
SIMULTANEOUS ESCAPE ROUTING AND LAYER ASSIGNMENT FOR DENSE PCBS

Muhammet Mustafa Ozdal

Dept. of Computer Science
Univ. of Illinois at Urbana-Champaign

Urbana, IL 61801
ozdal@ uiuc.edu

ABSTRACT

As die sizes are shrinking, and circuit complexities are increasing,
the PCB routing problem becomes more and more challenging.
Traditional routing algorithms can not handle these challenges ef-
fectively. and many high end designs in the industry require man-
ual routing efforts. In this paper we propose a problem decom-
position that distinguishes routing within dense components from
routing in the intermediate m a . In particular, we propose an effec-
tive methodology to find the escape routing solution for multiple
components simultaneously such that the number of crossings in
the intermediate area is minimized. For this, we model the prob-
lem as a longesr path wifh forbidden pairs (LPFP) problem, and
propose two algorithms for it. The first is an exact polynomial-
time algorithm that is guaranteed to find the maximal planar rout-
ing solution on one layer. The second is a randomized algorithm
that has good scalability characteristics for large circuits. Then we
use these algorithms to assign the maximal subset of planar nets to
each layer, and then distribute the remaining nets at the end. We
demonstrate the effectiveness of these algorithms through experi-
ments on industrial circuits.

1. INTRODUCTION
During the past several years, we have seen dramatic advances in
the IC technology. The shrinkage of die sizes and the increase in
functional complexities caused the circuits become more and more
dense. So, boards and packages have reduced in size, while the pin
counts have been increasing. Today, high-density fine-pitch pack-
ages typically contain pin counts on the order of thousands, while
they occupy only a minimal board space [l I]. This brings a signif-
icant increase in routing challenges for current PCB designs [IO].
Traditional routing algorithms can not handle those challenges ef-
fectively, and many high-end designs require manual efforts for
routing. In a typical design cycle of a high-end board, manual
routing efforts take about a month [SI. and new effective routing
tools are necessary to significantly d u c e this time. In this paper,
we focus on routing within dense components, and we propose
algorithms that address these challenges effectively.

A typical PCB routing problem contains a number of dense pin
arrays corresponding to different chip components such as MCM,
memory. etc. The routing area within such pin arrays is extremely
limited due to the large number of pins, and tight clearance rules.
Furthermore there are large number of nets that need to be routed

This work was partially supported by the National Science Foun-
dation under grants CCR-0244236 and CCR-0306244, and by an
IBM Faculty Partnership Award.

Martin D. E Wong

Dept. of Electrical and Computer Engineering
Univ. of Illinois at Urbana-Champaign

Urbana, IL 61801
mdfwong @uiuc.edu

Figure 1: A sample escape problem with 13 nets on two com-
ponents. Each t em 'na l pin is labeled with its net index. The
problem is to find a confiict-fnx muting solution witbin com-
ponents, and to minimize crossings in the channel.

from their terminal pins to the Corresponding component bound-
aries. On the other hand, the intermediate routing area between
different components has relatively few blockages, and the amount
of available routing resources is relatively larger.

In accordance with this characteristics, we propose a problem
decomposition that handles routing within dense components sep-
arately from the intermediate area routing. In other words, two
separate problems are distinguished here: (1) routing nets from pin
termin& to chip boundaries (escape routing), and (2) routing nets
between chip boundaries (area routing). In this paper, we propose
algorithms to handle the problem of escape routing.

It is important here to note that escape routing problem for dif-
ferent components should not be considered independent of each
other. That is, we can not just apply a lraditional escape routing al-
gorithm [4] on different components independently. The reason is
that such an approach would ignore the connections between dif-
ferent components, and would make the next phase (area routing)
more difficult. Instead, we propose algorithms to find the escape
routing solutions of different components simultaneously such that
the number of crossings in the intermediate area is minimized. For
multilayer designs, the best layer assignment also needs to be de-
termined during this process. Figure l illustrates a sample prob-
lem, and Figure 2 gives a 2-layer solution.

Since the routing resources inside dense components are ex-
tremely limited, we assume that via usage is not allowed within
components. So, the escape routing solution has to be conflict-free
within components on every layer. On the other hand, via usage is
possible in the intermediate areas, where there are relatively few
routing blockages. However, since vias increase the manufacturing
costs, and adversely afFect routability and signal delay character-
istics, we try to minimize number of vias through crossing mini-

0-7803-8702-3/04/$20.00 02004 IEEE. 822

http://uiuc.edu
mailto:uiuc.edu

mization. So, our objective is to find the best conflict-free escape
routing solution inside components that will minimize the number
of crossings in the intermediate area.

