z=INITIALIZATION(Cs,Ts);

return (Z);

Else

/* Compute solutions from sub-trees */

Zm = BIPV-BOTTOM-UP-ALG(t.left);

Zn = BIPV-BOTTOM-UP-ALG(t.right);

/* Merge two solutions */

Z = ∅;

For each solution (Cm, Tm) from Zm

For each solution (Cn, Tn) from Zn

(Ct, Tt)=MERGE-SUBNODE-JPDF((Cm, Tm),(Cn, Tn));

Z = Z ∪ (Ct, Tt);

Z = PRUNING(Z);

if node t is root

return(Z);

Z = ∅;

For each solution (Cn, Tn) in Zt

(Ct, Tt) = ADD-WIRE((Cn, Tn), (Cw , Rw));

Z = Z ∪ (Ct, Tt);

(Ct, Tt) = ADD-BUFFER((Ct, Tt),(Cb, Tb, Rb));

Z = Z ∪ (Ct, Tt);

return Z;

Figure 6.1: Algorithm for the buffer insertion problem.

Therefore, we only need to provide details on the three key operations with

appropriately defined pruning strategies to solve the BIVP problem. This argu-

ments hold for both the BIPV problem and the conventional deterministic buffer

insertion problem.
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6.2.2 Review of Deterministic Buffer Insertion Algorithm

When each interconnect segment in the routing tree is modeled by a π model,

under the Elmore delay model, Ct and Tt can be computed recursively as follows.

By adding a wire at node n, all solutions at n are propagated to the other end

of the wire t as follows

Ct = Cn + Cw (6.1)

Tt = Tn − Rw · Cn − 1

2
· Rw · Cw. (6.2)

By adding a buffer at node n, all solutions at n are propagated to the input of

the buffer as follows

Ct = Cb (6.3)

Tt = Tn − Tb − Rb · Cn. (6.4)

If the solution at node t is obtained by merging two solutions from its two sub-

trees rooted at nodes m and n, respectively, then solutions at the merging point

are computed by

Ct = Cn + Cm (6.5)

Tt = min(Tn, Tm). (6.6)

Knowing the above three key operations, the deterministic dynamic program-

ming based buffer insertion can be solved by recursively applying the above three

operations to obtain new solutions as we traverse the routing tree bottom-up.

Similarly, to solve the variation-aware buffer insertion, we only need to know

how to handle the above three operations considering process variation. In the

following, we discuss two variation-aware buffering algorithms under different

variation models.
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6.3 BIPV Algorithm by JPDF Computation

In this section, we only consider local random variations for both devices and

interconnect. i.e., ignoring both global variation and spatial correlation. There-

fore, devices or interconnects at different locations are independent. We model

buffer characteristics, i.e., Cb, Rb, and Tb, as random variables whose joint proba-

bility density function (JPDF) is g(Cb, Rb, Tb) with its domain given by ΩCb,Rb,Tb
.

We model interconnect characteristics, Cw and Rw are random variables whose

JPDF is h(Cw, Rw) with its domain given by ΩCw ,Rw . We assume that device and

interconnect variations are independent.

According to (6.1) and (6.2), or (6.3) and (6.4), we know that the upstream

variations do not change the distribution of Ct and Tt, as Ct and Tt are only

functions of node t’s downstream random variations. Therefore, Ct and Tt’s

distributions are independent of their upstream random variations. Moreover, if

(Ct1, Tt1) and (Ct2, Tt2) share some (or do not share any) common down-stream

paths, then Ct1, Tt1, Ct2, and Tt2 are mutually correlated (or independent).

Even thought (Ct, Tt) depend on their downstream random variations in a

complicated way, the way we compute (Ct, Tt) is via the recursive equations ac-

cording to either (6.1) and (6.2), or (6.3) and (6.4), or (6.5) and (6.6). Therefore,

we develop an efficient algorithm to compute the JPDF of (Ct, Tt) in a recur-

sive fashion while we traverse the routing tree. This is particularly useful in the

context of dynamic programming, because only incremental computation is nec-

essary at each node. To develop the recursive computation formula, we employ

the multivariate transformation technique [42]. We denote the JPDF of node t’s

direct downstream nodes as fCn,Tn with its domain given by ΩCn,Tn .

115



6.3.1 JPDF after Adding a Wire

To compute the JPDF of (Ct, Tt) obtained from (6.1) and (6.2) via the multivari-

ate transformation technique, we introduce two new random variables X and Y

as follows:

X = Cw; (6.7)

Y = Rw; (6.8)

Ct = Cn + Cw; (6.9)

Tt = Tn − Rw · Cn − 1

2
· Rw · Cw. (6.10)

By transforming variables, we obtain

Cw = X; (6.11)

Rw = Y ; (6.12)

Cn = Ct − X; (6.13)

Tn = Tt + Y · Ct −
1

2
· Y · X. (6.14)

It is easy to verify that the mapping between (Cw, Rw, Cn, Tn) and (X,Y, Ct, Tt)

is a one-to-one mapping. Therefore, the Jacobian is given by

J =
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= 1. (6.15)
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As Cw and Rw are independent of Cn and Tn, the JPDF of (Cw, Rw, Cn, Tn)

is given by: fCw ,Rw ,Cn,Tn = h(Cw, Rw) · fCn,Tn . Therefore, we obtain the JPDF of

(X, Y, Ct, Tt) as follows:

fX,Y,Ct,Tt = |J | · fCw ,Rw ,Cn,Tn(Cw, Rw, Cn, Tn) = h(Cw, Rw) · fCn,Tn(Cn, Tn)

= h(Cw, Rw) · fCn,Tn(Ct − X,Tt + Y · Ct −
X · Y

2
) (6.16)

Then the JPDF of (Ct, Tt) is obtained by

fCt,Tt =

∫

ΩX,Y (Ct,Tt)

fX,Y,Ct,TtdXdY, (6.17)

where ΩX,Y (Ct, Tt) is the domain for X, Y in terms of Ct and Tt. Knowing Cw and

Rw’s domain ΩCw ,Rw and (Cn, Tn)’s domain ΩCn,Tn, we can deduce ΩX,Y (Ct, Tt)

according to (6.7), (6.8) (6.9) and (6.10).

6.3.2 JPDF after Adding a Buffer

To compute the JPDF of (Ct, Tt) obtained from (6.3) and (6.4) via the multi-

variate transformation technique, we introduce three new random variables X,

Y and Z as follows:

X = Cn; (6.18)

Y = Rb; (6.19)

Z = Tb; (6.20)

Ct = Cb; (6.21)

Tt = Tn − Tb − Rb · Cn. (6.22)
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By transforming variables, we obtain

Cb = Ct; (6.23)

Rb = Y ; (6.24)

Tb = Z; (6.25)

Cn = X; (6.26)

Tn = Tt + Z + Y · X. (6.27)

It is easy to show that the mapping between (Cb, Rb, Tb, Cn, Tn) and (X, Y, Z, Ct, Tt)

is a one-to-one mapping. Therefore, the Jacobian is given by

J =
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As Cb, Rb, and Tb are independent of Cn and Tn, the JPDF of (Cb, Rb, Tb, Cn, Tn)

is given by: fCb,Rb,Tb,Cn,Tn =g(Cb, Rb, Tb) · fCn,Tn . Therefore, we obtain the JPDF

of (X, Y, Z, Ct, Tt) as follows:

fX,Y,Z,Ct,Tt = |J | · fCb,Rb,Tb,Cn,Tn = g(Cb, Rb, Tb) · fCn,Tn

= g(Ct, Y, Z) · fCn,Tn(X, Tt + Z + Y · X). (6.29)
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Then JPDF of (Ct, Tt) is obtained by

fCt,Tt =

∫

ΩX,Y,Z(Ct,Tt)

fX,Y,Z,Ct,TtdXdY dZ, (6.30)

where ΩX,Y,Z(X,Y, Z) is the new domain for X, Y and Z in terms of Ct and Tt.

Knowing Cb, Rb and Tb’s domain ΩCb,Rb,Tb
and (Cn, Tn)’s domain ΩCn,Tn, we can

deduce ΩX,Y,Z(X, Y,Z) according to (6.18), (6.19), (6.20), (6.21) and (6.22).

6.3.3 JPDF after Merging Two Solutions

To compute the JPDF for (Ct, Tt) after merging two solutions according to (6.5)

and (6.6), we introduce two new random variables as follows:

X = Cm (6.31)

Y = Tn + Tm (6.32)

Ct = Cn + Cm (6.33)

Tt = min(Tn, Tm) (6.34)

Because of the min-function, there is no one-to-one mapping relation between

(Cm, Tm, Cn, Tn) and (X,Y, Ct, Tt), thus we cannot use the multivariate transfor-

mation technique to compute the JPDF of (Ct, Tt) directly. But we note that

the original domain ΩCm,Tm,Cn,Tn for (Cm, Tm, Cn, Tn) can be divided into two

disjoint sub-domains Ω1 and Ω2, where Ω1 is the sub-domain with Tm ≤ Tn and

Ω2 is the other sub-domain with Tm > Tn. For each disjointed sub-domain, we

can show that there exists a one-to-one mapping between (Cm, Tm, Cn, Tn) and

(X, Y, Ct, Tt), thus we can compute the JPDF for each sub-domain by using the

multivariate transformation technique. Then by combining the two sub-domains’

JPDF, we can compute the JPDF for the whole domain [42].
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We first find the JPDF for sub-domain Ω1 with Tm ≤ Tn. We have:

Tt = min(Tm, Tn) = Tm (6.35)

After transformation of variables, we have

Cm = X; (6.36)

Cn = Ct − X; (6.37)

Tm = Tt; (6.38)

Tn = Y − Tt. (6.39)

The Jacobian is given by

J =
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= 1. (6.40)

As (Cm, Tm) is independent of (Cn, Tn), the JPDF of (Cm, Tm, Cn, Tn) is given by:

fCm,Tm,Cn,Tn =fCm,Tm · fCn,Tn, Therefore, we can obtain the JPDF of (X,Y, Ct, Tt)

in sub-domain Ω1 as follows:

fΩ1 = |J | · fCm,Tm,Cn,Tn = fCm,Tm · fCn,Tn

= fCm,Tm(X, Tt) · fCn,Tn(Ct − X,Y − Tt). (6.41)

Similarly, for the sub-domain Ω2 with Tm > Tn, We have:

fΩ2 = |J | · fCm,Tm,Cn,Tn

= fCm,Tm(X, Y − Tt) · fCn,Tn(Ct − X, Tt). (6.42)
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Combining (6.41) and (6.42) together, we obtain the The JPDF for (X, Y, Ct, Tt)

in the whole domain ΩX,Y,Ct,Tt as follows [42]:

fX,Y,Ct,Tt = fΩ1
(X, Y, Ct, Tt) + fΩ2

(X, Y,Ct, Tt)

= fCm,Tm(X, Tt) · fCn,Tn(Ct − X, Y − Tt) +

fCm,Tm(X, Y − Tt) · fCn,Tn(Ct − X, Tt) (6.43)

Then the JPDF of (Ct, Tt) is obtained by

fCt,Tt(Ct, Tt) =

∫

ΩX,Y (Ct,Tt)

fX,Y,Ct,TtdXdY, (6.44)

where ΩX,Y (Ct, Tt) is the new domain for (X, Y ) in terms of Ct and Tt. Know-

ing (Cm, Tm)’s domain ΩCm,Tm and (Cn, Tn)’s domain ΩCn,Tn, we can deduce

ΩX,Y (Ct, Tt) from (6.31),(6.32), (6.33) and (6.34).

6.3.4 JPDF Initialization

To carry on the above recursive computation of JPDF, we have to set up the

initial conditions starting from sinks. As sink’s Cs and Ts are constants and

buffers are always inserted at sink’s upstream node with a wire between them,

(6.1) and (6.2) should be used for JPDF initialization. After transformation of

variables, we have:

Cw = Ct − Cs; (6.45)

Rw =
2(Ts − Tt)

(Ct + Cs)
. (6.46)

It is easy to verify that the mapping between (Cw, Rw) and (Ct, Tt) is a one-
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to-one mapping. Therefore, the Jacobian is given by

J =
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. (6.47)

As the JPDF for (Cw, Rw) is already known as h(Cw, Rw), we can obtain the

JPDF of (Ct, Tt) as follows:

fCt,Tt = |J | · h(Cw, Rw) =
2

(Ct + Cs)
· h(Ct − Cs,

2(Ts − Tt)

(Ct + Cs)
)

6.4 BIPV Algorithm by First-order Canonical Form

In this section, we consider all sources of random variations (including global

variation and spatial correlation) for devices and interconnect. We employ the

first-order canonical form to model all characteristics of interests, such as Tb, Cb

and Rb for devices, and Rw and Cw for interconnect, as a random variable, i.e.,

Tb = Tb0 + γT
b X, Cb = Cb0 + ηT

b X, Rb = Rb0 + ζT
b X, Cw = Cw0 + ηT

wX, Rw =

Rw0 + ζT
wX.

