
AN ESCAPE ROUTING FRAMEWORK FOR DENSE BOARDS WITH HIGH-SPEED
DESIGN CONSTRAINTS ∗

Muhammet Mustafa Ozdal †

Intel Corporation
Hillsboro, OR 97124

mustafa.ozdal@intel.com

Martin D. F. Wong

Univ. of Illinois at U-C
Urbana, IL 61801

mdfwong@uiuc.edu

Philip S. Honsinger

IBM Microelectronics
Hopewell Junction, NY 12533

honsinge@us.ibm.com

ABSTRACT

Shrinking transistor sizes, increasing circuit complexities, and high
clock frequencies bring new board routing challenges that cannot
be handled effectively by traditional routing algorithms. Many
high-end designs in the industry today require manual routing ef-
forts, which increases the design cycle times considerably. In this
paper, we propose an escape routing algorithm to route nets within
multiple dense components simultaneously so that the number of
crossings in the intermediate area is minimized. We also show
how to handle high-speed design constraints within the framework
of this algorithm. Experimental comparisons with a recently pro-
posed algorithm [10] show that our algorithm reduces the via re-
quirements of industrial test cases on average by 39%.

1. INTRODUCTION

Due to shrinkage of transistor sizes and increasing functional com-
plexities, the densities of VLSI circuits have been increasing rapidly.
In parallel to these developments, boards and packages have been
reducing in size, while the pin counts have been increasing [1, 6].
For example, a multichip module (MCM) used in IBM eServer
z900 [4] (introduced in 2000) contains twenty processor chips,
eight L2 cache chips, two system control chips, four memory bus
adapter chips, and a clock chip. On the bottom of this MCM,
there are 4224 I/O pins, within an area of 127-mm × 127-mm. In
the subsequent generation of the same series, IBM eServer z990
[13] (introduced in 2003), the corresponding number of pins in
an MCM has increased about 20 percent, with a decrease of al-
most 50 percent in the substrate area. With increasing pin densities
of this pace, routing nets on boards beneath the component areas
(escape routing) is increasingly becoming the main bottleneck in
terms of overall routability [13]. Since the traditional routing algo-
rithms cannot handle designs with such complexities, many high-
end boards in the industry today require manual efforts for routing,
which take about a month in a typical design cycle [7]. So, new
routing algorithms that can handle recent challenges are needed to
significantly reduce this time.

In a typical high end board, there are a number of components,
corresponding to MCM, memory, and I/O modules. A component
is typically in the form of a 2-D pin array, with routing tracks be-
tween adjacent rows and columns of pins. The routing resources
within a component are extremely limited due to blockage of pins,
∗This work was partially supported by the National Science Foun-
dation under grant CCR-0306244 and by an IBM Faculty Award.
†This work was done while the author was a graduate student at
the University of Illinois at Urbana-Champaign.

and tight clearance rules. Furthermore, a large number of nets need
to be routed from their terminal pins to the component boundaries
using these limited resources. On the other hand, there are rel-
atively few blockages in the area between different components,
and the amount of available routing resources is relatively larger.

In a recent work [10], a problem decomposition has been given
to distinguish two different problems: (1) routing nets from pin ter-
minals to component boundaries (escape routing), and (2) routing
nets between component boundaries (area routing). Here, escape
routing problems for different components need to be considered
simultaneously to reduce the number of crossings in the intermedi-
ate area. In other words, we cannot just apply a traditional escape
routing algorithm [2, 3, 5, 12, 14] on each component indepen-
dently. The reason is that such an approach would ignore the con-
nections between different components, and increase the buried
via requirements of the next routing stage (area routing) substan-
tially. Especially in high-speed designs, these vias seriously de-
grade signal characteristics, add additional delay, decrease routing
area, and lower the manufacturing yields. Furthermore, for some
board designs, no buried vias are allowed, for the purpose of limit-
ing manufacturing costs [7]. For such designs, the nets need to be
routed in a planar fashion on every layer. Hence, an escape routing
algorithm that tries to minimize (or completely avoid) crossings
in the intermediate areas is crucial to handle the recent challenges
encountered in board routing problems.

In this paper, we propose an algorithm for solving the escape
routing problem in multiple components simultaneously, so that
the number of crossings in the intermediate area is minimized,
and high-speed design constraints are satisfied. Figure 1 illustrates
a one-layer escape routing solution for two components. In this
figure, nets have been routed from their terminal pins to the cor-
responding component boundaries. Here, only one net (net D)
crosses with the others in the intermediate area. For this net, the
area router will need to use a via to resolve the crossing. We can
say that the number of crossings in the intermediate area is a good
measure for the via requirements of an escape routing solution.

Compared to the algorithm proposed in [10], our algorithm
has three main advantages: (1) more general escape patterns are
considered within the framework, instead of simple straight con-
nections (Section 3), (2) an improved maximal planar route se-
lection algorithm is proposed, which is general enough to han-
dle multi-capacity escape slots, and high-speed design constraints
(Section 4), (3) explicit discussion about how to handle various
high-speed design constraints is given for this framework (Sec-
tion 5). Our experiments in Section 6 show that our algorithm
reduces the via requirements of industrial test cases on average by

B

H

E

G

A

54321

12

11

10 L

JG

H

A

D

B

E

I

F

L

J K

I

1514

C

1617 15 14

6

7

8

10

11

12

13

18

234

5

6

7

8

9

13 16

C D

K

F
9

1

Figure 1: An escape routing solution for 12 nets. The escape
slots are identified on the boundaries of components. The con-
nections in the intermediate area are shown by dashed lines.