Note here that the exact routing solution for the intermediate
area will be determined by the next stage (i.e. areu rouring stage)
of the routing system. Additional requirements (such as length
matching for high-speed designs) can be handled during that stage,
since there are more routing resources available in the intermedi-
ate area. On the other hand, we mainly focus on the objective
of routability inside the dense components, because the scarcity
of routing resources does not allow us to perform additional tasks
such as length extension for length matching. as in [91.

In Section 2. we give a formal description of this problem, and
discuss how it relates to the existing work in the literature. Then,
we outline our solution approach in Section 3. Mainly, we pro-
cess one layer at a time. and try to route as many non-crossing
nets as possible on each layer. In Section 4.1, we model the maxi-
mal planar routing problem as a longest path wirh forbidden pairs
(LPFF') problem. Although the general case of this problem is NP-
complete, the special structure of our problem allows us to pro-
pose a polynomial-time exact algorithm in Section 4.3. Then, we
propose a fast and effective randomized algorithm in Section 4.4
Sor large circuits. In Section 5 , we discuss generalizations of our
models and algorithms. Finally, we demonstrate the effectiveness
of our algorithms through experiments in Section 6.

2. PROBLEM FORMULATION AND RELATED WORK
Let a (chip) component be defined as a 2-D m a y of pins that span
multiple layers. The input circuit is assumed to contain two com-
ponents separated by a channel between them. A 2-terminal net
specifies two pins as its endpoints, which are assumed to be in dif-
ferent components by definition. Escape route for a given net is
defined as the route from its terminal pins (within components) lo
the respective chip boundaries. Given an input circuit and a set
of 2-terminal nets, the problem is to find an escape routing solu-
tion for each net, and assign them to different layers such that:
(1) conflict-free routing solution is obtained within each compo-
nent, and (2) the number of crossings in the intermediate channel
is minimized. Here. routing conflicts are not allowed inside the
components, because routing resources within components are too
scarce to allow via usage. On the other hand, via usage is allowed
in the intermediate channel between components; hence crossings
are allowed here. However. our objective is to minimize number
of vias through crossing minimization.

Figure 1 illustrates a sample escape problem with 13 nets in two
components, and Figure 2 gives a 2-layer solution. As mentioned
earlier, it is assumed that each pin spans multiple layers; so it is
possible to assign the route for each net to any layer. In the given
solution, 6 nets are routed on layer 1 without any crossings in the
channel. On the other hand, the channel segment of one net (net
10) on layer 2 crosses with others. This crossing can be avoided
in the later stages of the routing system by using a via for only
net 10. So we can state that the escape routing solution given in
Figure 2 helps the objective of via minimization since it minimizes
the crossings in the channel.

A related problem in the literature is the pin assignment prob-
lem 17, 2, 121. Its objective is to determine the positions of pins on
chip boundaries such that a cost function is minimized. However
this problem ignores escape routing inside the components. An-
other related problem is the k-layer topological via minimization
problem [3], where the objective is to determine the topological

Figure 2: A sample solution for the problem given in Figure 1.
Escape routes are illustrated with solid lines within compo-
nents. Channel segments are shown with dashed lines.

routing of a set of nets on k routing layers such that the total num-
ber of vias is minimized. It has been shown that the general case
of this problem is NPicomplete, and an algorithm has been pro-
posed for the case of a crossing channel, where nets have fixed pin
positions on chip boundaries [3]. However, escape routing is not
considered also in this problem. On the other hand in our problem,
we need to find the escape routes simultaneously while assigning
nets to different layen for via minimization. In other words, the
pin positions of nets are not fixed an chip boundaries. but they are
determined based on the escape routes. For instance in the exam-
ple of Figure 2, the ordering of nets within chips is not necessarily
the same as the ordering on chip boundaries'. since this ordering
further reduces the number of crossings.

3. METHODOLOGY
We use a two-phase approach for this problem: (1) for each layer
1 , pack as many non-crossing routes as possible on 1, (2) distribute
the remaining nets to available layers, this time allowing crossings
in the intermediate chaAnel.

In the first phase, we process one layer at a time, and try to find
the maximum subset of available nets that can be routed without
any crossings on that layer. The first layer in Figure 2 is an example
output of this phase. Specifically, the maximum non-crossing sub-
setsforlayer 1 andlayer2havebeenfoundtobe(2,4,6,7,9,11},
and {1 ,3 ,5 ,8 , 12,13}, respectively for this problem. The details
of the algorithm we propose for this phase are presented in Sec-
tion 4.