Applying these random variables to (6.1) to (6.6), we obtain solutions Ct and

Tt that are functions of Tb, Cb, Rb, Rw and Cw, hence they are also random

variables. However, because of the non-linear operators (multiplication and min-

imum operations) involved in computing the new solution, the distributions are

no longer in the first order canonical form.

Therefore, to make the computation efficient, we propose a novel approxima-

tion technique in the following that keeps Ct and Tt after nonlinear operations

still in the first order canonical form without loss of much accuracy.
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To proceed, we represent all downstream node solutions by the following first

order canonical forms:

Cn = Cn0 + αT
n · X, (6.48)

Tn = Tn0 + βT
n · X. (6.49)

At the sink, Cn is the loading capacitance and Tn is the required arrival time,

which are known from design specification.

6.4.1 Canonical Form after Adding a Wire

If the solution at node t is obtained by adding a wire at its direct downstream

node n, we compute the new solution at node t as follows:

Ct = (Cn0 + Cw0) + (αT
n + ηT

w) · X, (6.50)

Tt = (Tn0 − Rw0 · Cn0 −
1

2
· Rw0 · Cw0) + (βT

n − Cn0 · ζT
w − Rw0 · αT

n ) · X

−1

2
(Rw0 · ηT

w + Cw0 · ζT
w) · X − XT (ζw · αT

n +
1

2
ζw · ηT

w)X

= Tt0 + δT
t · X − XT ΓX, (6.51)

where Tt0=Tn0 − Rw0 · Cn0 − 1
2
· Rw0 · Cw0, δt=βn − Cn0 · ζw − Rw0 · αn- 1

2
(·Rw0 ·

ηw +Cw0 · ζw), and Γ=ζw ·αT
n + 1

2
ζw · ηT

w. It is obvious that Ct in (6.50) is already

a canonical form, but Tt in (6.51) is not due to the quadratic term XT ΓX. To

represent Tt as a canonical form, we have the following Theorems:

Theorem 2 Given random variables in vector form X that follow a standard

multivariate Gaussian distribution as N(0,I), i.e., E(X) = 0 and E(X 2) = I, for

any vector δ and matrix Γ, we have

E(XT ΓX) = tr(Γ), (6.52)

E(XT ΓXδT X) = 0, (6.53)

E((XT ΓX)2) = 2tr(Γ2) + tr(Γ)2. (6.54)
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where E(·) is the expectation operation of a random variable, and tr(·) is the trace

operation of a matrix which takes the sum of diagonal elements of the matrix.

Proof: This theorem is a special case of the more general results as proved in

[113]. We recap the key steps pertaining to our proof as follows.

We first note the following identities:

cov(X1,X2) = E(X1X2) − E(X1)E(X2), (6.55)

E(X1X2) = cov(X1,X2) + E(X1)E(X2), (6.56)

cov(XT Γ1X, XT Γ2X) = 2tr(Γ1Γ2), (6.57)

cov(XT ΓX, δT X) = 0. (6.58)

Therefore, we have

E(XT ΓX) = E(tr(ΓXXT )) = tr(ΓE(XXT )) = tr(Γ), (6.59)

E(XT ΓXδT X) = cov(XT ΓX, δT X) + E(XT ΓX)E(δT X) (6.60)

= 0 + tr(Γ)δT E(X) = 0 + 0 = 0, (6.61)

E((XT ΓX)2) = cov(XT ΓX, XT ΓX) + E(XT ΓX)2 (6.62)

= 2tr(Γ2) + tr(Γ)2. (6.63)

�

Theorem 3 Given Γ=αβT+ζηT , we have

tr(Γ) = βT α + ηT ζ, (6.64)

tr(Γ2) = (βT α)2 + (ηT ζ)2 + 2(βT α)(ηT ζ), (6.65)

where α, β, ζ, and η are all vectors.
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Proof:

tr(Γ) = tr(αβT ) + tr(ζηT ) = tr(βT α) + tr(ηT ζ) = βT α + ηT ζ. (6.66)

Because

Γ2 = αβT αβT + αβT ζηT + ζηT αβT + ζηT ζηT

= (βT α)(αβT ) + (βT ζ)(αηT ) + (ηT α)(ζβT ) + (ηT ζ)(ζηT ),

so we have

tr(Γ2) = (βT α)tr(αβT ) + (βT ζ)tr(αηT ) + (ηT α)tr(ζβT ) + (ηT ζ)tr(ζηT )

= (βT α)tr(βT α) + (βT ζ)tr(ηT α) + (ηT α)tr(βT ζ) + (ηT ζ)tr(ηT ζ)

= (βT α)2 + (ηT ζ)2 + 2(βT α)(ηT ζ).

�

We then compute the first two moments of Tt in (6.51) as follows:

E(Tt) = Tt0 + δT
t · E(X) − E(XT ΓX) = Tt0 − tr(Γ),

E(T 2
t ) = E(T 2

t0 + 2Tt0δ
T
t X − 2Tt0X

T ΓX

+XT δtδ
T
t X − 2XT ΓXδT

t X + XT ΓXXT ΓX)

= T 2
t0 + 2Tt0δ

T
t E(X) − 2Tt0E(XT ΓX)

+E(XT δtδ
T
t X) − 2E(XT ΓXδT

t X) + E(XT ΓXXT ΓX)

= T 2
t0 + 0 − 2Tt0tr(Γ) + tr(δtδ

T
t ) − 0 + tr(Γ2) + tr(Γ)2

= T 2
t0 − 2Tt0tr(Γ) + tr(δT

t δt) + tr(Γ2) + tr(Γ)2

= (Tt0 − tr(Γ))2 + δT
t δ + 2tr(Γ2).

Knowing the first two moments, we compute the mean and variance of Tt in

(6.51) as follows:

µ(Tt) = E(Tt) = Tt0 − tr(Γ), (6.67)

σ2(Tt) = E(T 2
t ) − E(Tt)

2 = δT
t δ + 2tr(Γ2). (6.68)
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We then approximate (6.51) by the following canonical form that matches its

mean and variance with (6.67) and (6.68), i.e.,

Tt = (Tt0 − tr(Γ)) +

√

1 +
2tr(Γ2)

δT
t δ

· δT
t · X. (6.69)

The above approximation is justified because the amount of variation is relatively

small compared to the nominal value. Therefore, by matching the mean and

variance, we only lose accuracy for the higher order (third moment and above)

terms. Experiment results confirm the effectiveness of this approximation.

6.4.2 Canonical Form after Adding a Buffer

If the solution at node t is obtained by adding a buffer at its direct downstream

node n, we compute new solutions as follows:

Ct = Cb0 + ηT
b · X, (6.70)

Tt = (Tn0 − Tb0 − Rb0 · Cn,0)

+(βT
n − βT

b − Ln0 · ζT
b − Rb0 · αT

n )X − XT ζb · αT
nX,

= Tt0 + δT
t · X − XT ΓX, (6.71)

where Tt0=Tn0 − Tb0 − Rb0 ·Cn,0, δt=βn − βb − Cn0 · ζb − Rb0 · αn, and Γ=ζb · αT
n .

It is obvious that Ct in (6.70) is already a canonical form, but Tt in (6.71) is not

due to the quadratic term XT ΓX. By using the similar technique as discussed

above, we approximate (6.71) via the same canonical form as shown in (6.69),

but with its own Tt0, δt, Γ and X.

6.4.3 Canonical Form after Merging Two Solutions

If the solution at node t is obtained by merging two solutions from its two sub-

trees rooted at nodes m and n, respectively, we compute the new solutions Ct
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by

Ct = (Cn0 + Cm0) + (αT
n + αT

m) · X, (6.72)

which is already a first order canonical form. To express Tt after the minimum

operation still to be a first order canonical form, we resort to the approximation

technique as discussed in section 2.4.3, and we rewrite the equation of (2.32) as

Tt = Tt0 + βT
t · X. (6.73)

By replacing (6.50) and (6.69) with (6.1) and (6.2), (6.70) and (6.69) with

(6.3) and (6.4), and (6.72) and (6.73) with (6.5) and (6.6), respectively, we have

replaced all key operations needed in a deterministic buffer insertion algorithm

with its respective variation counterpart. Therefore, we obtain a variation-aware

buffer insertion algorithm. Moreover, because we always keep solutions in first

order canonical form after each operation, we can apply the same technique re-

cursively to compute all new solutions while traversing the routing tree bottom

up.

Note that the same approximation method via moment matching techniques

is not restricted to the first-order canonical model, and it can be extended to

handle other nonlinear (like quadratic) forms as well.

6.5 Variation Aware Pruning

6.5.1 Review of Deterministic Pruning

The major complexity of dynamic programming based buffer insertion lies in the

merging of two sets of solutions obtained from two different sub-trees. In general,

the total number of possible combinations for merging is n · m, where n and m
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are the number of solutions from two sub-trees, respectively. If all combinations

are kept at each merging node, the number of solutions will grow exponentially

towards the root.

To avoid this problem, [92] proposed to define the dominance relationship

(or pruning rule) between two solutions such that solution (C1, T1) dominates

solution (C2, T2) if condition C1 < C2 and T1 > T2 are satisfied. In other words,

solution (C2, T2) is redundant and can be removed. [92] proved that instead of

n · m, there would be no more than n + m number of solutions after pruning.

Even though pruning helps reduce the total number of solutions, in general,

we still have to pay the price of O(n·m) at each node in order to obtain all possible

combinations for merging. In deterministic buffer insertion, such a procedure is

further reduced to O(n + m) by using a merge sort like operation on the two

sets of already sorted solutions, i.e., the merging and pruning operations can

be done simultaneously instead of using two separate operations as shown in

Figure 6.1. Based upon the above two linear operations on pruning and merging,

[92, 58] proved that by keeping only dominating solutions at every node, the

dynamic programming based algorithm can solve the buffer insertion problem in

O(N 2) time without losing optimality, where N is the number of possible buffer

locations. When there are B types of buffers in the library, [56] proved that the

deterministic buffer insertion problem can be solved optimally in O(B · N 2).

6.5.2 Two-sided Threshold Based Pruning

A straight-forward way to extend the conventional dominance relationship be-

tween two solutions in the presence of process variation is as follows: solution

(C1, T1) is said to dominate solution (C2, T2) if condition P (C1 ≤ C2) = 1 and

P (T1 ≥ T2) = 1 are satisfied. In other words, solution (C1, T1) always results
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in a larger required arrival time but with a less loading capacitance when com-

pared to solution (C2, T2). The physical interpretation of this criterion is well

understood. However, there are two problems when it comes to practical imple-

mentation. First, for a continuous JPDF for two random variables (Ct and Tt),

the domain is usually defined over the whole feasible region: i.e., 0 ≤ Ct ≤ ∞
and 0 ≤ Tt ≤ ∞. Therefore, it is almost impossible to satisfy the conditions

of P (T1 ≥ T2) = 1 and P (C1 ≤ C2) = 1 for any two given solutions. Second,

assuming the first problem can be solved, there is no guarantee that the number

of solutions after pruning will increase polynomially. Chances are that it will,

most likely, grow exponentially, and this has been experimentally confirmed by

[47]. In the following, we propose a new set of pruning rules that are in line with

designers’ intuition.

We recognize that for designers, there is always a design goal in their minds

when they compare different design alternatives. Based upon the above obser-

vations, we give the following definition of dominance relationship between two

solutions, which is closely related to designers’ willingness to accept uncertainty

for a given design.

Recall that the (100α)th percentile of a p.d.f. f(x) is a number πα such that

the area under f(x) to the left of of πα is α [43]. That is,

α =

∫ πα

−∞

f(x)dx. (6.74)

In other words, πα gives a measure of designers preference for certainty in choosing

the design parameter x in the presence of variations, such that the final design

would have x less than πα with (100α)% certainty.

Suppose designers choose παl
and παu as Ct’s two percentiles with 0 ≤ αl <

αu ≤ 1, and πβl
and πβu as Tt’s two percentiles with 0 ≤ βl < βu ≤ 1, which

reflect designers preference for certainty in choosing different solutions (Ct, Tt) to
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π αl βπ u

απ u βπ l

L1 L2 T2 T1

(a) (b)

(1) (1)

(2) (2)

Figure 6.2: Graphic interpretation of dominance relationship between (L1, T1)

and (L2, T2), where (a) refers to (6.75) and (b) refers to (6.76).

the BIPV problem. Then solution (C1, T1) is said to dominate solution (C2, T2)

if the following conditions are satisfied:

π(1)
αu

< π(2)
αl

(6.75)

π
(1)
βl

> π
(2)
βu

(6.76)

Another way to look at this dominance relationship is that solution (C1, T1)

has a high probability of producing solutions with a larger required arrival time

and a smaller loading capacitance. A graphical interpretation of this dominance

relationship is shown in Fig. 6.2. Knowing αl, αu, βl, and βu, we can compute

παl
, παu, πβl

, and πβu according to (6.74), which requires us to know the PDF of

Ct and Tt, respectively. As we already know the JPDF of (Lt, Tt), the PDF of Lt

and Tt can be computed as two marginal PDF’s of the JPDF, respectively [43].