39%, compared to the recent algorithm [10].
The rest of this paper is organized as follows. We give a formal

description of this problem in Section 2. Our methodology to solve
this problem is based on generating a number of different routing
alternatives for each net, and selecting the maximum planar subset
of escape patterns on each layer. In Section 3, we propose an algo-
rithm to generate escape patterns based on congestion levels within
the components, and the crossings in the intermediate area. Then,
we propose a randomized algorithm in Section 4 for the problem
of maximum planar route selection. In Section 5, we discuss how
to handle high-speed design constraints within the framework of
this algorithm. Finally, we demonstrate the effectiveness of this
algorithm on industrial test cases in Section 6.

2. PROBLEM FORMULATION AND METHODOLOGY

Let a component be defined as a 2-D array of pins, where each pin
spans multiple layers, and routing tracks are defined on each layer
between adjacent rows and columns of pins. An escape segment
is defined to be a route from a pin inside the component to an es-
cape slot on the component boundary. For a component, a set of
escape slots are defined on its boundary, defining the permissible
end-points of escape segments originating from the pins. Due to
limited routing resources, buried vias are not allowed inside the
components. So, routing within the component area needs to be
planar on every layer. Two escape segments corresponding to two
different nets are defined to have a conflict inside the component if
they cannot be routed together on the same layer in a planar fash-
ion. The number of routing tracks at each row and column is pre-
determined based on the pin diameters, wire widths, pin spacings,
and clearance constraints. In a feasible solution, the number of
escape segments passing through a row/column of the component
cannot exceed the corresponding capacity of that row/column.

Let us assume that the input problem consists of only two com-
ponents, which are denoted as left and right components, respec-
tively, for simplicity of presentation. A net is assumed to have two
terminals, one in each component. An escape pattern Pi for net i is
defined to be the combination of two escape segments originating
from the terminals of net i in the left and right components. Two
escape patterns Pi and Pj corresponding to nets i and j are defined
to have a conflict iff their escape segments have conflicts within at
least one component. Note here that a pair of non-conflicting es-
cape patterns Pi and Pj can have a crossing in the intermediate

area between components, depending on the relative ordering of
their escape slots. Since buried vias are allowed in the interme-
diate area between components, these crossings are allowed in a
feasible solution. However, the number of crossings need to be
minimized for the objective of via minimization.

Based on these definitions, the simultaneous escape routing
problem for a set of nets can be stated as follows: Find an es-
cape pattern Pi for each net i, and assign it to a layer such that:
(1) no pair of escape patterns on the same layer conflict with each
other, (2) the capacity constraints on all rows and columns of the
components are satisfied, and (3) the number of crossings in the
intermediate area is minimized.

Figure 1 illustrates a sample one layer solution for 12 nets. The
number of escape slots in the left and right components are 18
and 16, respectively. While the slots on the left component are
numbered increasing in the clockwise direction, the slots on the
right component are numbered increasing in the counter clockwise
direction. Among the 12 nets routed on this layer, only one of them
(net D) crosses with the others in the intermediate area. Some of
the escape slots (slots 1 and 9 in the left component, slot 1 in the
right component) are used by more than one escape segments. This
is allowed in a feasible solution as long as the capacity constraints
are not violated.

Our methodology to solve this problem is to process one layer
at a time, and route as many number of noncrossing nets as possi-
ble on each layer. After finding a maximal planar routing solution
for all layers, we distribute the remaining nets to available layers,
this time allowing crossings in the intermediate area. In the rest of
the paper, we will focus on the problem of maximal planar routing.
The details of the postprocessing phase to distribute the remaining
nets to available layers will not be given due to page limitations.

Our algorithm for maximal planar routing consists of two phases:
(1) Generate a number of different routing alternatives for each net,
and (2) select the maximal subset of routing patterns that will give
a feasible planar routing solution for the current layer. A similar
algorithm has been proposed for this purpose recently [10]. Our
main contributions in this paper can be summarized as follows.
For the first phase, we propose an algorithm to generate routing
patterns based on the congestion levels inside the components, and
the number of crossings in the intermediate area (Section 3). For
the second phase, we propose a more sophisticated randomized
algorithm, which can also be generalized to handle high-speed de-
sign constraints (Sections 4 and 5).

3. ESCAPE PATTERN GENERATION

3.1. Motivation

In this section, we describe an algorithm to generate a number of
different routing alternatives for each net. In a recent work [10],
a simple pattern generation methodology has been used for this
purpose. In particular, 4 escape segments are generated for each
net within each component, for a total of 4 × 4 = 16 escape
patterns. The escape segments generated in that algorithm have
vertical spans of at most 2 rows, as illustrated in Figure 2. The
justification here is that escape patterns with large vertical spans
block other patterns; so small vertical spans are needed for max-
imal planar routing. However, non-regular escape patterns with
larger vertical spans, as illustrated in Figure 3, may be helpful in
some situations. For example if we use the simple pattern gener-
ation technique of the recent work [10], as in Figure 2, then only
2 out of 3 nets will be routed in a planar fashion, as highlighted in

A

AB

B

C

C

Figure 2: The output of a simple pattern generation technique
for 3 nets. The maximal planar subset is highlighted with bold
lines.