Then in the second phase, the nets that have not been routed
are distributed to available layers. In our sample problem, net 10
does not belong to any of the planar subsets of phase 1. So, an
escape routing solution is found for it in the second phase on layer
2. Observe in Figure 2 that although it has a conflict-free routing
solution within the components, it crosses with nets 5 and 13 in
the channel.

'e .g . In the left mmponent ui first layer, net 4 OWQCS to row I,
and net 2 e~cipes tu rou 3, although the tcrminill of net 2 i s above
net 4 U ithin the coinponcnt.

Figure 3: Routing patterns considered for net A. Only 4 out of
16 patterns are shown here for clarity.

For the second phase, we use a negotiated congestion based
net-by-net approach similar to Pathfinder [61. The main idea is
to allow routing conflicts in the beginning, and then to iteratively
rip-up and reroute nets, while gradually increasing the costs of
conflicted routing resources. By doing so, nets with alternative
routes are forced not to use the conflicted resources, and eventu-
ally a conflict-free routing solution is obtained. Note here that we
discourage ripping up the nets muted in the first phase by using
relatively higher costs for conflicts with these nets.

4. MAXIMAL PLANAR ROUTING
4.1. Algorithm Outline
Given a set of nets, our objective is to find the maximum subset
that can be routed on one layer without any conflicts. For this
putpose, we define a number of routing pattems for each net, and
we propose algorithms to choose the best possible combination
of these pattems. For simplicity of presentation, we will focus
on a horizontal problem, where one component is to the right of
another. It is straightfofonvard to extend the algorithm to a vertical
problem.

Our main assumption in the following algorithm is that the ver-
tical span of escape routes within components will be limited in
a typical solution, as in Figure 2, where an escape route spans at
most 2 rows. The main reason is that large vertical spans within
components block other escape routes; so we need small vertical
spans for maximal routing. Furthermore. we have Observed this
behavior for a great majority of nets in typical manual industrial
solutions. Based on this, we define 16 possible configurations for
each net’, as shown in Figure 3. Namely, we consider 4 escape
routes for a net within each component, so that it can escape from
one of the 4 neighboring rows of its terminal pin, Note that either
one of the 4 escape routes within each component can be selected,
and so there are 4 x 4 = 16 possible routing pattems for each
net. Let Aij denote the configuration where net A escapes to mw
i in the first component, and to row j in the second component. In
Figure 3, some sample routing patterns are illustrated.

Now, the problem can be stated as to select the maximum sub-
set of pattems for a given set of nets such that (1) at most one
pattem is selected for each net, (2) there are no conflicts within
components, and (3) there are no crossings in the channel. Note
that even though we consider only a limited number of routing pat-
tems for each net, there are exponential number of possible ways
of selecting pattems for a set of nets. However, we will propose
a polynomial time algorithm to select the best combination that
gives the maximal planar routing solution.

If every net had only one possible routing pattem (instead of
16), and if there were no conflicts between different nets within

21n Section 5. we discuss possible extensions to relax this assump-
tion.

L

Figure 4 A sample escape routing problem for 5 nets. For
clarity, only one or two muting patterns am defined for each
net (instead of 16 as in the actual algorithm).

Figure 5: The graph model corresponding to the problem
given in Figure 4. The longest path with forbidden pairs is
illustrated with the thick lines.

components, then we could use a longest path algorithm to find
the maximal subset of non-crossing nets [31. However, we have to
consider escape routes within components, and try to find the best
possible escape route for each net simultaneously while finding the
optimal subset of non-conflicting and non-crossing nets. For this
purpose, we will define a graph model E, and a set of forbidden
pairs 3 (such that 3 contains pairs of vertices from G) as follows:

For each routing pattern, a vertex exists in 9.
Let U. v be vertices in 9 corresponding to the routing pat-
terns U;j and VL, respectively. An edge from U to v exists io
9 iff the channel segment of U;, is strictly above the channel
segment of V ~ I , i.e. i < IC and j < 1. (e.g. A,* in Figure 3
would be strictly above Aw)

iff at least one the following conditions is the case:
e Let U, U be vertices in 9. Forbidden pair (U, U) exists in 3

1. U and U correspond to the same net
2. The routing pattems corresponding to U and v conflict

with each other in at least one component.

It is straightfofonvard to show that 9 is in fact a directed acyclic
graph (dag). We can state that if a path exists from vertex U to
vertex v in E, then it is guaranteed that the channel segments of
the corresponding routing pattems do not cross with each other.
Hence, the longest path in E will correspond to the maximum set
of routing pattems that have no crossings in the channel. However,
we also need to consider the conflicts within components, as de-
fined by the forbidden-pair set 3. The following theorem gives a
formal description of this problem:

824

q>,,,

Figure 6 The actual maximal planar routing solution corre-
sponding to the path given in Figure 3.