The choice of αl, αu, βl and βu reflects the trade-off between tolerance of

variation risks and run-time efficiency.
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6.5.3 Transitive Closure Based Pruning

We observe that for deterministic buffer insertion, the linear time operations for

pruning and merging are made possible because of the following two properties:

(1) for any two given solutions, there exists an ordering property between them

so that comparing them is always possible, i.e., T1 is either greater than T2 or

less than T2; (2) there exists a transitive ordering property between solutions,

i.e., if T1 > T2 and T2 > T3, then T1 > T3 (similarly, if C1 < C2 and C2 < C3,

then C1 < C3). If we ensure that the above two properties hold for solutions

considering process variations, we can achieve similar linear time complexity for

both pruning and merging. In the following, we propose a new variation aware

pruning rule that enables us to keep both merging and pruning operations in

linear complexity even in the presence of process variations.

We first extend the deterministic dominance relation between (C1, T1) and

(C2, T2) by enforcing:

P (C1 ≤ C2) = 1, (6.77)

P (T1 ≥ T2) = 1. (6.78)

The physical interpretation of this extension is that solution (C1, T1) has 100%

propability (almost always) to result in a larger required arrival time but with

a less loading capacitance when compared to solution (C2, T2). We have the

following Lemma1:

Lemma 1 Given T1, T2 and T3 as three dependent random variables with ar-

bitrary distributions, if P (T1 > T2) = 1, P (T2 > T3) = 1, then P (T1 > T3) = 1.

1For simplicity, we only use T to illustrate the idea. It is understood that same results can
be applied to L as well.
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Proof: Let X = T1 − T2 and Y = T2 − T3 and the JPDF of X and Y

be f(x, y). As P (T1 > T2) = P (X > 0) =
∫ +∞

0
x
∫ +∞

−∞
f(x, y)dy = 1, we

have
∫ 0

−∞
dx
∫ +∞

−∞
f(x, y)dy = 1 -

∫ +∞

0
dx
∫ +∞

−∞
f(x, y)dy = 1 - 1 = 0. Because

f(x, y) ≥ 0 for all x and y, we have f(x, y) = 0 for x < 0. Similarly, from

P (T2 > T3) = P (Y > 0) = 1, we have f(x, y) = 0 for y < 0. Therefore,

we have
∫ +∞

0
dy
∫ +∞

0
f(x, y)dx = 1. Then P (T1 > T3) = P (X + Y > 0) =

∫ +∞

−∞
dy
∫ +∞

−y
f(x, y)dx =

∫ +∞

0
dy
∫ +∞

−y
f(x, y)dx ≥

∫ +∞

0
dy
∫ +∞

0
f(x, y)dx = 1. As

we know P (T1 > T3) ≤ 1, we must have P (T1 > T3) = 1. 2

Lemma 1 shows that comparison between T1 and T2 based upon P (T1 > T2)=1

enforces the transitive ordering property between solutions. However, for any two

given solutions, it is not always possible to compare them. Moreover, in practice,

such a 100% probability requirement is too restrictive. Therefore, we relax such

a requirement by adding two parameters such that solution (C1, T1) is said to

dominate solution (C2, T2) if the following two conditions hold:

P (C1 < C2) ≥ pC = 0.5, (6.79)

P (T1 > T2) ≥ pT = 0.5, (6.80)

In other words, it is likely that C1 is less than C2 while T1 is greater than T2 in

the probabilistic sense. We call the pruning rule as defined by (6.79) and (6.80)

as transitive-closure based pruning rule.

We have the following lemma:

Lemma 2 Given T1 and T2 as two dependent random variables with arbitrary

distributions, we have either P (T1 > T2) ≥ 0.5 or P (T1 < T2) ≥ 0.5.

Proof: The proof follows directly from the fact that P (T1 > T2)+P (T1 < T2)=1.

2
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Lemma 2 shows that comparison based upon P (T1 > T2) > 0.5 results in

a proper ordering between two random solutions T1 and T2. Therefore, the re-

maining problem is whether or not such a pruning rule preserves the transitive

ordering property between solutions. Unfortunately, for arbitrary distributions,

we can show that it does not preserve the transitive ordering property in general.

In other words, for arbitrary random distributions, when pC = 1 and pT = 1,

the transitive ordering property holds but not necessary the ordering property;

when pC = 0.5 and pT = 0.5, the ordering property holds but not necessary

the transitive ordering property. Therefore, to have the two proprieties to hold

simultaneously, we may have to impose some restrictions on the type of distri-

butions for those random solutions. In the following, we prove that when the

random solutions follow a joint normal distribution, both properties indeed hold

simultaneously, which is stated in the following Lemma:

Lemma 3 Given T1, T2 and T3 as three dependent random variables with joint

normal distributions, if P (T1 > T2) > 0.5, P (T2 > T3) > 0.5, then P (T1 > T3) >

0.5

Proof: To see this, we assume both T1 and T2 are normal, and we have the

following closed form to evaluate the probability of T1 > T2 according to [13],

P (T1 > T2) = Φ(
µT1 − µT2

σT1,T2

), (6.81)

where Φ is the cumulative density function (CDF) of a standard normal distri-

bution; µT1 , and µT2 are the mean values of T1 and T2, respectively; and σT1,T2

can be computed by

σT1,T2 = (σ2
T1

− 2 · ρT1,T2σT1σT2 + σ2
T2

)1/2, (6.82)

where σ2
T1

and σ2
T2

are variance of T1 and T2, respectively; and ρT1,T2 is the corre-

lation coefficient of T1 and T2.
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Because any CDF function is a non-decreasing function, and for the standard

normal distribution Φ(0) = 0.5, then we have Φ(x) > 0.5 for any x > 0. There-

fore, to have P (T1 > T2) > 0.5 is equivalent to have
µT1

−µT2

σT1,T2
> 0. Because σT1,T2 is

positive according to (6.82), hence we have µT1 > µT2 . Knowing P (T1 > T2) > 0.5

and P (T2 > T3) > 0.5, we have µT1 > µT2 and µT2 > µT3 . Therefore, we have

µT1
> µT3

, which is equivalent to P (T1 > T3) > 0.5. 2

According to the proof of the above lemma, it is easy to see that the following

equivalent statement also holds:

Lemma 4 Given T1 and T2 as two dependent random variables with joint nor-

mal distribution, for P (T1 > T2) > 0.5 to hold, it is necessary and sufficient to

have µT1 > µT2 with µT1 and µT2 being the mean for T1 and T2, respectively.

Based upon the above discussion, we have the following theorem regarding the

complexity of the dynamic programming based variation aware buffer insertion

algorithm:

Theorem 4 By utilizing the transitive closure based pruning rule as defined in

(6.79) and (6.80) with pC=0.5 and pT=0.5, the variation aware buffer insertion

problem can be solved in O(B ·N 2), where B is the number of buffer types in the

library, and N is the number of legal buffer positions.

Proof: According to Lemma (2) and (3), we can compare two random solutions

and order them much the same way as in the deterministic approach. Therefore,

following similar arguments as in [92, 58] and [56], we conclude that our variation

aware buffer insertion algorithm under the transitive closure based pruning rule

has the same complexity as the deterministic algorithm, which is O(B · N 2). 2

Next we discuss the extension of the above transitive closure pruning rule for

other choices of pC and pT and see how the two desired properties are affected.
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In fact, we have the following theorem which proves that for pT (or pL) between

0.5 and 1, the transitive ordering property always hold.

Theorem 5 Given T1, T2 and T3 as three dependent random variables with

joint normal distributions, if P (T1 > T2) > PT , P (T2 > T3) > PT , then P (T1 >

T3) > PT for any constant PT between 0.5 and 1, i.e., 0.5 ≤ PT ≤ 1.

Proof: Define X = T1 − T2 and Y = T2 − T3, then we have X + Y = T1 −
T3. Therefore, P (T1 > T2)=P (X > 0), P (T2 > T3)=P (Y > 0), and P (T1 >

T3)=P (X + Y > 0).

Because T1, T2 and T3 are joint normal, then X and Y are also normal. Denote

the PDF of X as N(µx, σx) and the PDF of Y as N(µy, σy), where µx and σx

(similarly µy and σy) are the mean and standard deviation for X (similarly Y ),

respectively. Hence we can obtain the PDF of X + Y , which is also a normal

distribution, as N(µx + µy,
√

σ2
x + σy2 + 2ρσxσy) with ρ being the correlation

coefficient between X and Y . We have

P (X > 0) = P (
X − µx

σx
> −µx

σx
) = 1 − Φ(−µx

σx
), (6.83)

where Φ is the CDF of a standard normal distribution. According to the property

of the standard normal distribution, we have Φ(−t) = 1−Φ(t), therefore we have

P (T1 > T2) = P (X > 0) = Φ(
µx

σx
). (6.84)

As we already know P (T1 > T2) > PT , we hence have Φ(µx

σx
) > PT . Since any

CDF function is also a non-decreasing function, we have

µx

σx
> t, (6.85)

where Φ(t) = PT . Moreover, for 0.5 ≤ PT ≤ 1, we have t > 0. Similarly, we have

µy

σy
> t. (6.86)
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From (6.85) and (6.86), we have

µx + µy > (σx + σy)t, (6.87)

µx + µy
√

σ2
x + σ2

y + 2ρσxσy

>
(σx + σy)t

√

σ2
x + σ2

y + 2ρσxσy

. (6.88)

Because −1 ≤ ρ ≤ 1, it is easy to show that

(σx + σy)
√

σ2
x + σ2

y + 2ρσxσy

≥ 1. (6.89)

As t > 0, by multiplying both sides of (6.89) by t > 0 and then combining it with

(6.88), we have

µx + µy
√

σ2
x + σy2 + 2ρσxσy

>
(σx + σy)t

√

σ2
x + σy2 + 2ρσxσy

≥ t. (6.90)

Therefore, by the fact that Φ is a non-decreasing function and (6.90), we

finally have

P (T1 > T3) = P (X + Y > 0)

= Φ(
µx + µy

√

σ2
x + σ2

y + 2ρσxσy

)

> Φ(t) = PT . (6.91)

2

Having proved the transitive ordering property, it is attempting to see whether

the ordering property as in Lemma (2) also holds for different choice of pC and

pT . Unfortunately, such an extension is not true in general. Therefore, results of

this extension are of mainly theoretical interests at this point. One of our future

work plans is to leverage these theoretical results for other CAD applications

while taking into account the process variation effects.
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6.6 Experiment Results

6.6.1 Experiment Setting

Two sets of benchmarks are obtained from the public domain for our experiments

[83]. The characteristics of the benchmarks are shown in Table 6.1.

Table 6.1: Characteristics of benchmarks.

Bench Sinks Buffer Positions

p1 269 537

p2 603 1205

r1 267 533

r2 598 1195

r3 862 1723

r4 1903 3805

r5 3101 6201

Because of the lack of access to the real wafer data, we derive the process

variation data based upon the literature that addresses similar process variation

issues but in the context of statistical timing analysis [1]. In our experiment,

the 65nm BSIM technology is assumed. We budget the random device variation,

inter-die global variation, intra-die spatial variation, and interconnect variation

all to be 5% of its nominal value, respectively. Moreover, to model the spatial

variation, we divide the chip layout into different grids with the length of each

grid as 500µm. For devices located at a particular grid, their characteristics

are affected by a set of nearby grids. We distribute the budgeted 5% spatial

variation into different regions with the sensitivity of each region forming an

isotropic stationary Gaussian process with a value that tapers off at a distance

of about 2mm.

137



6.6.2 BIPV Algorithms Comparison

Because of the complication resulting from nonlinear operations in computing Ct

and Tt, in section 6.3, we have employed the numerical integration method to

compute the distribution of Ct and Tt explicitly. To make the numerical method

attractable, we further assume that the variations in devices and interconnects

are independent, hence ignoring their shared inter-chip global variation and intra-

chip spatial correlations. The PDFs of Ct and Tt are computed numerically via

hyper-dimensional integration.

In theory, the results obtained through numerical integration are exact, and

are more accurate even than the method of Monte Carlo simulation, provided that

there is no numerical error with the integration. But numerical integration is no-

toriously difficult to implement with reasonable accuracy, and the computation

complexity is high. For example, our early implementation [105] of the JPDF-

based BIPV algorithm is done in C language, and we employed the simplest

trapezoidal method for numerical integration. However, even this least sophis-

ticated numerical integration method requires hours and hours of CPU time to

solve the BIPV problem for a small routing tree with 9 pins (8 sinks). Moreover,

we later found that the results from this simple numerical integration has very

rough edges due to accumulated numerical errors, which renders results after in-

tegration unstable. Therefore, for practice concern, the algorithm as discussed in

section 6.3 is not feasible. But the derivation as shown in section 6.3 is purely

general, and we do not make any assumptions on the specific distributions (such

as normal distributions) for all random variables. Therefore, its existence is still

of theoretic interest, and we will show one of its uses in the following.