A

AB

B

C

C

Figure 3: Pattern generation with the objective of low con-
gestion levels, and small number of crossings. The maximal
planar subset is highlighted with bold lines.

the figure. However, if we use a more intelligent pattern generation
algorithm as in Figure 3, we can route all 3 nets in a planar fash-
ion. With this motivation, we propose an algorithm in this section
that generates escape patterns based on congestion levels within
the components, and the crossings in the intermediate area.

Our objective here is to generate escape patterns with low con-
gestion levels inside the components, and small number of cross-
ings in the intermediate area. However, the patterns generated need
to satisfy the following two properties:

Consider any pair of escape segments Si and Sj generated
within the same component. Let V be a constant input parameter.

Property 3.1. If Si and Sj correspond to the same net (i.e., Si

and Sj originate from the same terminal), then it must be the case
that |Si.slot − Sj .slot| < V .

Property 3.2. If Si and Sj have a conflict, then it must be the case
that |Si.slot − Sj .slot| < V .

Here, the notation S.slot denotes the index of the escape slot
of segment S, as defined in Section 2. Intuitively, the segments be-
longing to the same net, and the conflicting segments must escape
to slots that are close to each other on the component boundary.
In the examples of Figure 2 and 3, these two properties hold for
V = 4. As will be discussed in detail in Section 4, our maximal
planar route selection algorithm will be based on the assumption
that these two properties hold. Furthermore, we will show in Sec-
tion 4 that a polynomial-time optimal algorithm exists for maximal
planar route selection problem if these two properties hold for a
constant V value.

3.2. The Algorithm

Given a simultaneous escape routing problem, as defined in Sec-
tion 2, we start with sorting all the net terminals based on their

GENERATE-ESCAPE-SEGMENTS(G, t, V , T)
// G: the grid graph corresponding to the component
// t: the terminal from which the segments will be generated
// V : the input parameter
// T : the set of target escape slots

for index ← 1 to V do
S ← GENERATE-ONE-ESCAPE-SEGMENT(G,t, T)
add S to the set of escape segments originating from t
T ← T ∩ ({s : S.slot−V < s < S.slot+V }\{S.slot})

// limit the target slot range to satisfy Property 3.1

Figure 4: High level algorithm to generate a number of V es-
cape segments originating from terminal t.

distances to the closest escape slots on the component boundaries.
Then, we process these terminals in sorted order, starting from the
terminal closest to an escape slot. Originating from each terminal,
we generate a number of escape segments, by using the algorithm
outlined in Figures 4 and 5.

Figure 4 displays the high level algorithm used to generate a
number of routing segments originating from a given terminal t.
Here, graph G is used to model the routing resources of the input
component. As described in Section 2, a component is assumed
to be a 2-D array of pins, with rows and columns of routing tracks
between adjacent pins. Also, a set of target escape slots T is spec-
ified for terminal t as input to the algorithm of Figure 4. Although
T can be set such that it contains all escape slots on the compo-
nent boundary, it is also possible to set it based on the length con-
straints of the corresponding net, as will be discussed in Section 5.
Observe in Figure 4 that after an escape segment S is generated
from terminal t, the set T is restricted to the escape slots that are
within the neighbourhood of escape slot of S. The purpose here
is to make sure that Property 3.1 is maintained for the segments
generated from terminal t.

Before describing the low level algorithm, we need to make the
following definition:

Definition 3.1. Let v.segments denote the set of escape segments
passing through vertex v. An escape slot s is defined to be reach-
able from vertex v iff for each escape segment S ∈ v.segments, it
is the case that |S.slot − s| < V , where V is the input parameter
specified in Property 3.2. The set of reachable escape slots from
vertex v is denoted as v.reachableSlots

Remark 3.1. Consider a path P in grid graph G that starts at
terminal t, and ends at escape slot s. If s ∈ v.reachableSlots
for each v ∈ P , then it is guaranteed that path P satisfies Prop-
erty 3.2.

The low level algorithm used to generate one escape segment is
given in Figure 5. This is basically a variant of Dijkstra’s shortest
path algorithm [3]. As an additional constraint, we make sure that
Property 3.2 is satisfied, by restricting the target slot range when
a conflict with an existing pattern is possible. The cost of edge
(u → v) is computed by the following formula:

cost(u → v) = α.dist(u → v) + β.cong(v) + γ.cross(v) (1)

Here, α, β, and γ are scaling factors for distance, congestion,
and crossing cost metrics, respectively. Congestion cost for vertex
v is computed based on the number of escape segments passing
through v. Before generating any escape pattern, we first estimate

GENERATE-ONE-ESCAPE-SEGMENT(G, t, T)
pQ ← an empty priority queue
for each vertex v ∈ G that is adjacent to terminal t do

v.label ← 0
v.targetSlots ← T
pQ ← pQ ∪ {v}

while pQ not empty do
u ← pQ.extractMin()
if u corresponds to an escape slot then terminate loop
for each edge (u → v) ∈ G do

if (u.targetSlots∩ v.reachableSlots �= ∅)
&& (u.label + cost(u → v) < v.label) then

v.label ← u.label + cost(u → v)
v.targetSlots ← u.targetSlots∩ v.reachableSlots

// limit the target slot range to satisfy Property 3.2.
v.parent ← u
pQ ← pQ ∪ {v}

construct escape segment S by backtracking from escape slot u

Figure 5: Low-level algorithm to generate one escape segment
originating from terminal t.

the congestion values for individual vertices through path analy-
sis. As we generate escape segments, we gradually replace these
estimations with actual congestion values. If v is a vertex corre-
sponding to an escape slot, we also compute a crossing cost based
on the estimated number of crossings in the intermediate area.