Theorem 4.1. Theproblem offinding the m i m u m subset of non-
crossing and non-conflicting routing patterns is equivalent to the
longestpatk with forbidden pairs (LPFP)pmblem an {G, 3}.

LPFP problem 151 for a graph G, and a vertex-pair set 3 is
defined as finding the longest path P in G such that P contains at
most one vertex from each pair of vertices in 3. In other words,
if (U, U) E 3, then a permissible path in G can not contain both U

and v. The general LPFP is known to be an NP-complete problem
[I]. However, the following property of our problem will enable
us to propose a polynomial time algorithm in Section 4.3:

L e m a 4.2. For any pair (U , v) E F, the m i m u m distance
between U and v in G is guaranteed to be less than or equal to 3.

PROOF. An edge from w to t exists only if the corresponding
routing pattem o f t escapes to rows strictly below those of w (by
definition). Funhermore, the vertical spans of routing pattems are
limited. Hence, if U and U conflict with each other within a compo-
nent, then this means that their escape routes are on neorby rows.
It is possible to show by case-by-case analysis that U and v can not
escape to rows separated by more than 3 rows if (U, v) E 3. So,
the maximum distance between conflicting vertices in G can be at
most 3. 0

Figure 4 gives a sample problem with a limited number of pat-
terns defined for each net3. The graph model corresponding to
these pattems is illustrated in Figure 5. Observe that the longest
path with forbidden pairs on this graph is given as A Z I 4 Dq3 +

CSS - Em. The actual solution corresponding to this path is also
shown in Figure 6.

4.2. Checkerboard Graph Model

In the graph model described in Section 4.1, an edge exists from
vertex U lo every vertex v of which channel segment is strictly
below U. So. the number of edges in p is O(n2), where n is the
number of nets. In this section. we will desaibe a more structured
graph model with less number of nets.

Let us consider a (conceptual) checkerboard structure with size
r x r , where r is the number of rows in a (chip) component. As
before, let Aij denote the routing pattem where net A escapes to
row i in the first component, and to row j in the second component.
The main idea here is to (conceptually) assign each routing pattern
Aij tocell (i,j) ofthecheckerboard,asshowninFigure7. Wecan

'Only one or two pattems are defined for each net for clarity of
the figure. In our actual algorithm, there are 16 pattems defined
for each net.

~

825

1 2 3 4 5 6 7

\ . . i

.., . .,. . ., .. . ;b ...
CJI :

: E67

Figure 7: The checkerboard structure corresponding to the
graph of Figure 5. For clarity, only the edges on the longest
path are illustrated.

formally define a graph model G based on this conceptual structure
as follows:

For each cell (i , j) of Ihe checkerboard, a vertex eij with

For each routing pattern U.j, a vertex u,j with unit weight

Let uij and vht he vertices in E. An edge from U to U exists
in Eiff (k = i f 1 AND1 > j) OR (1 = j + l AND k > i).
In other words, an edge exists only between adjacent rows
or adjacent columns of the checkerboard. and the direction
is always towards south-east.

Figure I shows the checkerboard structure corresponding to the
graph given in Figure 5. For clarity, the venices with zero weights,
and the edges between adjacent rows and columns are omitted in
this figure. The corresponding longest path with forbidden pain
is also illustrated here. Observe that this path traverses the empty
cell (3,Z) on the checkerboard in addition to the selected rout-
ing pattems. Intuitively, this empty cell corresponds to the unused
connection from row 3 to row 2 of the channel illustrated in Fig-
ure 6.

This graph structure is in fact very similar to the one proposed
in Section 4.1. The main difference is that edges exist only be-
tween neighboring routing pattems here. This reduces the number
of edges from O(n2) to O(nr), which will he helpful to reduce
the complexity of the exact algorithm we propose in Section 4.3.
Furthermore, the structured view of a checkerboard will help us to
propose a very effective randomized algorithm in Section 4.4.

4.3. Exact Algorithm for LPFP Problem

As mentioned earlier, the exact algorithm is possible due to the
special property of the input graph as given in Lemma 4.2. Our
approach will be to perform a graph transformation such that the
longest path on the transformed graph will be equivalent to the
solution of the LPFF' problem on the original graph. This trans-
formation will be described in Definition 4.3; however to give an
intuition ahout this process, we will firs1 describe simpler versions
of this transformation in Definitions 4.1 and 4.2.

The notations we will use in this section are as follows: The
input problem is given in the form { 5 , 3 } , where E is a directed
acyclic graph, and 3 is,the set containing forbidden vertex pairs.
Consider two vertices U and v in G. We denote U as aparent of v
if there is an edge U -+ v in G. On the other hand, U is denoted
as a grandparent of U if there is a vertex w such that the edges

zero weight exists in g.

exists in G.