To avoid the difficulties associated with numerical integration, we employ the

first-order canonical form to represent both device and interconnect variations,
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thus implicitly assuming that all random variables follow a normal distribution.

Based upon the canonical form, we have presented another BIPV algorithm in

section 6.4. One advantage of using canonical forms to represent all quantities is

that the correlation between them is implicitly considered, hence we can also con-

sider both global variation and spatial correlations. To simplify the computation

while still handle the nonlinear operations on two correlated distributions, we ap-

proximate the new canonical form for Ct and Tt as another normal distributions

as discussed in section 6.4.

Among the two nonlinear operations (minimum and multiplication), the min-

imum operation on two normal distributions have been shown to be reasonably

accurate if we approximate it as another normal distribution. This has been well

studied in the statistical timing analysis community, for example, [16, 94]. In

contrast, it is not well studied regarding the accuracy of the approximation of

results from multiplication of two normal distributions as another normal distri-

bution. In the following, we use the theoretic results developed in section 6.4 to

study the accuracy issue numerically.
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Figure 6.3: Numerical example for the JPDF of (Ct, Tt).
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One numerical integration example by following the derivation results as

shown in equation (6.17) is plotted in Figure 6.3.

Under the canonical model, the JPDFs of (Cw, Rw) and (Cn, Tn), i.e., h(Cw, Rw)

and fCn,Tn , all follow a bivariate normal distribution. To use equation (6.17), we

further assume that there is no correlation between h(Cw, Rw) and fCn,Tn . To

achieve more stable numerical results, we implemented the two-dimensional nu-

merical integration in Matlab by using its “dlbquad” function, which in term

calls “quad” function for one-dimensional numerical integration. The function

“quad” implements the recursive adaptive Simpson quadrature algorithm [81],

which is far more sophisticated than what we have implemented (trapezoidal

method) in C [105]. From Figure 6.3, we observe that the JPDF of (Ct, Tt) after

multiplication operations can be reasonably approximated as another bivariate

normal distributions. From Figure 6.3, we also observe that the roughness of

JPDF computation due to numerical approximation also shows up even in our

Matlab implementation. A more subtle observation from Figure 6.3 is that there

seems to have a singular point at the mean. This observation is in line with what

has been reported in [96]. We shall note that in order to obtain the rough result

as shown in Figure 6.3 in Matlab, we need more than four hours CPU time on a

Pentium 1.7GHz machine with 516 mega-bytes memory.

6.6.3 Runtime Comparison

We compare the efficiency of the two different pruning rules in the following.

And we use the same first-order canonical form to represent all quantities while

solving the BIPV problem.

The two-sided threshold based pruning rule, despite of its intuitive definition,

is computationally expensive to use for large designs, because it is not guaranteed
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that the number of solutions after pruning is linearly. We denote the algorithm

under the two-sided threshold based pruning rule as T2P, and the one under the

transitive-closure pruning rule as vawBuf.

Table 6.2: Runtime comparison in seconds.

Bench detBuf T2P [105] vawBuf Speedup

p1 0.00 25.4 1.0 25.4×

p2 0.01 - 4.3 -

r1 0.00 - 3.6 -

r2 0.00 - 15.0 -

r3 0.02 - 27.5 -

r4 0.04 - 88.9 -

r5 0.08 - 195.8 -

In Table 6.2, we report the runtime for both algorithms based upon the bench-

marks we have tested. According to Table 6.2, we can see that the implemented

T2P algorithm can handle much larger benchmarks than what was originally

reported in [105], and the largest tested benchmark is p1 with 269 sinks. This

improvement is mainly due to the avoidance of computing JPDF explicitly. How-

ever, we still fail to use the improved algorithm of [105] to run larger benchmarks.

In fact, for the rest of tested benchmarks, it fails due to exceeding either memory

capacity (2G) or tolerable time limit (4 hours in our setting). This observa-

tion is expected, because the two-side threshold based pruning rule only imposes

partially ordering between solutions, rendering the complexity of merging and

pruning very high.

In contrast, by using the transitive closure pruning rule, our vawBuf algorithm

can easily run through all benchmarks and for the largest benchmark r5, the

runtime is about 3 minutes. This significant runtime speedup is achieved because

the transitive closure pruning rule as discussed in section 6.5 enforces a relatively

strict ordering between solutions, thus enables an efficient implementation for
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both merging and pruning.

We also report the runtime for the conventional deterministic buffering al-

gorithm (detBuf) in Table 6.2. We find the our vawBuf algorithm runs slower

than detBuf, but this is expected because of the additional computation needed

to handle correlated process variations. If we plot the runtime of vawBuf versus

the number of legal buffer positions, however, we can see that the runtime of our

vawBuf algorithm scales almost linearly with respect to the benchmark size.

6.6.4 Timing Optimization

Enabled with the efficient implementation of buffer insertion considering process

variations, we run our buffer insertion algorithm on the benchmarks for RAT

optimization and study the effect of process variation on buffered interconnect

design.

We first verify the accuracy of our approach in predicting the timing distribu-

tion via Monte Carlo simulation. For one buffered routing tree with inserted

buffers, we run our vawBuf algorithm under the first-order process variation

model to compute the delay distribution at the root, which is approximated

as a normal distribution. For the same buffered routing tree, we use Monte Carlo

simulation to obtain the delay distribution at the root. Fig. 6.4 shows both the

PDF computed from our algorithm and the Monte Carlo simulated PDF for one

of the benchmarks (r5). We see that the distribution from Monte Carlo simula-

tion almost follows a normal distribution as predicted by our vawBuf algorithm.

Moreover, our algorithm is reasonably accurate in predicating the distribution

compared to that from Monte Carlo simulation, and tends to be conservative.

Having said that, we shall point out that in general, if we only compute the

product of two normal distributions once, the results can be very different from
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Figure 6.4: Delay distributions at the root as predicted by our vawBuf algorithm

and the Monte Carlo simulation.

a normal distribution, and only under some conditions this approximation is

acceptable. A thorough treatment of this subject can be found in [96], in which

the theoretic derivation of those conditions are given. However, when more and

more such approximation operations are applied, by central limit theorem, the

final results would still look like a normal distribution. This conclusion has also

been empirically observed in both our experiments as shown in Figure 6.4 and

the work by [96].

We further compare the solution quality between the conventional determin-

istic buffering algorithm and our variation aware buffer algorithm. For fair com-

parison, we run Monte Carlo simulation as a golden test to obtain the delay

distribution at the root for both cases. One such example based on benchmark

r5 is shown in Fig. 6.5. We employ the 3-sigma delay in the distribution as a

figure-of-merit to compare the results. The 3-sigma delay defines the worst case

delay in the distribution such that almost all manufactured designs (> 99.8%)

will have a smaller delay than the 3-sigma delay even in the presence of pro-

cess variation. By comparing the 3-sigma delay in Fig. 6.5, we observe that the
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Table 6.3: Comparison between deterministic buffering (detBuf) and varia-

tion-aware buffering (vawBuf) based on Monte Carlo simulations. The yield

of vawBuf is 100%.

Bench detBuf vawBuf

Buffer Mean (%) 3-sigma Delay(%) Yield Loss Buffer (%) Mean 3-sigma Delay

p1 58 2374 2403 0% 60 (3.3%) 2375 2403

p2 149 3161 3203 0% 156 (4.5%) 3161 3204

r1 59 772 790 0% 65 (9.2%) 771 790

r2 112 1109 (1.7%) 1128 (1.5%) 35.3% 135 (17%) 1090 1111

r3 173 1127 (0.7%) 1147 (0.5%) 1.6% 188 (8%) 1119 1142

r4 320 1700 (1.5%) 1723 (1.4%) 54.9% 374 (14.4%) 1674 1699

r5 544 1958(1%) 1986 (1.0%) 17.9% 608 (10.5%) 1938 1966

Avg 0.7% 0.6% 15.7% 9.6%

3-sigma delay obtained from vawBuf is much better than that from detBuf.

If we further define the 3-sigma delay of vawBuf as 100% timing yield point,

we can then use it to find the timing yield for the deterministic design. The

difference between these two indicates the potential timing yield loss as shown in

Fig. 6.5. We report the comparison between the deterministic buffering algorithm

and our variation aware buffering algorithm in Table 6.3.

According to Table 6.3, we can see that compared to the deterministic buffer-

ing, our variation aware buffer insertion improves the 3-sigma timing by 0.6%

on average, and the parametric timing yield by more than 15%, respectively.

This highlights the importance of developing efficient algorithms for IC designs

to actively attack process variation effects.

Interestingly, we observe that, for some relatively small benchmarks, the im-

provement for 3-sigma delay and yield is almost negligible, while for some large

benchmarks, the improvement is quite significant. These observations to some

degree agree with what has been reported in [25] for infinity long two-pin nets.
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Figure 6.5: Delay distribution comparison between our vawBuf algorithm and

the deterministic buffering algorithm (detBuf).

There is a need, however, to look into the theoretical explanation to the above

observations.

We also report the number of buffers inserted for both algorithms in Table 6.3.

We see that our variation aware buffering algorithm tends to put more buffers

into the design to combat the correlated process variations than the deterministic

worst case design.

6.7 Conclusion and Discussion

A novel algorithm for buffer insertion considering process variation has been

proposed. We have developed an efficient approximation technique to handle the

correlated process variations under nonlinear operations. We have also proposed

a provable transitive closure pruning rule that enables efficient implementation

of the buffer insertion algorithm considering correlated process variations. We

have applied the algorithm for timing optimization and concluded that process

variation must be considered to achieve optimal designs for parametric timing
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yield, and buffer insertion considering correlated variation improves the timing

yield by more than 15% on average.
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CHAPTER 7

Criticality: A Variation-aware Metric for

Optimization

Chips manufactured in 90 nm technology have shown large parametric variations,

and a worsening trend is predicted. These parametric variations make circuit op-

timization difficult since different paths are frequency-limiting in different parts

of the multi-dimensional process space. Therefore, it is desirable to have a new di-

agnostic metric for robust circuit optimization. Criticality probabilities, both the

conditional and unconditional versions, are such a metric. This chapter presents

a novel algorithm to compute the criticality probability of every edge in the tim-

ing graph of a design with linear complexity in the circuit size. Using industrial

benchmarks, we verify the correctness of our criticality computation via Monte

Carlo simulation. We also show that for large industrial designs with 442,000

gates, our algorithm computes all edge criticalities in less than 160 seconds. The

high accuracy and fast speed of the algorithm warrant future application of crit-

icality probability for robust circuit optimization.

7.1 Introduction

As technology nodes shrink to 90 nm and below, it becomes more difficult to

manufacture chips with guaranteed parametric timing yield due to substantial
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increase of process variations [93]. If these effects are not considered properly,

the potential for silicon failure is high, and the associated cost for a design re-spin

is prohibitive. Therefore, statistical methods have recently attracted attention as

a promising approach to improve parametric timing yield.

In the deterministic approach, a circuit is optimized for a single combination

of process parameters. As a result of manufacturing, however, we receive chips

corresponding to various combinations of process parameters. Deterministic op-

timization cannot guarantee that the chip satisfies design requirements for all

or most of these combinations. Statistical optimization [37, 4, 20] is targeted

to solve this problem. The goal of statistical optimization is to maximize yield

while satisfying timing, area, power and other design constraints. This goal can

be achieved only by considering the whole space of process variations. Param-

eterized statistical static timing analysis (SSTA) [16, 94] provides that kind of

exploration, computing the circuit delay as a function of process parameters. Un-

fortunately, knowing circuit delay is not enough. The optimization needs more

detailed guidance to select circuit fragments requiring improvement. The timing

analyzer drives deterministic optimization by identifying a critical path. In the

presence of process variations, the critical path is not unique because different

paths can be critical in different regions of the process space.

There is a useful logical extension of the concept of a critical path called

criticality probability [94]. Similar concepts were used in the context of PERT

networks where it was called criticality index [28]. The criticality of a path is the

probability of manufacturing a chip in which the path is critical. The higher the

criticality, the more important it is to improve the timing characteristics of the

path. In [55] it is shown that the criticality of a path is equal to the sensitivity

of the mean of the circuit delay with respect to the mean of the path delay. But
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we believe the concept of criticality is more convenient than sensitivity. First,

the definition of criticality is simpler, clearer and more intuitive, as it naturally

extends the conventional concept of critical path. Second, criticality computation,

as we will show in this chapter, does not require complicated chain ruling as was

used for sensitivity computation [55]. Third, criticality allows us to define a new

concept, called conditional criticality, which gives us information on how critical

a gate is among those manufactured chips that fail timing. Conditional criticality

is more useful for optimization since the optimization should focus only on chips

that violates timing constraints. Moreover, conditional criticality can be used for

other applications such as circuit synthesis and test generation.