4. MAXIMAL PLANAR ROUTE SELECTION

In this section, it is assumed that a number of escape patterns that
maintain Property 3.1 and Property 3.2 have been generated. The
objective now is to select the maximum number of escape patterns
such that: (1) at most one pattern for each net is selected, (2) the
segments of the selected patterns do not conflict with each other
within components (i.e., they are routable in a planar fashion on
the same layer), and (3) the selected patterns have no crossing in
the intermediate area.

4.1. Problem Modeling

Let P.slotL and P.slotR denote the escape slots of escape pattern
P in the left and right components, respectively. Furthermore, let
us assume that a unique rank is assigned for each escape segment
within a component, indicating the relative ordering between dif-
ferent segments. As an example, consider the segments of nets I
and H in the left component of Figure 1. Although these two seg-
ments escape to the same slot (slot 9), the rank of net I’s segment
must be less than the rank of the corresponding segment of net H .
Let P.rankL and P.rankR denote the rank of pattern P in the
left and right components, respectively. For simplicity of presen-
tation, we will first consider the problem with unit slot capacities
in the following definitions.

Definition 4.1. The less-than predicate for two escape patterns
is defined as follows: Pi ≺ Pj iff Pi.rankL < Pj .rankL and
Pi.rankR < Pj .rankR.

Note here that the precedence relation defined above is transi-
tive, i.e., if Pi ≺ Pj and Pj ≺ Pk, then Pi ≺ Pk . Based on this
property, we can give the following definition:

PLANAR-ROUTE-SELECTION(P : a set of patterns)
map each pattern in P to a cell of checkerboard C
rowwise partition C into subproblems with V − 1 rows each
randomly generate a set of subsequences in each subproblem
create a graph GR as follows:

– A vertex vi
j exists in GR corresponding to each subsequence

Si
j in subproblem i.

– The weight of vi
j is equal to the number of patterns in Si

j .
– Let xi

j and xi+1
k denote the x coordinates of the checkerboard

cells of the last patterns in subsequences Si
j and Si+1

k .
An edge from vi

j to vi+1
k exists in GR iff:

(1) all patterns in Si
j are to the left of all patterns in Si+1

k

(2) xi+1
k > xi

j + V − 2,
(3) no pattern in Si

j conflict with a pattern of Si+1
k .

return the longest path in GR

Figure 6: High level description of the randomized planar
route selection algorithm

Definition 4.2. A pattern sequence S is defined to be an ordered
set of patterns {P1, P2, ..., Pn} such that if i < j then Pi ≺ Pj .

Definition 4.3. A pattern sequence S is defined to be permissible
iff it contains no pair of conflicting patterns1.

Theorem 4.1. For a given set of escape patterns, the longest per-
missible pattern sequence S is equivalent to the maximum subset
of patterns that can be routed on one layer in a planar fashion.

Theorem 4.2. For a given set of escape patterns, assume that
Property 3.1 and Property 3.2 are satisfied for a constant V value.
Then, there is a polynomial-time optimal algorithm to solve the
maximal planar route selection problem.

PROOF. Due to page limitations, the detailed proof is omitted
here. However, it is based on showing that a dynamic program-
ming algorithm with time complexity o(nV +1) can solve the prob-
lem of longest permissible sequence if Properties 3.1 and 3.2 are
satisfied.

Although a polynomial-time optimal algorithm exists for this
problem, its high time complexity makes it impractical for large
circuits. For this reason, we propose a much faster randomized
algorithm in the next subsection, which gives solutions that are
very close to optimum in practice. As mentioned before, we will
also discuss how to handle high-speed design constraints within
the framework of this algorithm in Section 5. The algorithm pro-
posed in the next subsection can also handle multi-capacity slots,
as given by the following definition.

Definition 4.4. Assume that each escape slot is defined to have
a particular capacity, as defined in Section 2. A sequence S is
defined to be capacity constrained iff the number of patterns in
S that use a particular escape slot is less than or equal to the
corresponding slot capacity.

4.2. A Randomized Algorithm

In this section, we propose a randomized algorithm to solve the
capacity-constrained longest permissible sequence problem for a
1We denote two patterns Pi, Pj as conflicting iff they cannot occur
together in a valid planar escape routing solution.

E

AD

BC

A

F
E

C

B D

F

(b)(a)

FE

E

F

A

ADD

CC

BB

CB B C2

6

5

1

1

3

4

5

1

2

3

4

5

66

2 3 4 5 6

1

2

3

4

Figure 7: (a) A set of routing patterns defined for 6 nets. (b)
The corresponding checkerboard model. For clarity, only one
or two escape segments are illustrated for each net. The maxi-
mum planar subset is highlighted in both figures.

given set of escape patterns. The high level algorithm is given in
Figure 6. Compared to the algorithm given in [10], the main im-
provement is our randomized subsequence generation algorithm,
as given in Figure 9. This algorithm not only improves the rout-
ing results considerably (Section 6), but also is general enough to
handle multi-capacity escape slots, and typical high-speed design
constraints (Section 5). We also prove later in this section that the
average-time complexity of this algorithm is linear in the compo-
nent sizes (Theorem 4.6).