Figure 8 A sample graph 5, and a set of forbidden pairs.

U -t w and w --t U exist in 5. For consistency, we assume that
each vertex has a parent-grandparent pair of NULL-NULL.

Delhition 4.1. First-order transformation of 5 (denoted as 8') is
defined as follows:

For each vertex U in 5, there is a vertex U' in 5'
There exists an edge U' - U' in 5' @

1. The edge U -+ U exists in G.
2. (U, U) is not a forbidden pair

Remark 4.3. Ifthe maximum distance between any forbidden pair
(U,.) in 5 is at most 1. then the longest path in 5' is the exact
solution f o LPFPproblem in 5.
Definition 4.2. Second-order transformation of D (denoted as G2)
is defined as follows:

For each vertex U in 5, there is a set of vertices U in Dz such
that U [i] corresponds to the ith parent of U. In other words,
number of vertices in U is equal to the number ofparents of
U.

There exisrs an edge f m m U[i] to Vbl in 5' @

1. U is the j t h parent of U in 5.
2. (U, U) is nor a forbiddenpair
3. (ith-parent-of-u,u) is not a forbidden pair.

As an example, consider graph 5 with forbidden pairs in Fig-
ure 8. Second order transformation of this graph is shown in Fig-
ure 9. Observe that there is a group of vertices in the transformed
graph corresponding to each venex in 5. For instance, there is set
D containing 4 vertices in Figure 9 corresponding to vertex d in
5. Here. each vertex in set D corresponds to one parent of d , and
it is connected to that parent if they are not forbidden pairs. As
mentioned earlier, we assume that each venex in 5 has a (pseudo)
parent of NULL; hence an extra vertex with no parent is created in
each set. For instance, the extra vertex in set D corresponds to the
case where the path statis with d in 5, i.e. a NULL parent. The
following lemma gives the rationale behind this transformation:

Lemma 4.4. Consider two vertices w and U in 5 such that the
maximum distance from w to U is at most 2. If (w , U) is a forbidden
pair; then there exists no path f m m vertex set W to vertex set V in

PROOF. If the maximum distance from w to U is I , then the
proof is straightforward. Otherwise, consider any path of the form
w + U -t U. Assume that w is the iih parent of U, and u i s the jih
parent of U. Due to rule (I) in Definition 4.2, edges from vertex

GZ.

Figure 9: Second-order transformation of graph 5 in Figure S.
A set of vertices indicated with dotted lines correspond to each
vertex of 5.

set W to vertex set U in 5' can only be to U[i] . Due to rule (3),
an edge from U[i] to Vbl exists only if (w, U) is not a forbidden
pair. Hence, if (w, U) is a forbidden pair, a path from W to V can
not exist. 0

Asanexample,considertheforbiddenpairs (a,f), (b,d), (b,e),
(b, f). (c, e) in Figure 8. each having a maximum distance of 2 be-
tween the pairs. Observe that there are no paths in the transformed
graph of Figure 9 between the corresponding set of vertices.

L e m a 4.5. Ifthere is a p o t h f " w to U in 5 such that no pair of
vertices on the path is a forbidden-pair; then rhere will be at least
one path of the same length in G2 from verrex set W to vertex set
V .

Theorem 4.6. If the maximum distance between any forbidden
pair (U, U) in 5 is at most 2, then rhe longest parh in 5' is the
exact solurion to LPFP problem on 5.

0

Definition 4.3. Third-order transformation of G (denoted as G3J
is defined as follows:

PROOF. It follows directly from Lemma 4.4 and 4.5.

For each vertex U in G, there is a 2-D array of verrices U in
G3 such that U[i][j\corresponds to the ith parent of U and
the j i h parent of it parent of U . In other words, for each
parent-grandparent pair of U, there exists a corresponding
vertex in set U.

There exists an edge between U [i] b] and V [k] [l] in G3 @

1. U is the kCh parent of U in 5.
2. 1 = i.
3. (U, U) is not a forbidden pair.
4. (ith-porenr-of-u, U) is not a forbidden pair:
5. (jth-parent-of-iih-parent-of-u, U) is not a forbidden

pair.

Figure 10 illustrates the third-order transformation of the graph
given in Figure 8. Here, it is again assumed that the first parent
of each vertex is NULL. For instance, G[Zl[ll (i.e. the first venex
on the second row of vertex set G) corresponds to the vertex pair
(e, NULL) in the original graph, since e is the second parent of
g. and NULL is the first parent of e.