There was an attempt to compute criticalities by multiplying tightness prob-

abilities [94]. This approach assumes that the tightness probabilities represent

independent events and can be multiplied, which is not correct due to globally

correlated parameters and path reconvergence. As was shown in [37], however,

even such inaccurate criticalities can be useful for guiding optimization.

In this chapter, we develop an accurate and efficient technique to compute

criticalities for all timing edges in the context of parameterized SSTA. We use

the same graph cutset concept [26] as [20] does, although both came to the same

idea independently. The difference is that [20] used cutset for timing yield gra-

dient computation, and this is achieved by perturbing PDFs of timing edges. In

contrast, we focus on efficient computation of criticality without perturbation.

Our computation uses only efficient operations of statistical minimum and max-

imum, and tightness probability computation. We do not make any assumptions

about independence approximations on tightness probabilities. The proposed al-

gorithm has linear complexity in the number of timing edges. We propose a new

concept of conditional criticality and develop an efficient technique for its compu-
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tation. We implement our algorithms in an industrial statistical timing analyzer

and verify the correctness of our implementation by Monte Carlo simulation. We

show that for an industrial ASIC with 442,000 gates, our algorithm computes

all edge criticalities in less than 160 seconds. Results of this chapter have been

reported in [108, 109].

7.2 Motivation: the Need for a Variation-aware Metric

Timing closure in the presence of process variations is a nightmare. Traditional

incremental timing is run at a chosen process corner to guide the optimization, but

timing sign-off requires either multi-corner timing or statistical timing. If sign-off

timing is not achieved, the optimization continues with some annotations from

the sign-off timing as to which cones of logic need improvement. The trouble is

that as soon as timing is closed at process corner A, violations are seen at process

corner B, and vice versa, and the target remains elusive.

Traditional timing provides two important diagnostics: (1) the identity of

the critical path, which is the location of the most “bang for the buck” during

optimization; (2) timing slack or margin. In the presence of process variations,

unfortunately, neither of these diagnostics is useful. Each point in the process

space can have a unique critical path, so in reality there is a set of critical paths,

each of which has a non-zero probability of being critical. For illustration pur-

poses, Fig. 7.1 shows a 2-dimensional space with process parameters P1 and P2,

along with contours of equal probability. Realistic situations will have a much

higher dimensionality. The X in the figure shows the process corner at which

timing is conducted in order to guide optimization, at which a particular path is

found to be the most critical. As show in Fig. 7.1a, this path may be critical in

only a small portion of the process space around X, or it may be critical in much
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Figure 7.1: Criticality of a critical path in (a) a small region of the process space;

(b) a large region of the process space.

of the high-probability process space as shown in Fig. 7.1b. Thus it is unclear

from deterministic timing whether or not it is important to improve the timing

characteristics of this path.

One quickly comes to the conclusion that one requires either multi-corner

slack or statistical slack to guide optimization. Multi-corner slacks cannot be

obtained incrementally and an exponential number of corners in the process space

makes this procedure prohibitive. Instead, statistical slack is more conducive

to incremental operation of the timer, as described in [94]. Statistical slack,

however, also has problems in serving as a good metric for optimization, because

statistical slack is a distribution, and present-day optimization tools typically do

not know how to deal with distributions. Of course, statistical slack is richer in

information content than a distribution, since it is typically parameterized by the

sources of variation (i.e., a first-order canonical form). this information opens up

possibilities of using this parameterized model to choose the type of optimization

that would best improve timing characteristics. But this also makes it even more

complicated for the optimizer to use statistical slack as a metric.

One possibility is to use a σ-sampled value of the slack as a metric, e.g., the
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Figure 7.2: Statistical slack of two paths with the same -3σ value.

µ−3σ value of the slack. This has the advantage of ensuring adequate parametric

yield when timing is closed, and being a single number that represents the entire

process space. Unfortunately, this metric has problems, too. Fig. 7.2 shows

two slack distributions S1 and S2 which have the same −3σ value. In the case

of S1, the distribution is pretty tight and improvement (i.e., movement to the

right) is best accomplished by moving the entire distribution. Moving an entire

distribution typically costs area and power since it is often achieved by inserting

buffers or up-sizing gates. On the other hand, S2 can be improved by reducing its

sensitivity to process, i.e., tightening its distribution. Unfortunately, σ-sampled

slack does not give us this type of insight.

Now we will consider one last example to demonstrate the problems with

statistical slack. Consider a situation in which two σ-sampled path slacks are -70

and -50 ps, respectively. Traditional wisdom says to improve the first path till

its slack reaches -50 ps, and then try to improve both. Depending on the spread

and correlation of the two distributions, this may not be so wise. If the spread of
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the slacks is large and the two slacks are uncorrelated, then the second path may

be almost as much of a yield limiter as the first. If they are tightly correlated,

however, then traditional wisdom is sound.

7.3 Criticality Probability

Some of the desired features of a good variation-aware diagnostic metric are: (1)

preferably, a single number; (2) preferably, a number with a fixed range such as

0 to 1; (3) a number that implicitly represents criticality in the entire process

space; (4) a number that is implicitly correlation-aware; and (5) a number that

can be computed efficiently. Criticality probability is a metric that satisfies all

these requirements.

7.3.1 Definitions and Properties

Definition 5 Criticality of a path is the probability of manufacturing a chip

in which this path is critical.

Definition 6 Criticality of a set of paths is the probability of manufacturing

a chip in which at least one path from this set is critical.

Definition 7 Criticality of an edge (node) is the probability of manufactur-

ing a chip in which this edge (node) is on the critical path.

According to the definitions, the criticality of a timing edge (node) is also the

criticality of the set of all paths going through that edge (node). The concept of

criticality can be extended to a circuit gate, and even to any fragment of a timing

graph or circuit. This flexibility is useful for circuit optimization. The concept of

criticality is illustrated in Figure 7.3 on the example of a simple circuit with its
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two-dimensional process space. A path P1 is critical if the process parameters

fall in the area P1 in the process space during manufacturing. The criticality

of the path P1 is therefore the probability of manufacturing a chip with the

combination of parameters falling in this area P1.
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Figure 7.3: Critical paths and process subspaces.

The criticality of a set of paths S can be expressed by the following integral:

∫

· · ·
∫

max
Pi∈S

(D(Pi))>max
Pj /∈S

(D(Pj))

p(X1,X2, · · · )dX1dX2 · · · (7.1)

where p(X1, X2, · · · ) is the joint PDF of process parameters X1, X2, · · · ; Pi, Pj

are circuit paths belonging and not belonging to the set S, respectively, and

D(Pi), D(Pj) are path delays as functions of process parameters. Obviously, this

formula is not practical for computing criticalities, as it requires multidimensional

integration across complex polyhedrons. So, we need a better way of computing

criticalities. It is useful to prove the following simple lemma.

Lemma 5 If two canonical forms A and B differ in at least one coefficient, then

the probability that they are equal is 0.
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Proof: The equality of two canonical forms is expressed as

a0 +
n
∑

i=1

aiXi + arXra = b0 +
n
∑

i=1

biXi + brXrb. (7.2)

This equality can be rewritten as

(a0 − b0) +
n
∑

i=1

(ai − bi)Xi + arXra − brXrb = 0. (7.3)

This equation defines a hyperplane in the process space because at least one of

its coefficients is not zero. The probability that the canonical forms are equal

is a volume integral of the joint PDF of the process parameters over this hyper-

plane. Obviously this probability is zero for any practical probability distribution

because the thickness of any hyperplane is zero. 2

Using this lemma we prove the following theorem:

Theorem 6 The criticality of a set S of paths is the sum of the criticalities of

these paths.

Proof: If no paths have the same canonical form of their delays, the theorem

is obvious because the probability that several paths are critical simultaneously

is 0. Assume that n paths have the same canonical form D of delay and that

the probability that this delay is larger than any other path delay in the circuit

is p. Then, according to convention, each of these paths is assigned a criticality

probability of p/n. Thus, the theorem holds in this case, too. 2

From this theorem we derive the following corollaries.

Corollary 3 Edge (node) criticality is equal to the sum of criticalities of the

paths going though this edge (node).

Corollary 4 If all the circuit’s paths are divided into two non-intersecting sub-

sets A and B, then the criticality of subset A is the probability that the maximum
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delay of the paths belonging to the set A is larger than the maximum delay of the

paths belonging to the set B.

In order to compute edge criticality, we compute the canonical form A of the

maximum delay of the paths going through this edge and the canonical form B

of the maximum delay of the paths not going through this edge. Then the edge

criticality is simply the probability that A > B, or, in other words, the tightness

probability of A with respect to B.

7.3.2 Principles for Criticality Computation

In order to explain edge criticality computation, we give several definitions and

recall some facts from network theory.

Definition 8 Edge slack of an edge is the maximum delay of all paths going

through the edge.

Definition 9 Complement edge slack of an edge is the maximum delay of all

paths not going through the edge.

The maximum of any edge’s slack and complement slack is the longest path of the

circuit, which is the negative of the slack of the circuit in late mode (edge slacks

are defined in this manner to avoid minus signs in the following derivations).

From these definitions, it follows that the edge criticality is the probability

that the edge slack is greater than the complement edge slack, i.e.,

p(ecritical) = p(edgeslack > complementedgeslack). (7.4)

In other words, the tightness probability of the edge slack over the complement

edge slack. Tightness probability can be computed by formula (2.25).
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7.4 Efficient Edge Criticality Computation

7.4.1 Edge Slack Computation

The set of paths going through edge e forms a so-called edge flow graph Ge

consisting of three parts: the edge input cone, the edge e itself, and the edge

output cone. The slack se of edge e is simply delay D(Ge) of its flow graph Ge.

It can be expressed as:

se ≡ d(Ge) = Dincone + d(e) + Doutcone, (7.5)

where Dincone is the delay of the edge input cone, d(e) is the delay of the edge e,

Doutcone is the delay of the edge output cone. Recalling the definition of arrival

and required arrival times, we express the slack of edge e = (i, t) as follows:

se = AT (i) + d(e) − RAT (t) (7.6)

where AT (i) is the arrival time at the initial node i of the edge e and RAT (t) is

the required arrival time at terminal node t of the edge e. Figure 7.4 illustrates

edge slack computation.
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Figure 7.4: Edge slack computation.
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7.4.2 Cutset Construction

Computation of complement edge slack is more complicated and requires ad-

ditional considerations. In network theory [26], a cut between source and sink

nodes is defined as a set of edges whose removal from the network disconnects the

source and sink nodes. Here, we consider only those cuts satisfying the condition

that each path from the source to the sink has only one common edge with each

cuts. We call these cuts as a minimal separating cutset. The algorithm as shown

in Figure 7.5 computes a minimal separating cutset Ωi covering a given timing

graph. For any edge of the timing graph, this algorithm computes at least one

cut containing that edge.

Levelize the timing graph by topological sort

Ω0 = {Edges outgoing from source node}
For each level i

Γ = {Edges incoming to level i}
Λ = {Edges outgoing from level i}
Ωi = Ωi−1 − Γ + Λ

Figure 7.5: Algorithm for cutset computation.

Figure 7.6 illustrates cutset computation. We move a scan line along the

levelized timing graph from the source to the sink. Each time we step over a level

of the graph, we transform the current cut into the next one by excluding the

edges coming into the nodes of the current level and including the edges going

out from the nodes of the current level. Any cuts computed by the algorithm

separates the nodes of the timing graph into two sets: Ni containing the source

node and Nf containing the sink node. Any node from the set Ni belongs to the

lower level of the timing graph than any node from the set Nf . From that, we can
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Figure 7.6: Computation of a set of cuts.

conclude that any path from the source to the sink intersects any cuts computed

by this algorithm exactly at one edge.

In order to compute the complement slack for edge e, we consider a minimal

separating cut Ce containing this edge. Let Ce = Ce − {e} be a set of edges in

the cut except e. Then the set of paths going through the edges of the set Ce

includes all the paths of the timing graph except the paths going through the edge

e. The maximum delay of the paths going through the set of edges Ce is exactly

the complement slack of the edge e. The complement slack can be computed as

the statistical maximum of all the edge slacks of members of the set Ce. The

complement slack of edge e, shown in Figure 7.4, is computed as

se = max(sa, sb, sc) = max(sa,max(sb, sc)). (7.7)

Such a naive implementation of this approach, unfortunately, has a quadratic

complexity, because each edge criticality requires calculation of the maximum of

all other edge slacks.
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7.4.3 Efficient Complement Edge Slack Computation

7.4.3.1 Cutset Based Complement Edge Slack Computation

The efficiency of complement slack computation can be improved if we use a tree

data structure to re-use intermediate complement slack values. We construct

a hierarchical partition of the cutset and compute all the complement slacks

simultaneously, remembering and reusing slacks and complement slacks of the

partition subsets. For simplicity, we assume that the cutset has n = 2t edges

and construct a balanced binary partition tree shown in Figure 7.7. However,

our approach can be applied to cuts with an arbitrary number of edges. The

construction of the partition tree can be done either top down by sequentially

splitting the sets of edges into equal parts or bottom up by merging pairs of

edges and then pairs of the subsets of edges. Each leaf node in the partition tree

C D E F G H

max(ABEFGH)

max(EFGH)

max(AB)
max(CDEFGH)

max(G,H)max(CD)

max(EFGH)

Slack computationComplement slack computation

(minus infinity)

A B
max(BCDEFGH)

max(ABCD)

max(EF)

Figure 7.7: Binary partition tree.

represents one edge of the cuts. Each non-leaf node defines two sets of edges: the

set of the node’s children and the set of the edges that are not the node’s children.