The (conceptual) checkerboard model introduced in the algo-
rithm of Figure 6 is defined as follows [10]:

Definition 4.5. Let #sL and #sR denote the number of escape
slots defined on the left and right components, respectively. Let C
be a (conceptual) checkerboard with #sL rows and #sR columns.
An escape pattern P is defined to be mapped to cell (i, j) of checker-
board C iff P.slotL = i and P.slotR = j.

Figure 7 illustrates a sample escape problem, and the corre-
sponding checkerboard model. Let us consider two patterns Pi

and Pj on this checkerboard. If Pj is below and to the right of
Pi (e.g. Pi = B12, Pj = C33), then Pi ≺ Pj , as defined in
Definition 4.1. If Pj is above and to the right of Pi (e.g. Pi =
D43, Pj = A35), then neither Pi ≺ Pj , nor Pj ≺ Pi. Otherwise,
if Pi and Pj are on the same row (e.g. Pi = D44, Pj = A45), or
the same column (e.g. Pi = C33, Pj = D43), or the same cell
(e.g. Pi = E56, Pj = F56), then we need to check the ranks
of Pi and Pj to determine the relationship between these patterns.
For instance, ranks of E56 in both left and right components are
less than those of F56 (since the corresponding escape segments
of net E are above those of net F); hence E56 ≺ F56.

After mapping each pattern to a checkerboard cell, C is rowwise
partitioned into subproblems. Then a set of capacity-constrained
permissible subsequences is randomly generated within each sub-
problem, as will be described in detail later in this section. After
that, these subsequences are merged together to obtain the capacity-
constrained longest permissible sequence. For this purpose, a graph
model GR is defined in Figure 6, which satisfies the following
lemma.

Lemma 4.3. Consider two subsequences Si
j and Sl

k in subprob-
lems i and l, respectively. If there is a path between the corre-
sponding vertices vi

j and vl
k in GR, then it is guaranteed that Si

j

and Sl
k contain no patterns that conflict with each other.

A more restricted version of this lemma has been given previ-
ously for a similar graph model [10]. Based on this lemma, we

A
B
C
F

A
C
D
F

A
B
F
G

K
L

J
H I

J
L
M

P
R
S
T

S

N
Q

U

A
B
C
E

Q
S
U3

2
S
U
B
P
R
O
B
L
E
M

1
S
U
B
P
R
O
B
L
E
M

S
U
B
P
R
O
B
L
E
M

F G

D

H I

E

K

J

L

N P

Q
R S

T U

M

H
J
K

N
P
R
S
U

conflicts: (B,D), (C,G), (E,I), (F,N), (G,Q),
(L,P), (M,P), (T,U), (P,Q), (N,T)

A

C

B

Figure 8: Illustration of the randomized algorithm given in
Figure 6 on a sample checkerboard. For clarity, ranks of the
patterns are not displayed. The set of subsequences generated
for each subproblem are shown on the right, together with the
corresponding graph GR, and the (highlighted) longest path. It
is assumed here that each escape slot has a capacity of two.

can compute the longest path in acyclic graph GR to find the best
combination of subsequences generated in different subproblems.
Then, we can merge these subsequences to obtain the longest per-
missible sequence. Figure 8 illustrates the execution of the ran-
domized algorithm on a sample board. Here, assume that a number
of patterns have already been mapped to this checkerboard, and the
conflicts between patterns are as listed in this figure. A small set of
randomly generated subsequences2 is shown for each subproblem
on the right. Corresponding to each subsequence, there is a vertex
in GR, and edges between them are created based on the rules de-
fined in Figure 6. For instance, there is no edge from {A, B, C, E}
to {I, J, L, M} because patterns E and I are conflicting. Sim-
ilarly, there is no edge from {A, B, F, G} to {I, J, L, M}, be-
cause it violates rule (2) in Figure 6. The longest path in GR, cor-
responding to the capacity-constrained longest sequence is also
highlighted in this figure.

The algorithm we use to generate a set of random subsequences
is outlined in Figure 9. In the beginning, this recursive function is
called for each cell on the first row of the given subproblem, with
argument subseq set to ∅. In one recursive call, first it is checked
whether the partial subsequence generated so far is good enough
to store. This decision is made by comparing the weight of the cur-
rent subsequence subseq with the weights of the subsequences al-
ready stored for this subproblem. Let tx denote the x-coordinate of
the checkerboard cell corresponding to the last pattern in subseq.
The weight of subseq is compared with only the subsequences
that end at column tx of the checkerboard. An input parameter
determines how many subsequences can be stored corresponding
to each column3 . If the partial subsequence subseq is to be stored,
a previously stored subsequence with less weight may need to be

2For clarity, only 3 or 4 subsequences are given in this example.
Normally, hundreds or even thousands of subsequences are gener-
ated for each subproblem to obtain a good variety.
3In our experiments, the maximum number of subsequences that
can be stored corresponding to each column is set to 50.