826

Figure 10: Third-order transformation of graph G in Figure S.
A set of vertices indicated with dotted lines correspond to each
vertex of G.

Lemma 4.7. Consider two vertices w and U in 5 such that the
m i m u m distance from w to v is at most 3. If(w, U) is a forbidden
pair; then there is no path from vertex set W to v e n a set U in 53.

PROOF. If the maximum distance from w to v is 1 or 2, then
the proof is similar to that of Lemma 4.4. Otherwise, consider any
path of the form w - y - U - v. where w is the jih parent of
y. y is the iih parent of U, and U is the kih parent of v. Any edge
in G3 from vertex set W to vertex set Y can only be to YL][.]
due to rule (I) in Definition 4.3. Similarly, any edge from YL11.l
to vertex set U can only be to U [i] [j] due to rules (I) and (2).
Finally, an edge from U [i] L] to vertex set V exists only if (w , v)
is not a forbidden pair, due to rule (5). So, a path from w to U can
not exist if w and v conflict with each other. 0

Observe in Figure IO that, there is no path between vertex sets
corresponding to the forbidden pairs in Figure 8. For example,
(a, g) is a forbidden pair, and there is no path between vertex set
A and vertex set G in the transformed graph.

Lemma 4.8. Ifthere is a path from w to v in G such that nopair of
vertices on the path is a forbidden pair; then there will be at least
one path of the same length in G 3 from v e n a set W to vertex set
V.

Theorem 4.9. lf the maximum distance between any forbidden
pair (U, U) in G is at most 3, then the longest path in G3 is the
exact solution to LPFP problem on G.

0

Due to Lemma 4.2, we can apply a third-order transformation
on the directed acyclic graph described in Section 4.1, and obtain
the exact solution to LPFP problem by using a linear-time longest
path algorithm [4]. From Theorem 4. I , this solution corresponds
to the maximal planar routing solution to our original problem.

We can show by amortized analysis that the complexity of this
algorithm is O(nc3 +rc4), where n is the number of nets; c and T

are the number of columns and rows of the (chip) component, re-
spectively. Note here that c and r are typically on the order of the
square-root of component size; so the complexity can be rewritten
as O(ns3Iz + s5'*), where s is the component size. Although
this complexity would be acceptable for moderate chip sizes, the
algorithm might not be scalable for very large circuits. In the next
subsection, we propose a scalable randomized algorithm as an ef-
fective altemative for large circuits.

PROOF. It follows directly from Lemma4.7 and 4.8.

RANDOM-LPFP
Define horizontal subproblems (with 3 rows) on the checkerboard
Randomly generate subpaths P; within each subproblem i
Create a graph Gfi aS follows: '

-A vertex vj ;.exists in GR corresponding to each subpath Pi
-Weight of vj is equal to size.of P;
-An edge from vj to vi" exists iff:

(I) P;" is completely to the south-east of Pi
(2) The last element of Pi'' is separated f?om the last

element of P; by at least 2 columns
(3) There exists no forbidden pair (U, U) such that

U E P; and v E P;+'
Retum the longest path in 5 R

Figure 11: Randomized algorithm for LPFP problem on a
checkerboard graph where the maximum distance between
any forbidden pair is a t most 3.

4.4. Randomized algorithm for LPFP
As stated by Lemma 4.2, the vertices that conflict with each other
are always close to each other in graph 5. Intuitively, if we some-
how generate subpaths by grouping the nearby vertices together,
then we can obtain a graph where there are no conflicts between
groups that are far away from each other. The algorithm we pro-
pose in this section makes use of this idea, and uses randomization
to group the nearby vertices together, and handle forbidden pairs
accordingly.

Figure 11 gives the outline of the randomized algorithm we
propose for the checkerboard graph model described in Section 4.2.
The first step here is to define subproblems on the checkerboard
structure as shown in Figure 13. Then, we randomly generate a
predefined number of permissible subpaths for each subproblem.
Figure 12 gives the algorithm we use to generate random subpaths
for one subproblem. Observe that for each checkerboard cell C
at the last row of a subproblem, we keep the K longest subpaths
ending at C. Note that our purpose here is not just to find the
best possible subpath, but instead to find various (possibly on the
order of thousands) good subpaths for each subproblem. After
that, we merge them in an optimal way by applying a longest path
algorithm on the directed acyclic graph GR, which is defined in
Figure 11, The following lemma explains the rationale behind this
model:

Lemma 4.10. Consider two subpath P; and Pk (i < I) in sub-
problems i and 1, respectively, If there is a forbidden pair (U, U)
such that U E P; and v E PL, then there exists no path between
the corresponding vertices vj and v: in GR.