With each node of the tree we associate a node slack and a node complement

slack. The node slack is the maximum of slacks of its child edges. The node

complement slack is the maximum of the slacks of non-child edges. For a leaf
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node, these two slacks are exactly the edge slack and the complement edge slack.

The computation of node slacks and complement node slacks is illustrated in

Figure 7.7. The algorithm as shown in Figure 7.8 computes the slacks associated

with tree nodes and complement edge slacks.

Construct a partition tree of the cut edges;

Assign edge slacks to leaf nodes;

Traverse the tree bottom-up, and for each non-leaf node

Slack = max(children’s slacks);

Assign minus infinity slack to the root node

Traverse the tree top-down, and for each node

Complement slack = max(parent complement slack, sibling node slack);

For each leaf node

Edge criticality = P(edge slack > complement edge slack);

Figure 7.8: Algorithm for complement edge slack computation.

This algorithm computes criticalities of all edges in the cut simultaneously

and has linear complexity as the number of max operations is proportional to

the number of the tree nodes. A detailed analysis shows that it requires 4n − 6

max operations where tightness probability computation is considered as a max

operation, too.

7.4.4 Edge Criticality Computation

The overall algorithm to compute the edge criticality for all edges in a given

timing graph G is shown in Figure 7.9.

Regarding the complexity of the algorithm for edge criticality computation,

we have the following theorem
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1 Levelize the timing graph G;

2 Ω = Ø;

3 For l =0 to lmax

4 Add to Ω edges whose source node level = l;

5 Remove from Ω edges whose sink node level = l;

6 Ωes = compute-edge-slack(Ω);

7 Ωecc = compute-edge-criticality(Ωes);

8 End

Figure 7.9: Algorithm for edge criticality computation.

Theorem 7 The algorithm for computing edge criticality for all edges in the

timing graph G as shown in Figure 7.9 has a complexity of O(lmaxN), where lmax

is the maximum depth in G, N is the number of edges in G.

Proof: Levelizing the timing graph G as shown in line 1 can be done in O(N) by

performing a breast first traverse of G. Forming the cut set at level l as shown

in line 4 and 5 can be done in O(ml) with ml equal to the number of edges

being added and removed at level l. Considering the loop in line 3, the cut set

construction for all levels equals to O(m0)+O(m1)+...+O(mlmax), which is again

O(N) because each edge is added and removed only once, i.e., m0 + m1 + ... +

mlmax=2N .

According to section 7.4.1 and 7.4.3, both the computation of edge slacks

and the computation of complement edge slacks for edges at level l can be done

in O(nl), where nl is the number edges in the cut set Ω of level l. Hence the

computation of edge criticality for edges at level l can also be done in O(nl).

Considering the loop in line 3, all edges’ edge criticality can be computed in

O(n0)+O(n1)+...+O(nlmax), which is equivalent to O(lmaxN) because the sum of
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n0+n1+...+nlmax is upper bounded by lmaxN . Therefore, the total complexity of

the algorithm in Figure 7.9 is O(lmaxN). 2

7.4.5 Speedup Technique

In practical circuits, an edge may intersect many cuts as is shown in Figure 7.10.

This often happens in sequential circuits with many flip-flops. In real circuits

more than 50% of edges go through multiple cutsets. Occurrence of edges in

multiple cuts significantly slows down criticality computation because the same

edge is processed multiple times in different cuts. In order to improve efficiency,

S F

Figure 7.10: Edges going through many cuts.

we developed a technique to eliminate repeated processing of the same edge.

This technique is based on the observation that after the criticality of an edge is

computed once, the slack of this edge is used only for computing the complement

slacks of the other edges by means of a max operation. The computation of the

complement slacks does not require knowledge of the individual edge slacks and

any group of edges can be represented by the maximum of their edge slacks. The

improved algorithm for edge criticality computation is shown in Figure 7.11.

The idea behind the algorithm as shown in Figure 7.11 is that we only compute

each edge’s edge criticality once, and for those edges that fly across many levels

as originally shown in Figure 7.10, we keep an array of flying edge slacks Ψ[t] with

t=0, ..., lmax. The purpose of Ψ[t] is to keep the statistical maximum of the edge

slacks for those edges that go through multiple cuts and whose sink level equals
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1 Levelize the timing graph G;

2 Ψ[0, ..., lmax] = -∞;

3 For l =0 to lmax

4 Ω = Ø;

5 Add to Ω edges whose source level = l;

6 Ωes = compute-edge-slack(Ω);

7 Ωecc = compute-edge-criticality(Ωes

⋃

Ψ[l + 1, ..., lmax]);

8 Denote edges in Ω whose sink level > l as Θ;

9 For each edge in Θ

10 t = edge’s sink level;

11 Ψ[t] = max(Ψ[t], edge’s edge slack);

12 End

13 End

Figure 7.11: Improved algorithm to compute edge criticality.

to t (line 11). Therefore, at each level, we only add those newly appeared edges

(line 4 and 5) and compute their edge slacks (line 6) once. Then we combine

them with all other flying edges’ edge slacks whose sink level is greater than the

current level l, and feed it to the edge criticality computation algorithm (line 7).

Among the returned edge criticality, only those criticality for the newly added

edges are saved. Line 9, 10 and 11 are used to update flying edges’ edge slacks

for next iteration.

The complexity of this algorithm is shown in the following theorem

Theorem 8 The algorithm for computing edge criticality for all edges in the

timing graph G as shown in Figure 7.11 has a complexity of O(N)+O(l2max),

where lmax is the maximum depth in G, N is the number of the edges in G.
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Proof: The proof follows similar arguments as shown in the proof of Theorem

7 except that: (1) each edge appears in Ω only once, so that the edge slack and

edge criticality for each edge is also computed once; (2) the flying edges’ edge

slacks are embedded within two loops (line 3 and 9), therefore, updating the

flying edges’ edge slack takes O(l2max). Considering everything together, the total

complexity of the algorithm as shown in Fig. 7.11 is O(N)+O(l2max). 2

For a practical timing graph G, the maximum level number lmax is much

smaller than N , therefore, the complexity of the above algorithm is in fact O(N),

which implies constant time for computing the criticality of each edge.

7.5 Conditional Criticality

The criticality introduced above is the probability of a path, edge or node being

critical among all the manufactured chips. However, optimization for yield is

interested in improving only those chips that violate timing constraints without

wasting resources speeding up chips that are already sufficiently fast. In other

words, if an edge or path is only critical in a subset of the process space and

there are no failing chips in that region, then there is no point improving that

edge or path. The concept of conditional criticality helps to solve this problem

by providing information on how critical an edge is among failing chips only.

Definition 10 Conditional criticality of a path (edge, node) is the con-

ditional probability of manufacturing a chip in which this path (edge, node) is

critical, conditional upon the chip violating its timing constraints.

Conditional criticality of an edge e is expressed as follows:

p(ecritical|chipfails) =
p(ecritical, chipfails)

p(chipfails)
(7.8)
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where p(ecritical|chipfails) is the conditional probability that the edge e is critical

conditional upon the timing constraints being violated; p(ecritical, chipfails) is the

probability that the edge e is critical and the timing constraints are violated;

p(chipfails) is the probability that the timing constraints are violated. In other

words, conditional criticality is the probability of being critical computed for the

sample space consisting of only those chips violating timing constraints.

In our case, the required time at the sink node is always 0. So the condition

that the timing constraints are violated is Dckt > 0 where Dckt is the circuit

delay. The probability p(chipfails) that the timing constraints are violated is the

tightness probability of Dckt with respect to 0. The condition that the edge e is

critical is se > se where se is the slack of the edge e and se is the complement

slack of the edge e. This condition can be rewritten as se − se > 0. Then the

condition that both the edge e is critical and the timing constraints are violated

is expressed as

min(se − se, Dckt) > 0. (7.9)

So, the probability p(ecritical, chipfails) that the edge e is critical and the timing

constraints are violated is just tightness probability of min(se − se,Dckt) with

respect to 0. Using edge slacks and complement edge slacks, this probability can

be efficiently calculated by linear approximation of the statistical min operation.

If the distribution of statistical min is highly skewed to the left, the accuracy of

the Gaussian approximation can be low. In this case, it is better to represent

the result of the min operation with a skewed normal distribution and compute

the tightness probability numerically. Substituting the computed probabilities

into (7.8), we compute the conditional criticality of the edge e conditional upon

the timing constraints being violated. Thus conditional edge criticalities can

be computed with the same efficiency as unconditional ones. Similarly, it is
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possible to compute conditional criticality only considering chips that meet their

timing constraints. This kind of conditional criticality is useful for statistical

optimization by down-sizing gates to reduce power consumption.

7.6 Experiment Results

We have implemented the proposed technique for computing both unconditional

and conditional criticalities in the industrial statistical static timing analyzer

EinsStat [94]. The criticalities are calculated for all timing edges for all clock

phases, rising and falling transitions, early and late modes. We implemented three

algorithms for criticality computation: the basic algorithm with straightforward

calculation of the complement edge slacks, the partition tree based algorithm,

and the algorithm with the speed up technique eliminating repeated processing

of edges intersecting multiple cuts.

Table 7.1 shows the run times of the different algorithms and compares them

with the run time of basic SSTA. Columns 1 and 2 show chip name and the num-

ber of gates. Columns 3, 4, 5, 6 report CPU time for SSTA and three different

versions of the criticality computation algorithm. Additionally, columns 5 and 6

provide information on the absolute and relative overhead of criticality compu-

tation (of all edges in the graph) over and above statistical timing. From Table

7.1 we see that both the partition tree approach and the elimination of repeated

processing of edges intersecting multiple cuts are important enhancements of the

criticality computation technique. Only with these modifications is the criticality

computation always faster than the base statistical timing, making it sufficiently

fast for such applications as optimization, synthesis and test generation. From

Table 7.1 we see that for the large design with 442,000 gates the proposed tech-

nique can compute criticalities in only 2.66 minutes of CPU time, while it takes
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Table 7.1: Run time comparison

Chip Size SSTA Basic Partition Speedup

techn. tree techn.

D1 0.15k 1.97s 0.36s 0.20s/10.2% 0.19s/9.6%

D2 0.66k 7.28s 0.23s 0.04s/0.5% 0.04s/0.5%

D3 3.04k 3.37s 13.3m 4.44s/1.3x 0.39s/11.6%

D4 57.4k 21.5s - 1.92m/5.4x 14.1s/65.6%

D5 87.2k 1.40m - 52.5s/62.7% 27.5s/32.9%

D6 442k 24.9m - 14.6m/58.6% 2.66m/10.7%

24.9 minutes to perform the basic statistical timing analysis.

For verifying the accuracy of our algorithms, we implemented a Monte Carlo

technique for criticality computation. We generate 10,000 random samples of

process parameters, compute gate delays corresponding to them and perform

deterministic timing analysis to find a critical path corresponding to each sample.

Counting the number of times that each edge is on the critical path for all Monte-

Carlo samples, we compute the criticality probability of that edge.

Table 7.2 shows the accuracy of the criticality computation for different amounts

of process variation. The amount of process variation is given as the average stan-

dard deviation of gate delay expressed as a percentage of nominal gate delay. The

first line of the table reports the maximum difference between criticalities com-

puted by the proposed algorithm and the Monte-Carlo technique. The second

line reports the sum of the absolute values of the differences between the critical-

ities computed by the proposed algorithm and Monte-Carlo for all edges of the

timing graph. We see that the proposed technique has high accuracy.

Additional investigation of the sources of computational error shows that the

main part of the error is due to the linear approximation of the statistical min

and max operations used in the parameterized SSTA. This error grows when the

delay variation is larger, which we can see from this table.
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Table 7.2: Accuracy of criticality computation

σ (%) 0.3% 0.6% 1.5% 3% 4.5% 5%

maxDiff 0.0004 0.0003 0.0012 0.0006 0.0296 0.0754

sumDiff 0.0012 0.0359 0.144 0.0585 0.711 1.104

We performed a number of experiments to compute conditional criticalities.