GENERATE-SUBSEQ(x,y, subseq)
// (x,y): coordinate of the current checkerboard cell
// subseq: the partial subsequence generated so far
if cell (x, y) is not within subproblem boundaries

terminate recursion
if subseq is good

store subseq in candidate set of the subproblem
Let P ′ be the last pattern in subseq

T ← {P : P ′ ≺ P (see Definition 4.1) AND
((x ≤ P.slotR ≤ x + ∆ AND P.slotL = y) OR
(y ≤ P.slotL ≤ y + ∆ AND P.slotR = x)) AND
capacity of (P.slotR, P.slotL) not fully used AND
P has no conflict with subseq}

for each pattern P ∈ T do
randomly determine whether to accept or reject P
if P is accepted

GENERATE-SUBSEQ(P.slotR,P.slotL, subseq ∪ {P})
GENERATE-SUBSEQ(x + 1, y + 1, subseq)

Figure 9: Algorithm to generate a set of random subsequences

replaced. Note here that our purpose is to generate a large va-
riety of good subsequences for the given subproblem, instead of
generating only the best ones. The variety among subsequences
is obtained by making sure that a subsequence ending at a partic-
ular checkerboard column does not replace another subsequence
ending at a different column.

The next step of the recursive algorithm is to find the set of
patterns T that can be added to the partial subsequence subseq.
Here, this selection is done based on the invariant that subseq re-
mains permissible (Definition 4.3), and capacity constrained (Def-
inition 4.4). In one recursive iteration, we consider the patterns
that are (1) on cell (x, y), (2) on column x, and (3) on row y of
the checkerboard. To limit the search space, we only consider pat-
terns that are within ∆-neighbourhood of (x, y), where ∆ is an
input parameter, typically set to a value less than five. Figure 10 il-
lustrates the physical meaning of selecting patterns from the same
cell, row, or column of the checkerboard.

After finding the candidate pattern set T , we consider each P
in T , and randomly decide whether to accept or reject P . Here,
the probability of accepting pattern P is set so that the expected
number of escape patterns that can be selected from set T is equal
to a fixed input parameter4. In other words, this probability is in-
versely proportional to the number of candidate patterns in T . If
P is accepted, then another recursive call is made starting from the
current checkerboard cell. After all patterns in T are considered,
a recursive call to cell (x + 1, y + 1) is made to continue subse-
quence generation without selecting any pattern from the current
level. the main purpose here is to have a good variety in the gen-
erated subsequences.

For the following complexity analysis, we assume that param-
eter V given in Properties 3.1 and 3.2, and all the slot capacities
are constants (i.e., have complexity O(1)).

Lemma 4.4. Let R be the recursion tree of the function GENERATE-

4We have set the expected number of patterns that can be selected
at each recursive iteration to 7 in our experiments. The execution
time of the subsequence generation phase can be controlled by this
parameter.

1 3

1

2

3

2

4 65
1

A

4

3

2

B
C

D

(b)

E

A

E
D

B

C

(a)

BA

C

D
E

2

3

4

1

Figure 10: (a) A subsequence on the checkerboard, and (b) the
corresponding escape patterns.

SUBSEQ given in Figure 9. The following two properties hold for
R: (1) The maximum depth of R is O(1). (2) The number of re-
cursive calls made from a node in R is O(1) on the average.

PROOF. At each recursive call, either a pattern P is added to
the partial subsequence, or the x and y coordinates are both in-
cremented by 1. Since each subproblem consists of V rows, and
escape slot capacities are constants, the maximum length of any
subsequence is O(1). Hence, the maximum recursion depth is
O(1). Furthermore, we randomly decide whether to accept or re-
ject pattern P such that the expected number of patterns selected
in each iteration is constant. As a result, the number of recursive
calls made from a node in R is O(1) on the average.

Lemma 4.5. The recursive function GENERATE-SUBSEQ(x,y,subseq)
is invoked only a constant number of times for each checkerboard
cell (x, y).

PROOF. Our proof is based on induction on the depth of the re-
cursive tree R. Obviously, the checkerboard cell at the root of R is
called only a constant number of times (base case). Let us consider
a grid cell (x, y), and let us assume that the induction hypothesis
holds for all cells called before (x, y). From the algorithm of Fig-
ure 9, we know that only the cells that are in the ∆-neighbourhood
of (x, y) can make a call to (x, y). Since ∆ is constant, the lemma
follows due to the induction hypothesis.

Theorem 4.6. The total average-time complexity of subsequence
generation for all subproblems is O(n + s2), where n is the num-
ber of nets, and s is the number of escape slots on the component
boundaries.

PROOF. We will first prove that the average-time complexity
for subproblem i is O(ni + s), where ni is the number of patterns
mapped to a cell within subproblem i. In one recursive call, all
patterns P mapped to cells in the ∆-neighborhood of cell (x, y)
are processed to determine set T . Since ∆ is constant, and due
to Lemma 4.5, each pattern is processed only a constant num-
ber of times. Furthermore, the average number of nodes in a re-
cursion tree R is O(1), due to Lemma 4.4. Since there are s
separate recursion trees (each root corresponding to a cell on the
first row of the current subproblem), the average-time complex-
ity for one subproblem is O(ni + s). Based on this, the total
average-time complexity for all subproblems can be written asP

1≤i≤s/V O(ni + s) = O(n + s2).

Theorem 4.7. Let K denote the maximum number of subsequences
that can be stored for each subproblem. The average time com-
plexity for the proposed randomized planar route selection algo-
rithm is O(n + s2 + K2s), where n is the number of nets, and s
is the number of escape slots on component boundaries.

PROOF. In graph GR (defined in the beginning of this section),
there is a vertex corresponding to each subsequence generated.
Since there are s/V = O(s) subproblems, the number of vertices
in GR is O(Ks). The edges in GR are only between vertices that
correspond to adjacent subproblems. Hence, the number of edges
in GR is O(K2s). Since, GR is acyclic, computing the longest path
has linear time complexity in the graph size [3], which is O(K2s).
As given in Theorem 4.6, the average time complexity of subse-
quence generation is O(n + s2); so the proof is complete.