PROOF, If 1 = i + 1, this check is done explicitly hy rule (3).
as given in Figure I I . Otherwise, assume that 1 2 i + 2, and
there is a path from Pi to Pk in GR. It is obvious that P; and
PL are separated by at least 3 checkerboard rows, since there is at
least one subproblem between them. Furthermore due to rule (2).
there are at least 3 columns between the last element of P;, and
the first element of Pk. Since the maximum distance between a
forbidden pair can be at most 3 in the original graph (as stated in
Lemma 4.2). there exists no forbidden pair (U, v) such that U E P;
and v E PL. 0

Due to this lemma, we can use a simple longest path abgofithn

GENERATESUBPATHS(Suhproh1em i: between rows T, and B,)
for a fixed number of iterations do:

U + a random vertex at row T,
P c {U}
repeat:

// initialize the suhpath

U t a random vertex for which edge U - U exists,
and (w, U) is not a forbidden pair for any zu E P

P = P U (v }
u c u

until v is not at row B,
Let C be the checkerboard cell that contains the last U
If P is one of the K longest suhpaths ending at C

else
record P

discard P

Figum 12: Algorithm to generate a set of random subpatbs
between rows T, and B, of the checkerboard.

on GR without the need of checking forbidden pairs. This longest
path will correspond to the optimal combination of the suhpaths
that were randomly generated. If we can generate a large variety
of random paths, we can expect the final solution to he sufficiently
close to the optimal planar routing solution. Note here that the op-
eration of generating one random suhpath can he done in constant
time, since each sobpath contains at most 3 routing patterns. If we
generate K random paths for each subproblem, then G R will con-
tain ~ (K T) vertices (where T is the number of mws on the chip),
and 0 (K 2 r) edges, since edges exist only between adjacent suh-
problems. The longest path for a dag can he calculated in linear
time [41; hence the complexity will be O(K%). Here, we can set
K to a large value (possibly on the order of thousands) so that a
large number of suhpaths are generated for each subproblem, and
various path combinations are explored for the solution, Yet the
algorithm will still have good run-time characteristics, as will be
demonstrated in Section 6.

Figure 13 illustrates a sample Checkerboard with 9 rows, and
3 subproblems. For each subproblem, a subpath is selected, and
they are merged to obtain a path of 8 routing patterns. The solution
Corresponding to this path is illustrated in part (b).

5. GENERALIZING THE MODELS
In the algorithms of Section 4, we have considered only 16 rout-
ing pattems for each net. The rationale behind this assumption has
been discussed in Section 4.1. However, it is also possible to ex-
tend our algorithms such that more routing patterns are considered.
Assume that a net is allowed to escape from one of the V neigh-
boring rows of its terminal. (We have assumed that V = 4 in the
previous sections). The gaph model described in Section 4.1 can
be used with small modifications for different V values. However,
for the exact maximal planar routing algorithm in Section 4.3, we
would need a (V - l)"'-order transformntion on the input graph.
Note that the size of the transformed graph would he exponential
in V, and this approach could be impractical for large V values.
However, the randomized algorithm we propose in Section 4.4 can
easily be generalized for arbitrary V values. Namely, only two
modifications are needed in the algorithm described in Figure 11.
First, the subproblem sizes need to he V - 1, instead of 3. Then,
the second rule for edge creation in GR needs to be changed such

1 1 1 1 1 6 7 1 P
/ /

....

.... :.. !.........I : : . :

.....

....
/ /

4 " 1.1

Figure 13: (a) A sample checkerboard structure with 3 sub-
problems. "be selected subpaths in each subproblem are
{all , b32, c43), {d54, e65, f76), and {gS& h99), respectively.
(b) The corresponding escape muting solution.

that P;" and P; are separated by V - 2 columns, instead of 2
columns. Hence the randomized algorithm would still be scalable
for large V values.

Another assumption we have made in the previous sections is
that the problem consists of two components separated by a chan-
nel. So for a general circuit, we can apply these algorithms on
different pairs of components independently. However, it is also
possible to merge different components to obtain two (conceptual)
super-components. and apply the algorithms on all components
simultaneously. Those details are omitted here due to page limita-
tions.

6. EXPERIMENTAL RESULTS
For evaluation of our algorithms, we have extracted escape proh-
lems corresponding to different components of an industrial circuit
from TBM, for which the current industrial routers fail to produce
a routing solution. We have implemented all our algorithms in
C++, and performed our experiments on an A M D Athlon 1.3 GHz
system with 5 12MB memory, and a Linux operating system.