The experiments show that conditional criticalities can be computed with ap-

proximately the same accuracy and CPU time as the unconditional ones. This

conclusion fully agrees with our expectation since the computation of conditional

criticalities is only a little extra work after the computation of unconditional

criticalities. On the other hand, our experiments show that the values of the

conditional criticality can be significantly different from the values of the uncon-

ditional ones. In fact, conditional criticality significantly depends on the length

of the circuit clock cycle while the value of unconditional criticality is always the

same. Fig. 7.12 demonstrates the dependence of the conditional criticalities on

clock cycle length for four different timing edges. We see that when the clock

cycle is longer, the conditional criticality of different edges may either increase

or decrease depending on the circuit topology and process variation.

7.7 Conclusions and Discussion

In this chapter, we described an accurate and efficient method for computing crit-

icalities of all timing edges in the context of parameterized block-based statistical

timing analysis. Our algorithm computes criticalities of all edges of the timing

graph with linear complexity with respect to the number of timing edges and can

compute both unconditional and conditional criticalities. We implemented the

proposed algorithm in an industrial SSTA tool targeted for both sign-off timing
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Figure 7.12: Conditional criticality as a function of clock cycle

analysis and for guiding circuit synthesis and optimization. Computational ex-

periments with industrial circuit designs having up to 442K gates demonstrated

high accuracy and low run time of the proposed technique. The maximum error

of criticality computation is about 7.5% compared to Monte-Carlo simulations.

The CPU time of criticality computation varies from 10% to 65% of the CPU

time of statistical timing analysis even for large designs.
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CHAPTER 8

Yield Gradients Computation

Statistical timing is an efficient way of taking into account process variations

during performance analysis. However, optimizing a circuit across the entire

process space is an extremely difficult challenge. Traditionally, static timing has

been useful both for timing sign-off and to provide diagnostics for optimization.

Traditional diagnostics such as the notion of a unique critical path or timing

slack can no longer be used as metrics to guide optimization in the presence of

variability. This chapter presents a novel and efficient method to compute the

gradient of parametric yield with respect to the delay of each gate or wire. The

resulting gradients can be rank-ordered for discrete optimization in a physical

synthesis setting, or fed to a nonlinear optimizer for continuous optimization of

design parameters such as transistor sizes, thus enabling formal mathematical

yield optimization.

8.1 Introduction

Timing optimization is traditionally conducted by physical synthesis in a library-

based flow or transistor sizing in a transistor-level custom design methodology.

The optimization in either case is guided by deterministic timing slack or mar-

gins. In the presence of process variations, the goal is to close timing in the entire

process space. Traditional metrics like deterministic slack fail to provide correct
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guidance to optimizers. Criticality or conditional criticality as we discussed in

chapter 7 is a useful variation-aware metric for optimization. However, this prob-

ability still does not tell us how the parametric yield of the chip is impacted by

changing the delay characteristics of an edge of the timing graph (by sizing or

buffering, for example).

In this chapter, we propose a novel and efficient method of computing yield

gradients as a post-processing step after statistical timing has been completed.

We compute the gradient of parametric timing yield (including consideration of

variance) with respect to each timing edge. The yield gradients (in conjunction

with statistical slacks or timing margins) directly enable various types of opti-

mization such as parametric yield maximization or power minimization subject

to yield and timing requirements.

In our approach we use the same concept of graph cutsets as [20], but we do

not use any perturbation of timing edge PDFs or convolution. Instead, we derive

explicit analytical expressions for all components of yield gradients, which makes

our approach efficient. Unlike [55] we do not use any chain-ruling or propagation

of sensitivities through the timing graph, which in turn greatly simplifies our

computations. Results of this chapter have been also reported in [116].

8.2 Differentiation of Statistical Maximum Operation

In this section, we derive formulas for differentiation of the statistical max op-

erator with respect to its arguments, which will be used in the next section for

yield gradient computation.
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8.2.1 Preliminaries

Let A and B be two first-order canonical forms

A = a0 +
∑

aiXi + arXA, (8.1)

B = b0 +
∑

biXi + brXB, (8.2)

where Xi are the correlated unit-Gaussian random variations, XA and XB are

uncorrelated unit-Gaussian random variations, ai and bi are sensitivities to cor-

related random variations, and ar and br are the sensitivities to uncorrelated

random variations, respectively. The variance of A and B and their covariance

are

σ2
A =

∑

a2
i + a2

r, (8.3)

σ2
B =

∑

b2
i + b2

r, (8.4)

cov(A, B) =
∑

aibi. (8.5)

Some frequently-used equations are listed below.

φ(r) ≡ 1√
2π

exp(−r2

2
) (8.6)

Φ(r) ≡
∫ r

−∞

φ(q)dq (8.7)

θ ≡ (σ2
A + σ2

B − 2cov(A, B))1/2 (8.8)

∂φ(r)

∂r
= −r

1√
2π

exp(−r2

2
) = −rφ(r) (8.9)

∂Φ(r)

∂r
= φ(r). (8.10)

Let Z = max(A, B). The mean of Z is given by

z0 = Φ(
a0 − b0

θ
)a0 +

[

1 − Φ(
a0 − b0

θ
)

]

b0 + θφ(
a0 − b0

θ
)

= Φa0 + (1 − Φ)b0 + θφ. (8.11)
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For simplicity, we have used Φ and φ to represent Φ( a0−b0
θ

) and φ(a0−b0
θ

). This

notation will be used wherever there is no ambiguity.

The variance of Z is

σ2
Z = (σ2

A + a2
0)Φ + (σ2

B + b2
0)(1 − Φ) + (a0 + b0)θφ − z2

0 . (8.12)

We are interested in the sensitivity of z0 and σZ to the ai, bi, ar and br parameters.

Because of the symmetry between A and B, we will only focus on the derivation

of sensitivity with respect to a0, ai and ar.

8.2.2 Sensitivity of Maximum’s Mean

8.2.2.1 With Respect to Mean

We first derive the sensitivity of z0 with respect to a0.

∂z0

∂a0
=

∂Φ

∂a0
a0 + Φ − ∂Φ

∂a0
b0 +

∂θ

∂a0
φ + θ

∂φ

∂a0
. (8.13)

It is easy to show that the following equations hold.

∂θ

∂a0
= 0, (8.14)

∂Φ

∂a0
= φ(

a0 − b0

θ
)
1

θ
=

φ

θ
, (8.15)

∂φ

∂a0
= −a0 − b0

θ
φ(

a0 − b0

θ
)
1

θ
= −a0 − b0

θ2
φ. (8.16)

Therefore, we have

∂z0

∂a0

= (a0 − b0)
φ

θ
+ Φ − a0 − b0

θ2
φθ = Φ. (8.17)
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8.2.2.2 With respect to correlated sensitivity

Next, we derive the sensitivity of z0 with respect to the correlated sensitivity

term ai.

∂z0

∂ai
=

∂Φ

∂ai
a0 −

∂Φ

∂ai
b0 +

∂θ

∂ai
φ + θ

∂φ

∂ai
. (8.18)

It is easy to show that the following equations hold.

∂Φ

∂ai
= φ

∂(a0−b0
θ

)

∂ai
= −φ

a0 − b0

θ2

∂θ

∂ai
, and (8.19)

∂φ

∂ai
= −a0 − b0

θ
φ

∂(a0−b0
θ

)

∂ai
=

(a0 − b0)
2

θ3
φ

∂θ

∂ai
. (8.20)

Therefore, we have

∂z0

∂ai

= −φ
a0 − b0

θ2

∂θ

∂ai

(a0 − b0) +
∂θ

∂ai

φ + θ
(a0 − b0)

2

θ3
φ

∂θ

∂ai

=

{

−(a0 − b0)
2

θ2
+ 1 + θ

(a0 − b0)
2

θ3

}

φ
∂θ

∂ai

= φ
∂θ

∂ai
. (8.21)

We need to compute ∂θ
∂ai

, which is given by

∂θ

∂ai

=
∂(σ2

A + σ2
B − 2cov(A, B))1/2

∂ai

=
1

2θ

∂(σ2
A + σ2

B − 2cov(A, B))

∂ai

=
1

2θ

{

∂σ2
A

∂ai
+

∂σ2
B

∂ai
− 2

∂cov(A, B)

∂ai

}

=
1

2θ
(2ai + 0 − 2bi)

= (ai − bi)
1

θ
. (8.22)

Therefore, in summary, we have

∂z0

∂ai
= (ai − bi)

φ

θ
(8.23)
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8.2.2.3 With respect to uncorrelated sensitivity

We derive the sensitivity of z0 with respect to the uncorrelated sensitivity term

ar.

∂z0

∂ar
=

∂Φ

∂ar
a0 −

∂Φ

∂ar
b0 +

∂θ

∂ar
φ + θ

∂φ

∂ar
. (8.24)

It is easy to show that the following equations hold.

∂Φ

∂ar
= φ

∂(a0−b0
θ

)

∂ar
= −φ

a0 − b0

θ2

∂θ

∂ar
, and (8.25)

∂φ

∂ar
= −a0 − b0

θ
φ

∂(a0−b0
θ

)

∂ar
=

(a0 − b0)
2

θ3
φ

∂θ

∂ar
. (8.26)

Therefore, we have

∂z0

∂ar

= −φ
a0 − b0

θ2

∂θ

∂ar

(a0 − b0) +
∂θ

∂ar

φ + θ
(a0 − b0)

2

θ3
φ

∂θ

∂ar

=

{

−(a0 − b0)
2

θ2
+ 1 + θ

(a0 − b0)
2

θ3

}

φ
∂θ

∂ar

= φ
∂θ

∂ar
. (8.27)

We need to compute ∂θ
∂ar

, which is given by

∂θ

∂ar
=

∂(σ2
A + σ2

B − 2cov(A, B))1/2

∂ar

=
1

2θ

∂(σ2
A + σ2

B − 2cov(A, B))

∂ar

=
1

2θ

{

∂σ2
A

∂ar

+
∂σ2

B

∂ar

− 2
∂cov(A, B)

∂ar

}

=
1

2θ
(2ar + 0 − 0)

= ar
1

θ
. (8.28)

Therefore, in summary, we have

∂z0

∂ar
= ar

φ

θ
. (8.29)
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8.2.3 Sensitivity of Maximum’s Sigma

8.2.3.1 With Respect to Mean

We derive the sensitivity of σZ with respect to a0.

∂σ2
Z

∂a0

= 2σZ
∂σZ

∂a0

=

(

∂σ2
A

∂a0
+

∂a2
0

∂a0

)

Φ + (σ2
A + a2

0)
∂Φ

∂a0
− (σ2

B + b2
0)

∂Φ

∂a0

+θφ + (a0 + b0)
∂θ

∂a0
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∂φ

∂a0
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∂z0
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= 2a0Φ + (σ2
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0)
φ

θ
− (σ2

B + b2
0)

φ

θ
+ θφ

−(a0 + b0)θ(a0 − b0)
φ

θ2
− 2z0Φ

= 2(a0 − z0)Φ + (σ2
A + a2

0 − σ2
B − b2

0)
φ

θ
− (a2

0 − b2
0)

φ

θ
+ θφ

= 2(a0 − z0)Φ + (σ2
A − σ2

B)
φ

θ
+ θφ. (8.30)

Therefore, in summary, we have

∂σZ

∂a0

=
1

2σZ

{

2(a0 − z0)Φ + (σ2
A − σ2

B)
φ

θ
+ θφ

}

. (8.31)
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8.2.3.2 With Respect to Correlated Sensitivity

We derive the sensitivity of σZ with respect to the correlated sensitivity term ai.

We have

∂σ2
Z

∂ai

= 2σZ
∂σZ
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. (8.32)

Therefore, the sensitivity can be computed as

∂σZ

∂ai
=

1

σZ

[
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.
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8.2.3.3 With Respect to Uncorrelated Sensitivity

We derive the sensitivity of σZ with respect to the uncorrelated term ar. We have

∂σ2
Z

∂ar
= 2σZ

∂σZ

∂ar

=

(

∂σ2
A

∂ar
+

∂a2
0

∂ar

)

Φ + (σ2
A + a2

0)
∂Φ

∂ar
+

(

∂σ2
B

∂ar
+

∂b2
0

∂ar

)

(1 − Φ)

−(σ2
B + b2

0)
∂Φ

∂ar
+

(

∂a0

∂ar
+

∂b0

∂ar

)

θφ + (a0 + b0)
∂θ

∂ar
φ

+(a0 + b0)θ
∂φ

∂ar

− 2z0
∂z0

∂ar

= 2arΦ − (σ2
A + a2

0 − σ2
B − b2

0)φ
a0 − b0

θ2

∂θ

∂ar

+(a0 + b0)
∂θ

∂ar

φ + (a0 + b0)θ
(a0 − b0)

2

θ3
φ

∂θ

∂ar

− 2z0
∂z0

∂ar

= 2arΦ − 2z0
∂z0

∂ar

+

{

(−σ2
A − a2

0 + σ2
B + b2

0)
a0 − b0

θ2

+a0 + b0 +
(a2

0 − b2
0)(a0 − b0)

θ2

}

φ
∂θ

∂ar

= 2arΦ − 2z0
∂z0

∂ar
+

{

(−σ2
A − a2

0 + σ2
B + b2

0 + a2
0 − b2

0)
a0 − b0

θ2

+a0 + b0}φ
∂θ

∂ar

= 2arΦ − 2z0
∂z0

∂ar

+

{

(σ2
B − σ2

A)
a0 − b0

θ2
+ a0 + b0

}

φ
∂θ

∂ar

. (8.34)

Finally,

∂σZ

∂ar
=

1

σZ

[

arΦ − z0ar
φ

θ
+ ar

{

a0 + b0 + (a0 − b0)
σ2

B − σ2
A

θ2

}

φ

2θ

]

.(8.35)

8.3 Yield Gradient Computation

Using the formulas derived above, in this section, we show how yield gradients

can be computed in two different scenarios.
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Reqd. arrival time F = f0 +
∑n

i=1
fiXi + frXF

Sink

B

E D
F

Source

Complementary slack B = b0 +
∑n

i=1
biXi + brXB

Arrival time E = e0 +
∑n

i=1
eiXi + erXE

Edge delay D = d0 +
∑n

i=1
diXi + drXD

Figure 8.1: Derivation of yield gradients.