5. HANDLING HIGH-SPEED DESIGN CONSTRAINTS

In the following subsections, we discuss how to generalize the al-
gorithms given in Sections 3 and 4 to handle different high speed
design constraints.

5.1. Maximum Length Constraints

Board designers specify maximum length constraints for critical
nets to limit the maximum arrival times. We can handle these con-
straints during pattern generation phase of our framework. Specif-
ically, we can restrict the set of target escape slots (parameter T
in Figure 4) such that the escape segments with long detours are
avoided. Furthermore, remember that an escape pattern is created
by merging two escape segments from the left and right compo-
nents. It is possible to check the maximum length constraints dur-
ing this step, and eliminate the patterns that violate the correspond-
ing constraints.

5.2. Minimum Length Constraints

Minimum length constraints are typically enforced for nets be-
longing to a bus structure, with the objective of matching the signal
arrival times. Recently, routing algorithms have been proposed to
handle these constraints [8, 9, 11]. Typically, the length of a short
net need to be extended to satisfy its min-length constraint. Since
the routing resources within components are extremely limited, it
makes more sense to perform length extension in the intermediate
area between components, in a later stage of the routing system.
However, we can also modify our randomized planar route selec-
tion algorithm (Section 4) such that the patterns that satisfy min
bounds are preferred over the others. For this purpose, we can as-
sign a weight to each escape pattern, based on its length and the
corresponding min length constraint. Then, the randomized al-
gorithm given in Section 4 can be used to select the permissible
pattern sequence with the largest weight.

5.3. Adjacency Constraints for Noise Avoidance

Adjacency constraints between different nets are defined by de-
signers to avoid crosstalk problems. A typical adjacency constraint
between nets ni and nj can be stated as follows [7]: If ni and nj

are routed adjacent to each other on the same layer, then their
routes need to be separated by at least k routing tracks. Such a
constraint is enforced typically on signal nets that belong to dif-
ferent bus structures. In the context of the model defined in Sec-
tion 4.1, we can restate this constraint as follows: If the patterns
corresponding to ni and nj are adjacent in a permissible pattern
sequence S , then the escape slots of these patterns need to be sep-
arated by at least k routing tracks. This constraint can be han-
dled effectively in the subsequence generation algorithm given in
Figure 9 by comparing the last pattern in the partial subsequence
subseq with the candidate pattern P . Specifically, the following
line needs to be added immediately after set T is defined in Fig-

ure 9:

T ← T ∩ {P : if (P ′, P) has a k-adjacency constraint, then
there are k empty tracks between P ′ and P in
both left and right components

By adding this line, we make sure that only the subsequences
that do not violate adjacency constraints are generated. In addition,
we also need to check these constraints for subsequences in neigh-
bouring subproblems. Specifically, we need to add the following
rule while defining the edges of GR in Figure 6:

Let vi
j and vi+1

k denote two vertices in GR corresponding to
subsequences Si

j and Si+1
k , which have been generated in sub-

problems i and i+1, respectively. Let P i
j denote the last pattern in

subsequence si
j , and P i+1

k denote the first pattern in subsequence
Si+1

k . If (P i
j , P i+1

j) have an adjacency constraint of at least k

tracks, then an edge from vi
j to vi+1

k (in GR) exists only if there are
at least k tracks between P i

j and P i+1
k in both components.

These two modifications are sufficient to ensure that the output
of our algorithms satisfy all adjacency constraints.

5.4. Differential Pairs

A differential pair is a complementary pair of nets that provide
noise immunity. The two nets within a differential pair need to be
routed parallel to each other, separated by a specific distance as
long as possible. Let us consider two nets ni and nj that belong to
a differential pair. During pattern generation, we can identify the
pairs of escape segments corresponding to ni and nj that adhere
to these constraints. In the context of the model defined in Sec-
tion 4.1, a pattern corresponding to ni can exist in a permissible
sequence S only if it is adjacent to an acceptable segment of nj .
This constraint can be explicitly checked in the subsequence gen-
eration algorithm of Figure 9 by comparing the last pattern in the
partial subsequence subseq with the candidate pattern P . Specif-
ically, the following code segment needs to be added immediately
after set T is defined in the algorithm of Figure 9:

Let P ′′ be the second-to-last pattern in subseq
if P ′ belongs to a differential pair AND

(P ′′, P ′) is not a differential pair then
T ← T ∩ {P : (P ′, P) is a differential-pair}

By adding these lines, we make sure that patterns belonging to a
differential pair always occur together in a subsequence. However,
we also need to check differential pairs that are in two adjacent
subproblems. For this purpose, we need to add the following rule
while defining the edges of GR in Figure 6:

Let P i
j−1 and P i

j denote the second-to-last and last patterns in
subsequence si

j; let P i+1
k denote the first pattern in subsequence

Si+1
k . Assume that P i

j is part of a differential pair, and (P i
j−1, P

i
j)

is not a differential pair. If this is the case, then an edge from vi
j to

vi+1
k (in GR) exists only if (P i

j , P i+1
k) is a differential pair.

These two modifications are sufficient to handle the differential
pair constraints.