First, we have performed experiments to evaluate the effective-
ness of the randomized maximal planar routing algorithm given
in Section 4.4. Table 1 gives comparison of this algorithm with
the exact algorithm described in Section 4.3. Note that the exact
algorithm is guaranteed to mute maximum number of planar nets
on one layer. However, it does not guarantee the optimal result
on multiple layers, since we process one layer at a time. As can
he seen from this table, the randomized algorithm gives almost as
good results as the exact algorithm, requires less running time, and
is more scalable for larger circuits. So. we have used the random-
ized algorithm as the underlying maximal planar routing algorithm
in the next set of experiments.

Then we have implemented the methodology described in Sec-
tion 3. Namely, the maximal planar routing solution is found for
each layer. and then the remaining nets are distributed to all layers
at the end. For comparison purposes, we have used a net-by-net
approach based on Pathfinder [61. We have fine-tuned this algo-
rithm such that the number of crossing nets (in the channel) is
minimized. Table 2 gives comparison of the results. Here. the
number of crossing nets can also he viewed as the number of nets
that need to use vias in the area routing stage. Observe that our
methodology results in substantially less number of crossing nets

828

MEM MEM MEM MEM

. . .

Figure 14: A sample solution for one layer (out of 8) of a pmhlem containing an MCM and 4 memory units. The non-crossing
channel connections are illustrated as straight (dotted) lines between components, while the escape routing solutions are shown
with solid lines inside the components. 120 (out of 906 total) nets have been assigned to this layer, and 109 of them have non-
crossing channel segments.

Table 1: Comparison of randomized and exact algorithms

3.33 0 3 4

Table 2 Comparison of our methodology with a net-by-net
approach

OUR MkXHOD NET-BY-NET

IBMMEMI 0 3 8 5 1 4
IBMMEM2 0 4 3 4:33
IBMSTI 352 24 027

82 259
IO1 2 2 4

for all problems. On average, 14% and 28% of all nets are crossing
in the solution of our methodology, and the net-by-net approach,
respectively. So, we can say that our algorithms reduce the via re-
quirements significantly. Furthermore, the execution times of our
method are much lower, since we calculate the best set of planar
nets simultaneously in an efficient way. On the other hand, the
net-by-net approach requires multiple iterations to negotiate rout-
ing resources among different nets.

We also illustrate a sample solution for one layer of a circuit
in Figure 14. Actually, this figure contains two separate prob-
lems: (1) the memory units on the left and MCM, (2) the mem-
ory units on the right and MCM. As mentioned in Section 5, we
have grouped multiple components together to obtain two super-
components separated by a channel, for each problem. Although
the exact area routing will be determined by a later stage, we also
display the non-crossing channel segments in this figure,

7. CONCLUSIONS
We have proposed an exact and a randomized algorithm for simul-
taneous escape rouring and layer assignment problem for boards

with dense components. The experimental results show that the
randomized algorithm gives as good results as the exact algorithm,
and is much faster. We also show that the methodology we propose
produces considerably better results than a net-by-net approach.

8. REFERENCES
[I] P. Berman and G. Schnitger. On the complexity of approx-

imating the independent set problem. Inform. and Comput.,
96:77-94, 19921

[21 H. N. Brady. An approach to topological pin assignment.
IEEE Trans. on Computer Aided Design, 3:250-255, 1984.

[3] I. Cong and C . C. Liu. On the k-layer planar subset and topo-
logical via minimization problems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
10, 1991.

141 T. H. Cormen, C: E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. Ml? Press, 1992.

[5] P. Crescenzi and'V. Kann. A compendium of np optimization
problems. http:l/www.nada.kth.se/ viggo/problemlist.

[61 C . Ebeling, L. McMurchie, S . A. Hauck, and S . Bums. Place-
ment and routing tools for the triptych fpga. IEEE Trans. on
VLSI, pages 473482, 1995.

[71 N. L. Karen. Pin assignment in automated printed circuit
board design. InjPmc. of the ninth design automation work-
shop on Design automnfion, pages 12-19, 1972.

[81 J. Ludwig. IBM Systems Group. Private communication,
2004.

[SI M. M. Ozdal and M. D. F. Wong. Length matching routing
for high-speed printed circuit boards. In Pmc. of IEEE Intl.
ConJ on Computer-Aided Design, Nov. 2003.

[IO] B. Voss. The package routing challenge. SfilwellBaker, Inc..
lune, 2003.

[I l l D. Wiens. Printed circuit board routing at the threshold.
White Paper. Mentor Graphics, 2000.

[I21 H. Xiang, X. Tang, and D. E Wong. An algorithm for simul-
taneous pin assignment and routing. In Pmc. of Intl. Conj
on Computer Aided Design, 2001.

829

http:l/www.nada.kth.se