8.3.1 Principle of Yield Gradient Computation

Our goal is to find the gradient of the parametric yield of the chip to all com-

ponents of the delay of a single edge of the timing graph. This problem can

be divided into two parts. Once we know the statistical slack of the chip as a

distribution, the parametric yield is easily expressed in terms of the CDF of the

statistical slack. So if we could isolate the dependence of the statistical slack

on the delay of a single edge, we could differentiate that relation to obtain the

necessary yield gradients.

Let us focus on a single edge D. Fig. 8.1 gives us a convenient abstraction for

the derivation. In the figure, B represents the complement slack of edge D and

comprises the ensemble of all paths of the graph that do not pass through D. The

arrival time E at the from-node of edge D represents the delay of the ensemble of

paths from the source node to edge D. Similarly, the required arrival time F of

the to-node of edge D represents the negative of the delay of the ensemble of paths

from edge D to the sink node. The path Source-E-D-F -Sink is the ensemble of

all paths of the timing graph that pass through D. Thus all paths of the graph

have conceptually been split into two buckets – those that pass through D and

those that do not. We have isolated the impact of the edge D on the statistical
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slack of the chip.

Next, we can write the statistical slack of the chip as the length of the longest

path in Fig. 8.1

Chip slack ≡ Z = max(B, E + D − F ) (8.36)

where each of B, E, D and F is expressed in first-order canonical form as shown

in the figure. The globally correlated process variables are represented by random

variables Xi, i = 1, 2, · · · , n and independently random variation by XB, XE, XD

and XF . It is very important to note that B does not depend on the delay of

the edge of interest since it represents the ensemble of paths that do not pass

through D. Similarly, E and F do not depend on the delay of edge D since they

represent the delay of the longest path in the fanin cone and fanout cone of D,

respectively. Therefore, we can differentiate (8.36) to obtain the gradient of the

chip slack Z to the components of D, i.e., ∂z0

∂d0
, ∂z0

∂di
, ∂z0

∂dr
, ∂σz

∂d0
, ∂σz

∂di
, and ∂σz

∂dr
. All

these computations can be obtained by using the formulas we have derived in

previous section.

8.3.2 Performance Maximization for Yield

This situation is ASIC-like in that we assume a required yield has been spec-

ified, and we seek to compute the maximum performance (clock frequency, or,

equivalently, slack) at which the chip can safely be operated. Assume that the

required parametric yield is p, a constant. The longest delay of the timing graph

in Fig. 8.1 is a statistical quantity Z which we assume has a mean value z0 and

a standard deviation σZ . Then the corresponding parametric longest path delay

that meets the yield requirement p is denoted by z(p). The smaller the value of Z,

the better. The parametric delay which meets the requirement can be expressed
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as

z(p) = Φ−1(p)σZ + z0, (8.37)

where Φ−1() is the inverse CDF of a standard normal. This equation simply says

that the required yield can be translated into a required number of sigmas on

the longest path delay distribution. Our goal now is to obtain the gradient of

z(p) with respect to d0, di, i = 1, 2, · · · , n and dr. This is easily accomplished by

simply differentiating (8.37) with respect to each of these quantities.

∂z(p)

∂di
= Φ−1(p)

∂σZ

∂di
+

∂z0

∂di
, i = 0, 1, · · · , n, r. (8.38)

The two partial derivatives on the right hand side are readily obtained from the

boxed equations in the Appendix (8.17), (8.23), (8.29), (8.31), (8.33) and (8.35).

8.3.3 Yield Maximization for Performance

This situation is microprocessor-like in that we assume a target frequency has

been specified and we are trying to maximize the yield of chips that will achieve

this frequency. Assume that the target frequency translates into a required

longest path delay of T or less. In this case, our parametric yield p is simply

the probability that the longest path Z has a value that is T or less. The yield

is therefore p(T ) = Φ {(T − z0)/σZ}. This simple equation can be differenti-

ated with the help of the formulas in the appendix to obtain the necessary yield

gradients

∂p(T )

∂di

=
1

σ2
Z

φ

(

T − z0

σZ

){

−σZ
∂z0

∂di

+ (T − z0)
∂σZ

∂di

}

, (8.39)

i = 0, 1, · · · , n, r.

Although the formulas are lengthy, they are easily coded for efficient evalu-

ation on a computer. In terms of implementation, when criticality probability
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is computed for an edge, a statistical maximum operation is performed between

its edge slack and complementary edge slack. At that point, the above formulas

allow us to compute yield gradients with respect to individual edge delays.

8.4 Applications of Yield Gradients

One immediate application of yield gradients is in a formal transistor-sizing opti-

mization context such as EinsTuner [24]. A possible formulation of the optimiza-

tion problem over the space of transistor widths W is as follows.

maxW parametric yield p(T )

s.t. performance requirement T

s.t. area, slew and other constraints.

(8.40)

In this case, we need to provide to the nonlinear optimizer at each iteration the

yield at the required performance T , and the gradient of that yield with respect

to all transistor sizes. This formulation fits well within a transistor-level tuning

context since the gradient of the yield with respect to an edge delay can be chain-

ruled with the gradient of the edge delay with respect to the individual transistor

widths. The latter computation, by the adjoint method, is already a part of the

transistor sizing formulation used presently. Of course, changing a transistor size

will typically change the delay of multiple edges of the timing graph as well as

fanin edges due to loading effects and fanout edges due to slew effects. All of

these sensitivities can be chain-ruled and included in a straightforward manner.

The objective function could easily be changed from parametric yield to profit

(or any other integral measure of the distribution of the chip slack) in the case of

a sorted and speed-binned chip. Sorting implies that different ranges of speeds

bring in different amounts of profit. The yield of each bin can be expressed in

terms of z0 and σZ as above and then the weighted sum of the profits over all
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bins differentiated to obtain the necessary gradients.

A second possible formulation is shown below.

minW delay z(p)

s.t. a required yield p

s.t. area, slew and other constraints.

(8.41)

In this formulation, a required yield is specified, and we need to provide to the

nonlinear optimizer at each iteration the fastest performance that can be achieved

and the gradient of that performance with respect to all transistor widths.

Even in the context of discrete optimization, yield gradients can be used to

rank order portions of the circuit that most need attention in order to increase

the yield of the circuit to the necessary value, or to increase the performance at

a required yield. Having quantitative gradients will decrease the guess-work and

try-evaluate-undo loop that is common in physical synthesis during late timing

correction and early-mode padding.

8.5 Conclusion and Discussion

Timing closure in the presence of variability implies closure across the entire rel-

evant process space, which is an extremely challenging task. Traditional diagnos-

tics and metrics like critical paths and deterministic timing slacks are inadequate

for the optimization task. This chapter describes a novel method for comput-

ing parametric yield gradients accurately and efficiently, and proposes various

applications that can take advantage of yield gradients. Although the actual op-

timization applications described in this section have not been implemented, we

feel that yield gradients will enable powerful new ways of optimizing circuits in

the presence of variability.
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CHAPTER 9

Appendix

There are a few other research projects that have been done over the course

of this dissertation. They fall into the following three categories: (1) routing

optimization for signal and power integrity; (2) modeling and physical design

for system-in-package; and (3) sleep transistor design for low power. As these

researches are different from the main theme of this dissertation, they are not

included in the main body of this dissertation, For completeness, however, this

chapter summarizes the main points of these work with our contributions. Details

of these work can be found in publications.

9.1 Routing Optimization for Signal and Power Integrity

As we are progressing into 90nm and beyond technologies, the performance of

system-on-chip (SoC) is found to be mainly constrained by on-chip interconnects.

Signal integrity and power integrity related to signal, clock and power/ground

(P/G) network designs have emerged as two of the primary barriers for the the

further advancement of gigascale SoC integration.

We study the full chip interconnect synthesis problems with RLC crosstalk

constraints for gigascale system-on-chip design. We consider simultaneous shield

insertion and net ordering (SINO), and solve the following two problems. (1)

Given a global routing solution, decide an RLC crosstalk budgeting solution such
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that the final routing solution satisfies RLC crosstalk constraints and the routing

area is minimized. (2) Given a netlist, synthesize a global routing solution with

consideration of simultaneous shield insertion and net ordering such that the RLC

crosstalk constraints are satisfied and the overhead due to shield insertion is min-

imized. We formulate and solve the noise budgeting problem as a linear program-

ming problem, and propose an iterative-deletion based global routing synthesis

technique with shield reservation and minimization. After global routing and

noise budgeting, we perform simultaneous shielding insertion and net ordering

to meet the partitioned RLC crosstalk bounds in each region, and carry out a

local refinement procedure to further reduce the routing congestion and number

of shields. Experiments using large industrial benchmark circuits show that com-

pared to the best alternative routing algorithms we have studied, the above multi-

phase algorithm framework uses less runtime and reduces the number of overflow

and total routing area by up to 18.4% and 6.4%, respectively. Detailed research

contribution and results have been reported in [99, 101, 97, 111, 112, 115, 45].

We also study the co-design problem for both signal network and P/G network

under signal integrity and power integrity constraints. We present a novel design

methodology that simultaneously considers global signal routing and power net-

work design under integrity constraints. The main contributions are (1) a simple

yet accurate power net estimation formula that decides the minimum number of

power nets needed to satisfy both power and signal integrity constraints prior to

detailed layout; (2) a probabilistic congestion model considering shielding for both

signal integrity and power integrity; and (3) a novel multilevel routing framework

to support the co-design of signal and power networks with explicit consideration

of both signal and power integrity constraints. The proposed design methodol-

ogy is a one-pass solution to the co-design of power and signal networks in the

sense that no iteration between them is required in order to meet design clo-
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sure. Experiment results using large industrial benchmarks show that compared

to the state-of-the-art alternative design approach in literature, the proposed

method can reduce the power network area by 19.4% on average under the same

signal and power integrity constraints with better routing quality, but use less

runtime. Detailed research results can be found in the following publications

[104, 98, 100, 57, 102].

9.2 Modeling and Physical Design for System-in-Package

To address the severe design closure problem that faces today’s high performance

system-in-package or system-in-board designs, we formulate, for the first time, a

constraint-driven I/O planning and placement problem, and formally introduced

a set of design constraints into the academia community [106]. Our work in this

area includes the modeling of signal and power integrity constraints for chip-

package-board co-design, extraction of interconnect parasitics for system level

connectivity, and efficient algorithms for I/O planning and placement. Exper-

iment results using real industry designs show that by using our methodology,

design productivity can be greatly improved. For example, for an industrial ASIC

design, our method can effectively find a feasible solution and satisfy all given

design constraints in less than 10 minutes, while the existing approach simply can-

not close the design in one day, yet still leaving more than 30% design constraint

violations. Research results of this work has been integrated into an industry

tool, RioMagic [80], which is the first commercially available package-aware chip

design and optimization tool for today’s chip designers.
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9.3 Sleep Transistor Design for Low Power

Considering P/G network’s integrity as given by voltage drop constraints, we

study the following two problems for low power designs [61]: (1) sleep transistor

insertion problem and (2) sleep transistor insertion and co-sizing of P/G network

and sleep transistor problem. Our contributions in studying these two problems

include: (1) we prove that there exist multiple sleep transistor insertion solutions

that will all lead to the same minimum area solution for both sleep transistor

and P/G network; (2) we develop an optimal algorithm for one-port power net-

work; and (3) the above optimal algorithm is further extended to the design of a

multi-port power network, whose optimality has been experimentally validated.

Compared with the best known approach, our algorithm reduces sleep transis-

tor area by up to 44.1% for the first problem, and reduces the weighted power

network and sleep transistor area by up to 61.3% for the second problem.
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