6. EXPERIMENTAL RESULTS

We have performed experiments on escape problems extracted from
a real industrial board design, for which current industrial tools
fail to produce a routing solution. We have implemented our al-
gorithms in C++, and performed the experiments on an Intel Pen-

Table 1: Comparison of our framework with a recently pro-
posed approach

OUR ALGORITHM ALGORITHM IN [10]
nonplanar time nonplanar time

Input # layers # nets nets (m:s) nets (m:s)
IBM1 5 426 25 1:56 50 0:37
IBM2 5 428 35 0:58 44 0:30
IBM3 4 352 22 1:04 48 0:33
IBM4 5 312 47 1:22 68 0:54
IBM5 3 226 6 0:25 18 0:18
IBM6 5 441 35 1:01 50 0:32

tium 4 2.4GHz system with 1GB memory, and a Linux operating
system. The input parameter V given in Properties 3.1 and 3.2 is
set to 4 in our experiments.

As mentioned in Section 4.1, the optimal algorithm for max-
imal planar route selection has a high time complexity, and it is
impractical for large circuits. Our experiments on relatively small
sized problems indicated that the solutions given by our random-
ized algorithm are within about 3% of the optimal solution in terms
of the number of planar routes selected. However, the optimal al-
gorithm was not applicable to larger problems due to its large time
complexity. For this reason, we have used the algorithm proposed
in [10] for comparison with the algorithm we propose in this pa-
per. Table 6 gives the results obtained on industrial test cases. As
mentioned before, layers are processed one by one, and the max-
imal planar routing solution is found for each layer. The number
of nets that could not be routed in a planar fashion is given for
each problem under columns nonplanar nets. These nets will be
distributed to available layers later, allowing crossings in the inter-
mediate channel. As discussed before, a crossing net will need to
use a via during the later stages of the routing system. The results
in Table 1 indicate that our algorithm reduces the via requirements
on the average by 39%, for the given industrial test cases. A sam-
ple output of our maximal planar routing algorithm for one layer
is illustrated in Figure 11.

7. CONCLUSIONS

We have proposed an algorithm to solve the escape routing prob-
lem in multiple components simultaneously. Compared to the al-
gorithm proposed in [10], our main contributions can be summa-
rized as follows. First, we propose a more intelligent pattern gen-
eration algorithm that is based on congestion levels in the com-
ponents, and the number of crossings in the intermediate area.
Then, we propose a more sophisticated randomized algorithm for
the maximal planar routing problem. We also show how to handle
typical high speed design constraints within the framework of this
algorithm. Our experiments show that our algorithm can reduce
the via requirements significantly.

8. REFERENCES

[1] W. D. Brown. Advanced Electronic Packaging with Empha-
sis on Multichip Modules. IEEE Press Series on Microelec-
tronic Systems, 1999.

[2] W.-T. Chan, F. Y. L. Chin, and H.-F. Ting. Escaping a grid by
edge-disjoint paths. In Proc. of the 11th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 726–734, 2000.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. MIT Press, 1992.

[4] H. Harrer, H. Pross, W. T.-M, W. D. Becker, H. I. Stoller,
M. Yamamoto, S. Abe, B. J. Chamberlin, and G. A. Katopis.

Figure 11: A planar escape routing solution is illustrated for
two components. 111 nets have been routed on this layer.
The connections in the intermediate area are shown as straight
lines between components.

First- and second-level packaging for the IBM eServer z900.
IBM J. of Research and Development, 46:397–420, 2002.

[5] J. Hershberger and S. Suri. Efficient breakout routing in
printed circuit boards. In Proc. of the 13th Annual Sympo-
sium on Computational Geometry, pages 460–462, 1997.

[6] E. H. Laine and P. M. O’Leary. IBM chip packaging
roadmap. In Proc. of Int’l. Packaging Strategy Symposium,
SEMICON West, 1999.

[7] J. Ludwig. IBM Systems Group. Private communication,
2004.

[8] M. M. Ozdal and M. D. F. Wong. Length matching routing
for high-speed printed circuit boards. In Proc. of IEEE/ACM
Intl. Conf. on Computer-Aided Design (ICCAD), Nov. 2003.

[9] M. M. Ozdal and M. D. F. Wong. A provably good algorithm
for high performance bus routing. In Proc. of IEEE/ACM
Intl. Conf. on Computer-Aided Design (ICCAD), Nov. 2004.

[10] M. M. Ozdal and M. D. F. Wong. Simultaneous escape
routing and layer assignment for dense pcbs. In Proc. of
IEEE/ACM Intl. Conf. on Computer-Aided Design (ICCAD),
Nov. 2004.

[11] M. M. Ozdal and M. D. F. Wong. A two-layer bus routing
algorithm for high-speed boards. In Proc. of IEEE Intl. Conf.
on Computer Design (ICCD), Oct. 2004.

[12] A. Titus, B. Jaiswal, T. Dishongh, and A. N. Cartwright. In-
novative circuit board level routing designs for bga packages.
IEEE Trans. on Advanced Packaging, 27, 2004.

[13] T.-M. Winkel, W. D. Becker, H. Harrer, H. Pross, D. Kaller,
B. Garben, B. J. Chamberlin, and S. A. Kuppinger. First-
and second-level packaging of the z990 processor cage. IBM
Journal of Research and Development, 48:379–394, 2004.

[14] M. Yu and W. W. Dai. Single-layer fanout routing and
routability analysis for ball grid arrays. In Proc. of Intl. Conf.
on Computer-Aided Design (ICCAD), pages 581–586, 1995.

